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Abstract 

Hepatitis C virus (HCV) infection is a major cause of hepatocellular carcinoma (HCC) and 

chronic liver disease worldwide. Recent developments and advances in HCV replication 

systems in vitro and in vivo, transgenic animal models, and gene expression profiling 

approaches have provided novel insights into the mechanisms of HCV replication. They 

have also helped elucidate host cellular responses, including activated/inactivated signaling 

pathways, and the relationship between innate immune responses by HCV infection and 

host genetic traits. However, the mechanisms of hepatocyte malignant transformation 

induced by HCV infection are still largely unclear, most likely due to the heterogeneity of 

molecular paths leading to HCC development in each individual. In this review, we 

summarize recent advances in knowledge about the mechanisms of hepatocarcinogenesis 

induced by HCV infection. 

 

  



3 
 

Introduction 

Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third 

leading cause of cancer death worldwide 1. The majority of HCCs arise from a background 

of chronic liver diseases caused by infection with hepatitis B virus (HBV) or hepatitis C 

virus (HCV) 2. Although both viruses are hepatotropic and regarded as causative agents of 

HCC, the underlying mechanisms of hepatocarcinogenesis are considered to be largely 

different, partly due to differences in the nature of DNA viruses (with an integration 

capacity for the host genome) and RNA viruses (with no genome integration capacity).  

HCV is an RNA virus that is unable to integrate into the host genome but, instead, 

its proteins interact with various host proteins and induce host responses that potentially 

contribute to the malignant transformation of cells. In addition, HCC usually develops in 

the setting of liver cirrhosis after long-term continuous inflammation/regeneration 

processes; these accelerate the turnover of hepatocytes with increased risk of replication 

errors and DNA damage. Furthermore, recent genome-wide association studies have 

suggested that the natural course of HCV infection might be modified by the genetic 

background of the host 3, 4. Thus, both host and virus factors are considered to affect the 

process of hepatocarcinogenesis in a complex manner.  

 In this review, we summarize the current knowledge of the mechanisms of 

hepatocarcinogenesis induced by HCV infection. We also focus on recent findings of 

transcriptomic characteristics of HCV-related HCC and summarize the potential signaling 

pathways that are altered in this condition. 
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Epidemiology 

Chronic HCV infection is a major risk factor for the development of HCC worldwide. 

According to the World Health Organization (WHO), approximately 170 million people are 

chronically infected with HCV. Although epidemiological evidence has suggested a clear, 

close relationship between HCV infection and HCC, 5, 6 the prevalence of HCV infection in 

HCC patients differs noticeably between geographical regions. Thus, HCV infection is 

found in 70–80% of HCC patients in Japan, 70% in Egypt, 40–50% in Italy and Spain, 

about 20% in the United States (US), and less than 10% in China 7-9. In industrialized 

countries including the US, a recent increase in HCC incidence and mortality has been 

observed, potentially due to the rising incidence of HCV infection transmitted through 

contaminated blood 10.  

 HCV increases the risk of HCC by promoting inflammation and fibrosis of the 

infected liver that eventually results in liver cirrhosis. Once HCV-related cirrhosis is 

established, HCC develops at an annual rate of about 4–7% 11. Other factors including 

alcohol intake, diabetes, and obesity have also been reported to increase the risk of HCC 

development by about 2-4 fold, indicating a strong life-style effect on the process of 

hepatocarcinogenesis 12, 13. Age and male gender are also contributing risk factors for HCV-

related HCC, although the detailed mechanisms are still debatable. 
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Virus proteins and host responses 

HCV belongs to the Flaviviridae family. It has a positive-stranded linear RNA genome of 

about 9.6-kb containing a single large open reading frame encoding three structural (core, 

E1, and E2) and seven non-structural (p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) 

proteins 14. The structural proteins form the HCV virions whereas non-structural proteins 

are involved in the processes of viral replication, assembly, and maturation. HCV proteins 

are known to be processed by host and viral proteases. Both structural and non-structural 

proteins can interact with various host cellular proteins to potentially promote the malignant 

transformation of hepatocytes (see recent reviews 7, 15, 16). In this review, because of space 

limitations, we focus on the findings of core and NS5A proteins in terms of host responses 

potentially evoked during the process of HCV-related hepatocarcinogenesis. 

Core protein 

HCV core is a 21 kDa nucleocapsid protein with an RNA-binding capacity. In addition to 

its function in regulating HCV-RNA translation and HCV particle assembly, core protein is 

known to be involved in mediating the alteration of various host cell signaling pathways, 

transcriptional activation, modulation of immune responses, apoptosis, oxidative stress, and 

lipid metabolism 7. Several recent studies have indicated the statistically significant high 

frequency of mutations in the core gene in HCV-infected patients who developed HCC 17, 18. 

