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Abstract 

Purpose: X-ray dose reduction using additional copper filters (Cu-filters) for abdominal general 

radiography was indicated in a report using a simulation study. We validated the dose reduction 

effects using a clinical digital radiography system equipped with an indirect-type CsI detector and an 

automatic Cu-filter insertion function. 

Methods: The image qualities were evaluated using signal difference-to-noise ratio (SDNR) for 

different radiation qualities with and without Cu-filters for a 20-cm acrylic phantom. Acrylic and 

bone equivalent material plates were used for contrast measurements. The dose reduction using 

Cu-filters was estimated from the ratios of the SDNR2 values. 

Results: For the same entrance surface dose (ESD), Cu-filters with 0.1- and 0.2-mm thicknesses 

increased the image quality as evaluated by SDNR2 and the estimated dose reduction without 

degrading the image quality. For the acrylic contrast, the dose reductions with the 0.1- and 

0.2-mm-thick Cu-filters were approximately 30% and 44% at 70 kV and 29% and 35% at 80 kV, 

respectively. For the bone contrast, the reduction rates were slightly reduced. 

Conclusions: We validated the dose reduction capability of additional Cu-filters without degrading 

the image quality for abdominal radiography. The estimated entrance surface dose reductions of the 

Cu-filters were approximately 30%–40% and 20%–30% for the acrylic and bone contrasts, 

respectively, and effective dose reductions for acrylic were nearly half of those for ESD. At these 

reduced dose conditions, the current time product values needed to be increased by factors of 1.4 and 

1.8 for the 0.1- and 0.2-mm-thick Cu-filters, respectively. 
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Introduction 

Recently, most of screen-film systems for X-ray general radiography have been replaced by 

digital radiography (DR) systems, and the usefulness for image processing and facilities in image 

communication of DR systems have been accepted in clinical fields [1, 2]. Especially for 

indirect-type flat panel detectors with phosphors of CsI and direct-type flat panel detectors using 

amorphous Se (aSe), their high X-ray efficiencies have contributed to reductions of radiation dose 

[3]. 

The patient absorbed dose depends not only on the amount of entrance surface dose (ESD) 

but also on the radiation quality. The radiation quality can be changed by selecting the X-ray tube 

voltage and using additional metal filters. According to a report by Martin, an additional copper filter 

(Cu-filter) with a thickness of 0.2 mm is sufficiently effective to reduce the ESD by 40%–50% for 

abdominal radiography, while maintaining the image quality as indexed by the contrast-to-noise ratio 

[4]. The report suggested that the dose reduction results from the removal of lower energy photons, 

which are absorbed in the object, and therefore, do not reach the image receptor [4]. However, their 

results were simulated using a spreadsheet calculation with the X-ray spectra, filters, phantom and 

tissue mass attenuation coefficients, and phosphor mass energy absorption coefficients. For chest 

radiography, the effectiveness of Cu-filters has been demonstrated using clinical indirect-type flat 

panel detectors [5, 6]. 

The disadvantages of using Cu-filters in clinical fields are an increase in the X-ray tube 

loads to compensate for the exposure dose decrease due to the Cu-filter and a laborious operation for 

inserting and removing the Cu-filter during various examinations. The former is overcome by the 

recent X-ray generators that are capable of routinely used tube currents more than 500 mA and 

higher sensitivities of DR systems [7], and the latter is solved by the automatic insertion functions 

mostly implemented in the recent DR systems combined with X-ray units. Therefore, the Cu-filter 

can be used clinically for abdominal radiography in recent times if the dose reduction effect of the 
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Cu-filter is validated in current clinical DR systems. 

The standard abdominal radiograph needs a large exposed area, which extends from the 

diaphragm to the inferior pubic rami and includes the lateral abdominal wall. Since the anatomy of 

the abdomen is complicated, numerous structures are not clearly defined. The assessment of the 

bowel gas patterns and soft tissue structures is comparably important, and bones in the abdominal 

radiographs tend to be better visualized with dedicated bone radiographs. For the radiographic 

technique, tube voltages of 70-90 kV, large focal spot sizes of ~1 mm, and anti-scatter grids are used 

[8-10]. High resolution image processing such as edge enhancement are generally not selected 

because of the soft tissue depictions. The radiation dose required to obtain an adult abdominal 

radiograph is at least 20 times more than required to obtain an adult chest radiograph, according to 

several national diagnostic reference levels [11], and though it is generally performed in a supine 

posture, it is sometime performed with other postures (upright, decubitus, etc.). Therefore, the 

adequate radiation doses that reasonably achieve the depiction of abovementioned anatomies should 

be selected. 

