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Controlling the receptor for advanced glycation
end-products to conquer diabetic vascular
complications
Yasuhiko Yamamoto*, Hiroshi Yamamoto

ABSTRACT

Diabetic vascular complications, such as cardiovascular disease, stroke and microangiopathy, lead to high rates of morbidity and
mortality in patients with long-term diabetes. Extensive intracellular and extracellular formation of advanced glycation end-products
(AGE) is considered a causative factor in vascular injuries in diabetes. Receptor-dependent mechanisms are involved in AGE-induced
cellular dysfunction and tissue damage. The receptor for AGE (RAGE), originally an AGE-binding receptor, is now recognized as a
member of pattern-recognition receptors and a pro-inflammatory molecular device that mediates danger signals to the body.
Previous animal studies have shown RAGE dependent of diabetic vascular injuries. Prophylactic and therapeutic strategies focusing
on RAGE and its ligand axis will be of great importance in conquering diabetic vascular complications. (J Diabetes Invest, doi:
10.1111/j.2040-1124.2011.00191.x, 2012)

KEY WORDS: Advanced glycation end-products, Diabetic vascular complications, Receptor for advanced glycation
end-products

INTRODUCTION
Diabetes is a life-threatening disease because of its devastating
vascular complications, such as cardiovascular disease, stroke
and microangiopathy. In 2008, 347 million people had diabetes
worldwide1. In proportion to the rapid increase in the diabetic
population, diabetic nephropathy is now a major cause of end-
stage renal disease and diabetic retinopathy is a leading cause of
blindness2. Potential mechanisms underlying diabetic vascular
diseases include activation of the polyol and hexosamine path-
ways, oxidative and nitrosative stress, endoplasmic reticulum
stress, protein kinase C (PKC) activation, poly (adenosine
diphosphate (ADP)-ribose) polymerase activation, and inflam-
mation3. Extensive intracellular and extracellular formation of
advanced glycation end-products (AGE) can also become a
pathogenic factor in sustained hyperglycemia-induced vascular
injuries in diabetes. AGE-induced cellular dysfunction and tissue
damage arise from both receptor-dependent and receptor-inde-
pendent mechanisms. The receptor for AGE (RAGE) is a well-
characterized AGE-binding receptor, and is now known as a
member of the pattern-recognition receptors (PRR) and a pro-
inflammatory molecular device that mediates danger signals to
the body. In the present review, the current understanding about

AGE and a multiligand receptor of RAGE will be discussed
from the perspective of it being a mechanism causing diabetic
vascular complications and a therapeutic target of this disease.

AGE
The formation of brown-colored substances resulting from
non-enzymatic reactions between reducing sugars and proteins
was first described by Maillard4. Exposure of the amino acid
residues of proteins to reducing sugars, such as glucose, glucose
6-phosphate, fructose, ribose and intermediate aldehydes,
results in non-enzymatic glycation, which forms reversible
Schiff bases and subsequently Amadori compounds (Figure 1).
A series of further complex molecular rearrangements
including dehydration, condensation and crosslinking, yield
irreversible and heterogeneous derivatives termed AGE
(Figure 1)5. Similar reactions occur with non-glucose materials
containing an aldehyde group through both enzymatic and
non-enzymatic pathways. The glycolysis pathway yields the
highly reactive dicarbonyls of methylglyoxal (MG), glyoxal and
3-deoxyglucosone (3DG), which can interact with protein
residues to rapidly form AGE6. Reactive dicarbonyls can also
be generated from ketones, lipids, and other metabolic
pathways7. The major driving force for AGE formation and
accumulation is a state of carbonyl stress, which can be caused
by increased production of the reactive dicarbonyls or reduced
detoxification by the glyoxalase system or endogenous scaveng-
ers8. Glyoxal is also generated by the auto-oxidation of glucose;
3DG is formed by fructosamine-3-kinase from fructoselysine,
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an Amadori rearrangement product9. Production of glycolalde-
hyde by myeloperoxidase from activated macrophages and
neutrophils plays a pathogenic role in generating AGE and
damaging tissues at inflammation foci10.