However, the functional relevance of mutant core proteins on the malignant transformation 

of hepatocytes or the HCV life cycle has yet to be clarified.  
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 Evidence of core protein as a causative agent of HCC was initially obtained from 

the transgenic mice model in which core gene overexpression, under the regulation of the 

HBV regulatory element used as a promoter, resulted in steatosis of mouse livers in early 

life, with subsequent development of adenoma and HCC 19. However, another mouse 

model using a different promoter and of a different strain background resulted only in 

steatosis or different phenotypes without HCC development 20, 21. Similar controversial 

findings were reported in transgenic mice expressing HCV polyprotein or structural protein 

with regards to the development of HCC 22, 23. Thus, the role of core protein alone in the 

development of HCC remains unclear in transgenic mouse models. 

 Although the direct role of core protein in the malignant transformation of 

hepatocytes is still under investigation, it seems to be related to the development of hepatic 

steatosis 19, 24. Indeed, steatosis is one of the risk factors for the development of HCV-

related HCC 25, 26, and activation of the lipogenic pathway has been reported in a subset of 

HCC cases 27. Core protein is associated with the surface of lipid droplets in infected cells 

and might be directly related to steatosis through several factors responsible for lipid 

biogenesis and degradation, including peroxisome proliferator-activated receptor alpha and 

sterol-regulatory element binding protein-1 21, 28-30. Furthermore, core protein is reported to 

interact with endoplasmic reticulum (ER) or mitochondrial outer membranes and induce 

ER stress by perturbation of protein folding or by the accumulation of reactive oxygen 

species (ROS) through mitochondrial dysfunction 31, 32. ROS produced in this way might 

result in DNA damage to the host genome and accelerate the process of 

hepatocarcinogenesis. Increased hepatic iron deposition may also induce oxidative stress 
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and lipid peroxidation, thus increasing the risk of HCC development in HCV polyprotein 

transgenic mice 33. 

 Since the discovery of HCV, various studies have investigated the role of core on 

host cells. Its effects have been demonstrated on signaling pathways responsible for the cell 

cycle, and apoptosis through interaction with several tumor suppressors including p53, p73, 

and p21 34-39 as well as apoptosis regulators such as TNF-signaling or Bcl-2 members 40-

42 However, the data obtained from these studies are relatively inconsistent with each other 

and have varied across experimental models. Core protein may influence the growth and 

proliferation of host cells through activation of signaling pathways such as Raf/mitogen 

activated protein kinase (MAPK) 43, Wnt/beta catenin 16, and transforming growth factor 

beta (TGF-) 15, 44. These pathways are known to be activated in HCC 45. The findings 

therefore indicate a potential role for core in cell proliferation or suppression of apoptosis 

during malignant transformation of hepatocytes in the liver of chronic hepatitis C, where 

chronic inflammation and regeneration of hepatocytes continuously occurs. 

NS5A protein 

NS5A is a 56–58 kDa protein phosphorylated at serine residues by serine-threonine kinase 

46 and is essential for replication of the HCV genome. NS5A protein forms part of the viral 

replicase complex and is localized mainly in the cytoplasm of infected cells in association 

with the ER. NS5A can become a lower molecular weight protein through post-

translational modification, after which it can undergo translocation to the nucleus where it 

acts as a transcriptional activator. High frequencies of wild-type NS5A genes were reported 
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to be dominant in liver cirrhosis patients who finally developed HCC compared with those 

who did not 47, but the mechanistic significance of the NS5A wild/mutant genotypes in the 

process of HCV-related hepatocarcinogenesis remains uncertain.  

 NS5A protein has been suggested to interact with various signaling pathways 

including cell cycle/apoptosis 48 and lipid metabolism 28, 49, 50 in host cells and shares some 

signaling targets with core protein. NS5A is recognized as a transcriptional activator for 

many target genes 51 including p53 and its binding protein, TATA binding protein (TBP). 

Transcription factor IID activities were reported to be modified by NS5A in the suppression 

of p53-dependent transcriptional transactivation and apoptosis 52, 53. NS5A may also 

interact with pathways such as Bcl2 54, phosphatidylinositol 3-kinase (PI3-K) 55, Wnt/beta 

catenin signaling 56, and mTOR 57 to activate cell proliferation signaling and inhibit 

apoptosis.  

 Taken together, intriguing data concerning the function of core and NS5A proteins 

on host cell signaling pathways, transcriptional activation, apoptosis, oxidative stress, and 

lipid metabolism described above suggest a diverse role for HCV proteins in the 

pathophysiology of chronic hepatitis C that leads to malignant transformation in infected 

hepatocytes. Key findings and present concepts are summarized in Figure 1).  

 

Transcriptomic characteristics of HCV-related HCC 
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As described above, HCV proteins can evoke various host responses in infected cells at 

transcriptional/translational/post-translational levels. Furthermore, enhanced cell 

death/regeneration processes are considered to induce DNA damage and accelerate 

replication errors that cause frequent mutations and genomic alteration in the host genome. 

The central dogma is defined as the flow of genetic information from DNA to mRNA and 

then to protein, so genetic/genomic alterations and transcriptional/translational 

modifications are ultimately considered to affect the cellular signaling pathway at the 

transcriptional level.  