The purpose of this study was to validate the effectiveness of the Cu-filter through physical 

image quality evaluations using a DR system equipped with an indirect-type CsI detector and an 

automatic Cu-filter insertion function. 

 

1. Materials and Methods 

1.1 DR system and Phantom  

The DR system used was an AXIOM Luminous dRF (SIEMENS, Erlangen, Germany) 

comprising an indirect-type CsI detector (Trixell Pixium RF4343) with a 0.148-mm pixel pitch. A 

standard X-ray grid of this system (ratio 15:1, density 80 lines/cm, aluminum interspace material) 

was also used. 0.1- and 0.2-mm-thick built-in Cu-filters could be selected for each exposure. For the 

image measurement, raw image data to which any additional post-processing was not applied were 
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used. 

An acrylic phantom having a thickness of 20 cm made from 30 × 30 cm2 slabs was used to 

model the X-ray absorption of an adult abdomen [12, 13] based on the standard abdominal thickness 

indicated in the Japanese diagnostic reference levels (Japan DRLs 2015) [14]. 

 

1.2 Radiation qualities 

The tube voltages used were 70, 80, 90, and 100 kV. For 70 and 80 kV, no filter, 0.1- and 

0.2-mm-thick Cu-filters are tested. The 90 and 100 kV voltages were used as high radiation qualities 

without using Cu-filter. For each radiation quality, we measured the half-value layer (HVL) using 

aluminum filters [10 × 10 cm2 aluminum plates (type-1100, 99% purity) with nominal thicknesses of 

0.5 and 1.0 mm] to obtain the effective energy. The measured HVLs and estimated effective energies 

are shown in Table 1. The effective energies when using Cu-filters were higher than that of 100 kV 

(no filter). 

 

Table 1. HVL value and effective energy for each radiation quality 

Exposure condition HVL (mmAl) Effective energy (keV) 

70 kV 

70 kV 0.1-mm Cu 

70 kV 0.2-mm Cu 

80kV 

80 kV 0.1-mm Cu 

80 kV 0.2-mm Cu 

90 kV 

100 kV 

2.85 

4.30 

5.11 

3.24 

4.84 

5.23 

3.60 

4.03 

32.2 

38.4 

41.8 

33.9 

40.7 

42.3 

35.4 

37.2 
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1.3 Exposure conditions 

Figure 1 shows the geometric arrangement for image quality evaluations. The radiation field 

was set to 34 × 38 cm2, and a constant ESD of 3.0 mGy at the surface of acrylic phantom was set for 

all radiation qualities. This ESD value was chosen based on the Japan DRLs 2015 [14]. An acrylic 

plate and a plate made of a bone equivalent material (4120-220 BE-H-10, Kyoto Kagaku, Kyoto, 

Japan) both with a 1-cm thickness and 2 × 2 cm2 area were placed on the acrylic phantom, which 

were used for measuring contrasts corresponding to the soft tissues and bones included in the 

abdominal radiographs, which is described later. We examined another placement of the plates 

between two 10-cm-thick acrylics (sandwiched placement); the contrast values for the sandwiched 

placements were also measured. 

For the ESD measurement, a 6-cm3 general-purpose ionization chamber (Model 20X6-6; 

Radcal, Monrovia, CA) and an electrometer (Model 2026C; Radcal) were used. The ionization 

chamber was located 65 cm from the X-ray focal spot, and the acrylic phantom shown in Fig. 1 was 

removed when measuring the dose. We measured the exposure dose for each radiation quality with a 

constant tube current-time product of 10 mAs. Then, each value of ESD per unit mAs was calculated 

to obtain the required mAs values for constant ESD, which were combined with the backscatter 

factors corresponding to the radiation qualities (HVL) and the radiation field [15] and the distance 

factors based on the inverse square theorem.  

 

1.4 Image measurements 

In contrast to screen-film radiography, subject contrast in a digital image can be manipulated 

to achieve the desired contrast, and thus contrast is no longer the dominant factor for image quality. 

A more relevant measure of the image quality is the signal difference-to-noise ratio (SDNR), which 

is effective in the presence of radiation scattering objects. A digital image with a higher level of 

SDNR could provide inherently superior image quality [5, 16]. SDNR is calculated from the 
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following equation [17]: 

SNRCSDNR ×= ,        (1) 

where SNR is the signal-to-noise ratio of the phantom background (the uniformly exposed area of the 

acrylic phantom) and C is the subject contrast.  