In diabetic conditions, uncontrolled and sustained hyper-
glycemia drives this glycation reaction; consequently, AGE
accumulate in the circulation, as well as extracellular and
intracellular spaces. The hyperglycemia-induced formation of
MG is reported to modify transcriptional regulators inside cells,
resulting in cellular activation or dysfunction11. Nevertheless,
AGE are also generated as a result of redox imbalances, aging
and kidney dysfunction in the absence of hyperglycemia12–14.
AGE are chemically heterogeneous groups of compounds; the
structures of just 25 having been fully characterized (Figure 1).
Among them, Ne-carboxymethyl-lysine (CML) is the best
characterized and is the main epitope for recognition by most
commercially available antibodies used for the detection and
quantification of AGE. Apart from endogenously formed AGE,
exogenous AGE from foods are absorbed in the gastrointestinal
tract and purportedly constitute �10% of total AGE in the
body15–17. In animal studies, the restriction of dietary AGE
intake significantly improved insulin sensitivity and extended
lifespan18.

AGE RECEPTORS
The best-characterized AGE receptor is RAGE. RAGE belongs
to the immunoglobulin (Ig) superfamily and is composed of an
extracellular region containing one V-type and two C-type Ig
domains19. The Ig portion of the receptor joins to a hydropho-
bic transmembrane-spanning domain followed by a highly
charged 43-amino acid short cytoplasmic tail that is essential for

post-RAGE signaling20. Many other AGE receptors and soluble
binding proteins interacting with AGE might play important
roles in AGE homeostasis. Scavenger receptors are classified as
class A (scavenger receptor (SR)-A), class B (SR-B; CD36 and
SR-B1), lectin-like oxidized low-densitylipoprotein receptor
(LOX) 1, AGE-R1 (OST48 oligosaccharyltransferase), AGE-R2
(80K-H PKC substrate), AGE-R3 (galectin-3) or toll-like recep-
tor (TLR)421–25. Other molecules, such as lysozyme and lactofer-
rin-like polypeptide, play roles in the cellular uptake and
degradation of AGE26. AGE-R1 is a type I transmembrane
receptor found on the plasma membrane and in the endoplas-
mic reticulum21. Cell surface membrane-associated AGE-R1
blocks the AGE-induced cellular responses of reactive oxygen
species (ROS) formation, activation of mitogen-activated protein
kinase (MAPK)/Ras, and inflammation; this is mediated, in part,
through RAGE27. The overexpression of AGE-R1 in mice is
associated with decreased basal levels of circulating and tissue
AGE and oxidative stress, and significant protection against wire
injury-induced femoral artery intimal hyperplasia and inflam-
mation28. AGE-R3 (galectin-3) is also reported to function as an
AGE receptor to inhibit AGE-induced tissue injury through
AGE removal or degradation22,23.

RAGE
Experiments with vascular endothelial cells, pericytes and renal
mesangial cells in culture, as well as from AGE inhibitor-treated
and RAGE gene-manipulated animals, have led to the hypothe-
sis that the AGE–RAGE axis is a crucial cause of diabetic vascu-
lar complications. The V-type domain of RAGE interacts with
AGE, and deletion of its N-glycosylation modification enhances
the binding affinity to AGE29. The possible mechanism of the
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Figure 1 | Possible pathways of advanced glycation end-products (AGE) formation. This is adapted from a review paper by Monnier et al.95.
The classical pathway leading to the formation of AGE involves Schiff base and Amadori products. The Amadori products can be transformed
into reactive dicarbonyl products, such as glucosones, and can be fragmented by oxidation (glycoxidation) to generate pentosidine and
Ne-carboxymethyl-lysine (CML). Reactive dicarbonyls can also be generated from ketones, lipids, glycolysis and inflammatory pathways. Representative
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glyceraldehyde-related pyridinium; GOLD, glyoxal-derived lysine dimer; MG-hydroimidazolone, methylglyoxal-derived hydroimidazolone; MOLD,
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binding includes charge association and subsequent stabilization
of the complex with hydrophobic interactions after conforma-
tional changes of the RAGE V-type domain30. This hypothesis
is supported by the fact that low-molecular-weight heparin
(LMWH; �5 kDa, negatively charged) binds to the V-type
domain of RAGE and inhibits the AGE–RAGE association,
silencing the RAGE activation of nuclear factor-j B (NF-jB)31.