Over the past decade, several methods (including differential display, serial analysis 

of gene expression (SAGE), and microarray) have been developed to allow comparative 

studies of gene expression between normal and cancer cells on a genome-wide scale 58, and 

the analysis of a set of all RNA molecules (mainly indicating mRNAs) is termed as whole 

transcriptome analysis. Extensive transcriptome analysis of HCC and corresponding non-

cancerous livers has been performed, and the results have greatly increased our knowledge 

about the transcriptome characteristics of HCV-related HCC.  

 Early microarray and SAGE studies investigating the gene expression patterns of 

chronic hepatitis B and C tissues indicated that these two chronic hepatitis tissues had 

distinct gene expression profiles; the genes activated in chronic hepatitis C were correlated 

with signaling pathways associated with apoptosis, oxidative stress responses, and Th1 

cytokine signaling 59, 60. An early study comparing genes activated in HCV-related and 

HBV-related HCCs showed that the genes associated with xenobiotic metabolism were 
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more abundantly expressed in HCV-related HCC 61, suggesting a detoxification role which 

is potentially induced by chronic inflammation and generation of ROS resulting from HCV 

infection. In contrast, HBV-related HCC might closely correlate with the activation of 

imprint genes, including IGF-II as investigated by oligo-DNA microarray 62, suggesting a 

role of de-differentiation or epigenetic alteration of the host genome in HBV-related HCC. 

Activation of genes associated with interferon, oxidative stress, apoptosis, and lipid 

metabolism signaling was detected in HCV-related HCC and chronic hepatitis C specimens 

27, 60, 63, consistent with numerous functional studies that have investigated the host 

response evoked by HCV structural and non-structural proteins 48.  

 Transcriptome analysis has also recently shed new light on the transcriptional 

alteration events occurring in early stages of HCV-related hepatocarcinogenesis. GPC3 

(encoding Glypican 3) was identified as one of the most activated transcripts in the early 

stage of hepatocarcinogenesis 60, 64, while several recent studies showed that gene 

signatures including GPC3 can successfully discriminate HCCs from pre-malignant 

dysplastic nodules and cirrhosis nodules 65, 66. Close examination of genes differentially 

expressed among cirrhotic nodules, dysplastic nodules, and early and advanced HCV-

related HCC tissues has also suggested roles for Toll-like receptor signaling, Wnt signaling, 

BMP/TGF-signaling, JAK-STAT signaling, and DNA repair/cell cycle responses in each 

step of the malignant transformation processes 67. These processes might therefore provide 

candidate molecular targets for the chemoprevention of HCV-related HCC. 
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 Recent advances in transcriptome analysis have also provided detailed information 

on the status of small noncoding RNAs, microRNAs, that can regulate the expression of 

target genes and viral replication in normal and cancer tissues. Expression of microRNAs 

including miR-122 and -199a has been reported to modulate HCV replication 68-70, and 

miR-122 expression can be regulated by host interferon signaling and responses 71. HCV 

protein expression in turn could induce miRNAs and might affect the tumor suppressor 

DLC1 and the chemosensitivity of malignantly transformed cells 72, 73. Several microRNAs 

were also differentially expressed between HCV-related and HBV-related HCCs as well as 

their corresponding non-cancerous liver tissues. The candidate signaling pathways 

potentially altered by microRNAs in HCV-related tissues were those associated with 

antigen presentation, cell cycle, and lipid metabolism 74, consistent with the mRNA 

microarray data described above. MicroRNAs have also recently been reported to 

successfully discriminate between HCC and cirrhotic liver tissues 75, implicating their role 

in the early stages of malignant transformation. These data suggest that microRNAs may be 

good targets for the eradication of HCC as well as hepatocytes infected with HCV. 

 

Conclusion 

The heterogeneity of genetic/transcriptomic/proteomic events observed in hepatocytes or 

cell lines expressing HCV proteins and HCV-related HCCs reported thus far has suggested 

that complex mechanisms underlie malignant transformation induced by HCV infection. 

These potentially act through convoluted virus-host interactions including HCV replication 
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with host cell cycles, apoptosis, proliferation, quality control of protein synthesis, lipid 

metabolism, and DNA damage responses. Indeed, HCC is a heterogeneous disease in terms 

of drug sensitivity, metastatic capacity, and clinical outcome. The heterogeneity of HCV-

related HCC may closely correlate with the origin of malignantly transformed cells where 

multifaceted cellular reactions including apoptosis and cell proliferation are induced by 

HCV infection. An in-depth understanding of these molecular complexities associated with 

HCV-related HCC may provide the opportunity for effective chemoprevention of HCC 

among those with HCV-cirrhosis, and to design tailor-made treatment options for HCV-

related HCC patients in the future. 
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Figure Legend 

Figure 1. Signaling pathways potentially affected by HCV proteins. EGF, epidermal 

growth factor; IGF, insulin-like growth factor; MAPK, mitogen activated protein kinase; 

PI3-K, phosphatidylinositol 3-kinase; ER, endoplasmic reticulum; TBP, TATA binding 

protein; PPAR, peroxisome proliferator-activated receptor; SREBP, sterol-regulatory 

element binding protein; mTOR, mammalian target of rapamycin; ROS, reactive oxygen 

species.  
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