Although the SNR in Eq. (1) could simply be measured as a ratio of the background signal 

level, SB to the background noise, σB (the standard deviation), the grid lines could cause errors in the 

background noise estimation. As shown in figure 2, which presents the detailed view of a region of 

interest in the image obtained at 70 kV without Cu-filters, the grid lines were not entirely suppressed 

and remained as aliased signals (periodic patterns) in the image even when the standard grid for the 

DR system was used. In fact, a large peak at approximately 0.4 cycles/mm in the direction 

perpendicular to the grid lines appeared in the noise power spectrum analyses, which were 

preliminarily performed. Therefore, to avoid the effect of the periodic patterns and obtain both the 

random and structure noise amounts, we measured the background noise using noise power spectrum 

(NPS) in the grid-line direction. Then, σB was calculated from the measured NPS using the 

following relationship [18], 

duuuNPSB ∫= )(σ     (2) 

where u is the spatial frequency in the grid-line direction. We used σB for the calculation of the 

background SNR in Eq. (1). 

The contrast, C, was calculated from the signal levels measured on the acrylic plate, bone 

equivalent material plate, and background. Region of interest (ROIs) of 10 × 10 mm2 were used to 

measure the average pixel value (ROIM) on the two plates and the background between the two 

plates (ROIB). The C value was calculated as (ROIM − ROIB) / ROIB. 

For each NPS measurement, a background area with 1024 × 1024 pixels was used for each 

radiation quality measurement; therefore, sixteen 256 × 256-pixel ROIs were used for the NPS 

calculations. For each 256 × 256-pixel ROI, after the trend removal via a fitted two-dimensional 
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second-order polynomial, the power spectrum was computed using a two-dimensional (2D) fast 

Fourier transformation. The one-dimensional NPS in the grid-line direction was obtained by 

averaging the directional frequency bands in the 2D NPS using the vertical axis and ±7 lines (a total 

of 15 lines) [19]. The resultant NPS was then calculated by averaging the NPSs of sixteen ROIs. 

 

1.5 Dose reduction estimation 

 The dose reduction using the Cu-filters was estimated from the ratios of the SDNR2 values 

with and without Cu-filters (SDNR2 with Cu-filters/SDNR2 without Cu-filters) for 70 kV and 80 kV 

based on the dose proportionality of SDNR2 [5]. To validate the estimated dose reduction, the 20-cm 

phantom with acrylic and plate was imaged with reduced doses (mAs values) calculated from the 

estimated dose reduction rates for 0.1- and 0.2-mm Cu-filters, respectively, of 70 kV and 80 kV. 

SDNRs were measured from the obtained images using the same method as described earlier and 

compared with the values obtained without Cu-filters. In addition, an acrylic contrast detail phantom 

with a thickness of 1.5 cm (the diameters and depths of the drilled holes were each 0.5–10 mm) 

placed on an 18.5-cm-thick acrylic (for a total thickness of 20 cm) was imaged, without Cu-filters 

and with 0.2-mm Cu-filter at the same ESD and with 0.2-mm Cu-filter at the reduced dose. These 

images were obtained only to present the visual differences of noise amount in the three images 

under the same contrast. 

 

1.6 Average organ dose and effective dose estimations 

For evaluating the radiation dose in terms of patient risk, it would be desirable to measure 

the actual effective dose for each radiation quality. However, obtaining the effective dose is difficult 

because it is difficult to measure the organ doses experimentally [20]. In addition, according to the 

International Commission on Radiological Protection (ICRP) publication 103, the use of the 

effective dose for diagnostic radiography is problematic because organs and tissues receive only 
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partial exposure, which, in turn, results in uncertainty in organ dose estimation [21, 22]. Therefore, 

we chose ESD as the primal dose index. 

Although the effective dose evaluation for diagnostic radiograph is problematic as 

mentioned above, it can be estimated using a dedicated software package based on Monte Carlo 

simulations, PCXMC ver. 2.0 (STUK, Helsinki, Finland). We used this software package to estimate 

percentage dose reduction values of the average organ dose (indicated as 'Average dose in total body' 

in PCXMC) and effective dose for the conditions corresponding to Figure 4 on equalized SDNR2 for 

acrylic. In the software, “standard adult” with a height of 178.6 cm, a weight of 73.2 kg, and a trunk 

thickness of 20 cm was selected as the phantom type, and the incident air kerma (not ESD) values 

corresponding to conditions of the equalized SDNR2 were entered. Since PCXMC accepted not ESD 

but incident air kerma, we used the incident air kerma values calculated back from ESDs using the 

back scatter factors. A total filtration of the X-ray tube and the collimator was set to 3.5 mm Al, as 

per the specifications of the DR system used. 