The AGE–RAGE axis in endothelial cells could induce the
expressions of genes for vascular endothelial growth factor and
vascular cell adhesion molecule-132,33, enhancing vascular
permeability, angiogenesis and local inflammation. The secretion
of various cytokines, such as tumor necrosis factor-a (TNF-a),
interleukin-1b (IL-1b), IL-6 and monocyte chemotactic protein-1
are induced by the AGE–RAGE axis in monocytes and macro-
phages34. RAGE promoter assays showed that AGE–RAGE
signaling promotes the transcriptional upregulation of the RAGE
gene through the activation of NF-jB35. TNF-a and estrogen
also enhance the transcription of the RAGE gene through the
activation of NF-jB and the transcription factor, Sp1,
respectively35. The mammalian homolog of the Drosophila gene,
Diaphanous 1 (mDia1), has been identified as a direct binding
molecule with the intracellular domain of RAGE and as a part of
the machinery of RAGE intracellular signaling36. mDia1, one of
the Formin homology proteins, exists widely from yeasts to
mammals, and is linked to cell division, polarity formation and
movement by actin polymerization36. Very recently, it was
reported that the AGE–RAGE interaction could phosphorylate
the cytoplasmic domain of RAGE at Ser391 through PKCf37.
TIRAP and MyD88, which are adaptor proteins for TLR 2 and 4,
bind to phosphorylated RAGE and transduce the signal to down-
stream molecules, suggesting a functional interaction between
RAGE and TLR, as well as the regulation of immune responses
and inflammation in a coordinated manner37.

RAGE LIGANDS OTHER THAN AGE
Endogenous and exogenous RAGE ligands other than AGE
have been identified, including high-mobility group box protein
1 (HMGB1), calcium-binding S100 protein group, b2-integrin
Mac/CD11b, amyloid b peptide, b-sheet fibrils, advanced oxida-
tion protein products, complement C3a, lipopolysaccharides
(LPS) and phosphatidylserine on the surface of apoptotic cells
(Figure 2)38–44. RAGE is now considered to be a member of
PRR like TLR; it actively participates in the interface of innate
and adaptive immunity, inflammation, diabetic vascular compli-
cations and atherosclerosis (Figure 2).

HMGB1 is a nuclear protein that stabilizes nucleosome for-
mation and facilitates transcription. HMGB1 is a strong inflam-
matory trigger from necrotic cells as a result of passive leakage,
and can be actively secreted by activated monocytes, macro-
phages, dendritic cells, natural killer cells and endothelial cells,
though there is no canonical signal sequence in the HMGB1
protein45. The association between HMGB1 and RAGE is
enhanced by the presence of CpG DNA; HMGB1 directly binds
LPS and IL-1b46,47. The formation of the complex with other

pro-inflammatory molecules further aggravates the activation of
RAGE signaling. The lectin domain of thrombomodulin can
bind HMGB1 and block the HMGB1–RAGE interaction as an
anti-inflammatory mechanism48.

S100 proteins are a family consisting of over 20 proteins
sharing structural similarity with their two EF-hand
Ca2+-binding domains flanked by a-helices. S100A1, A2, A4,
A5, A6, A7/A7A, A8/A9, A11, A12, B and P can bind RAGE49.
Their oligomerized forms can activate RAGE signaling.
CML-modified S100A8/A9 can strongly enhance intestinal
inflammatory responses through RAGE, suggesting the existence
of more complex varieties of RAGE ligands modified by
glycation reactions50. While deglycosylation sensitizes RAGE to
bind AGE, carboxylated N-glycans on RAGE increase binding
affinity with S100A8/9, as well as HMGB151,52.

Mac-1/CD11b is a cell surface molecule expressed on neu-
trophils, monocytes, macrophages, dendritic cells and natural
killer cells. RAGE mediates the recruitment and accumulation of
these immune cells into inflammatory foci by interacting with
Mac-1/CD11b and intercellular adhesion molecule 142.

The ligand engagement of RAGE activates the NF-jB and
other signaling pathways through the stimulation of extracellular
signal-regulated kinase 1/2, p38 mitogen-activated protein
kinase-c-Jun N-terminal kinase, Janus kinase-signal transducer
and activator of transcription and Rac-Cdc4253. The ligation of
RAGE causes a positive feed-forward loop in which inflammatory
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Figure 2 | Receptor for advanced glycation end-products (RAGE) and its
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stimuli activate NF-jB, which induces RAGE expression, fol-
lowed again by NF-jB activation54.

ANIMAL STUDIES
To evaluate whether RAGE and the multiligand system partici-
pate in the development of diabetic vascular complications, we
created transgenic mice that overexpress human RAGE proteins
in endothelial cells, and crossbred them with another transgenic
mouse line that develops insulin-dependent diabetes shortly after
birth55,56. The resultant double transgenic mice showed signifi-
cant increases in kidney weight, albuminuria, glomerulosclerosis
and serum creatinine compared with the diabetic controls
(Figure 3)56,57. Triple transgenic mice overexpressing RAGE,
inducible nitric oxide (NO) synthase and megsin developed
severe diabetic nephropathy as early as 16 weeks after birth,
characterized by the development of mesangial expansion, nod-
ule-like lesions and tubulointerstitial damage with an increase in
local oxidative stress (Figure 3)58. In addition, indices diagnostic
of diabetic retinopathy were most prominent in double trans-
genic mice57. Kaji et al.59 showed blood–retinal barrier break-
down and increased leukostasis in RAGE-overexpressing mice;
these were ameliorated by treatment with soluble RAGE
(sRAGE). Furthermore, we generated RAGE-knockout (KO)
mice and report the marked improvement in nephromegaly,
albuminuria and glomerulosclerosis, as well as increased serum
creatinine levels in diabetic RAGE-KO mice (Figure 3)31. The
deletion of RAGE also attenuated the endothelial–mesenchymal
transition60. Streptozotocin (STZ)-injected RAGE-KO mice were
protected from early kidney injuries as a result of mesangial
matrix expansion and thickening of the glomerular basement
membrane as seen in wild-type diabetic mice61. Furthermore,
RAGE deletion also improved diabetic nephropathy seen in
OVE26 type 1 diabetic mice with progressive glomerulosclerosis
and declining renal function62.

In diabetic neuropathy models, deletion of the RAGE gene
protects animals from the detrimental effects of diabetes; mean-
while, RAGE overexpression promotes diabetic neuropathy63–65.
In addition, the loss of thermal pain perception observed in
mice with diabetes could be prevented by treatment with
sRAGE. Concordant with these observations, NF-jB activation
and the loss of pain perception are largely blunted in RAGE-
KO mice63. RAGE expression was observed in the perineural

and endoneural endothelial cells, as well as schwann cells of
peripheral nerves by in situ hybridization66,67.

The inhibition of AGE formation or AGE breakers attenuates
accelerated atheroma associated with diabetes68. Experiments
on STZ-induced diabetic apolipoprotein E (ApoE)-KO mice
showed that RAGE activation plays a role in the formation and
progression of atherosclerotic lesions, and that the absence of
RAGE is associated with a significant attenuation of atheroscle-
rotic plaque69. Competitive inhibition of RAGE by exogenously
administrated sRAGE decreases the mean atherosclerotic lesion
area, as well as the number of complex lesions70,71. In addition,
RAGE inactivation also inhibits atherosclerosis by blocking
RAGE-mediated inflammatory reactions and oxidative stress in
non-diabetic models with atherosclerosis of ApoE-KO and low-
density lipoprotein receptor-KO mice72.

SOLUBLE RAGE
RAGE is also reported to have a self-downregulation system.
As an example of a pathway for the auto-downregulation of
RAGE-mediated cellular activation, the binding of HMGB1
to RAGE induces an intracellular signal transduction, as well as
RAGE shedding by a disintegrin and metalloproteinase domain-
containing protein 1073. The cleavage of the membrane-bound
full-length signal-transducing RAGE yields sRAGE, which could
work as a decoy receptor against ligand–RAGE interactions. In
the strict sense of the word, sRAGE is a heterogeneous popula-
tion of total sRAGE proteins, including the soluble splice vari-
ants of RAGE, as well as the proteinase-cleaved forms of
membrane-bound RAGE and the soluble splice variants
(Figure 2)74. Endogenous secretory RAGE (esRAGE) is one of
the major splice variants of RAGE (Figure 4); it exists in the cir-
culation, and is widely distributed throughout the cell surface
and cytoplasm of neurons, endothelial cells, pneumocytes, meso-
thelium, pancreatic b-cells, monocytes, macrophages, salivary
glands, digestive tracts, renal tubules, prostate, skin, thyroid and
bronchioles75–77. sRAGE and esRAGE are thought to act locally
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Figure 3 | Phenotypes of diabetic nephropathy in receptor for
advanced glycation end-products (RAGE) gene-manipulated mice. KO,
knockout mice; Tg, transgenic mice.
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and systemically as decoy receptors. Reinforcing ectodomain
shedding decreases the total amount and expression of signal-
transducing RAGE; this reciprocally increases the amount of
decoy receptor sRAGE, which can control ligand–RAGE signal-
ing and subsequent cellular and tissue derangement74. sRAGE is
also reported to mediate inflammation by directly binding to
monocytes under conditions with few ligands, although the
mechanism of action is unknown78. Recent clinical studies have
focused on the significance of circulating sRAGE or esRAGE in
diabetic vascular complications. Findings in both type 1 and 2
diabetic patients are quite conflicting; both inverse and positive
correlations are reported in diabetic retinopathy, nephropathy
and incident cardiovascular disease events, as well as mortality
outcomes74,79–84. There are several reasons why this occurs.
First, sRAGE and esRAGE production is inducible; the former
is sheddase-dependent, whereas the latter is original RAGE pro-
moter- and splicing-dependent. Second, the presence of renal
insufficiency can strongly and positively influence circulating
sRAGE and esRAGE levels74. Third, medications might alter
sRAGE or esRAGE level.

TARGETING RAGE FOR CONQUERING DIABETIC
VASCULAR COMPLICATIONS
Suppressing RAGE action might be beneficial for preventing and
retarding the development of diabetic vascular complications,
atherosclerosis and inflammation. Administering inhibitors of
AGE and RAGE might be prospective therapeutic approaches.
Benfotiamine is a synthetic S-acyl derivative of thiamine, and
has anti-oxidant and anti-AGE capabilities85. Thiazolium com-
pounds, ALT-711 (algebrium), C36, TRC4186 and TRC4149, as
well as their prototype, N-phenylthiazolium bromide (PTB), are
known as AGE breakers that break preformed AGE or existing
AGE cross-links86–89. TTP488 is an antagonist against RAGE90.
LMWH can bind RAGE and act as an antagonist31. Thiazolidin-
ediones, calcium channel blockers, angiotensin-converting
enzyme inhibitors (ACEI), angiotensin II receptor blockers and
statins are reported to suppress RAGE expression91,92. Treatment
with statins and ACEI stimulates circulating sRAGE production
in humans93,94.

Future studies should focus on developing new devices and
remedies for controlling RAGE ectodomain shedding. New ther-
apeutic strategies for preventing diabetic vascular complications,
and improving life expectancy and quality of life in patients with
diabetes are desired.
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