 

2. Results 

2.1 Contrast 

Table 2 shows the results of the contrast measurement for the on-top placement of two 

plates, where the relative value was calculated based on the value at 70 kV without a Cu-filter. The 

decrease in the ratios for the Cu-filters relative to the no-filter case for acrylic was 4%−7%, while 

that for the bones was slightly higher (6%−11%). The high tube voltages significantly decrease the 

contrasts for both acrylic and bones. The contrast values for the sandwiched placement of the two 

plates were nearly identical to the values for the on-top placement (the relative values to the on-top 

placement were −1.73% ± 1.59% for acrylic and +1.65% ± 0.94% for bone). Therefore, we only used 

the contrast values of the on-top placement. 
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Table 2. Measured contrasts of acrylic and bone equivalent material plates with the on-top placement, 

where the relative value was calculated based on the result of a tube voltage of 70 kV without 

Cu-filter. The values in parentheses are relative ones to 80 kV without Cu-filter. 

Radiation quality Acrylic 

 

 

 

Bone 

70 kV 

70 kV 0.1-mm Cu 

70 kV 0.2-mm Cu 

90 kV 

100 kV 

1 

0.96 

094 

0.73 

0.66 

1 

0.94 

0.89 

0.64 

0.55 

80 kV 

80 kV 0.1-mm Cu 

80 kV 0.2-mm Cu 

0.83 (1) 

0.79 (0.95) 

0.77 (0.93) 

0.76 (1) 

0.71 (0.93) 

0.68 (0.89) 

 

2.2 SDNR 

The SDNR2 values calculated using the acrylic and bone contrasts for the same ESD are 

shown in Fig. 3. For both the acrylic and bone contrasts, SDNR2 significantly increased when using 

the Cu-filters. At 70, 80, 90, and 100 kV without a Cu-filter, although the SDNR2 values for the 

acrylic contrast were similar, the SDNR2 values for the bone contrast decreased with increasing tube 

voltage. 

 

2.3 Dose reductions with Cu-filters 

Table 3 presents the estimated dose reduction using the Cu-filters. The percentage entrance 

dose reductions for the acrylic contrast were 29.2%–43.7%, whereas those for the bone contrast were 

23.7%–37.7%. As shown in Fig. 4, the SDNR2 values measured from the reduced dose images were 

nearly equal to those of the no-filter images. The dose reduction estimated from SDNR2 values, 
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which were measured using the simple background standard deviations including the periodic 

patterns from grid lines, were 31.2% for acrylic contrasts at 70 kV with the 0.2-mm-thick Cu-filter, 

and it was significantly lower than our estimation (43.7%) using SDNR2 measured by the NPS 

analysis in the grid-line direction. 

Figure 5 shows enlarged images of a part of the contrast detail phantom for 70 kV 

with/without the 0.2-mm-thick Cu-filter at the same ESD (3.0 mGy) and 70 kV with the 

0.2-mm-thick Cu-filter at a 40% reduced dose intending to nearly equalize SDNR to that of the 

image without the Cu-filter. The window conditions for the three images were adjusted based on the 

ROI measurements at the drilled holes and background such that the display contrasts were nearly 

identical. For the comparison between images with the same ESD, the image with the 0.2-mm-thick 

Cu-filter presented a noise-reduced image, demonstrating its better SDNR. The image at the reduced 

dose showed nearly identical noise to the image without Cu-filter, demonstrating the equalized 

SDNRs. 

 

2.4 Average organ dose and effective dose reductions 

The percentage dose reductions of average organ dose with 0.1- and 0.2-mm-thick Cu-filters 

for acrylic were approximately 17% and 27% at 70 kV and 16% and 22% at 80 kV, respectively. 

Corresponding values for the effective dose were 14% and 23% at 70 kV and 13% and 19% at 80 kV, 

respectively, which were somewhat lower than those of the average organ dose. Thus, the dose 

reductions by Cu-filters estimated using the effective dose are nearly half of those for ESD. 
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Table 3. Percentage entrance dose reductions with Cu-filters estimated from rates of average SDNR2 

values of images without/with Cu-filters. 

Exposure condition 
Dose reduction [%] 

Acrylic contrast Bone contrast 

70 kV - - 

70 kV 0.1-mm Cu 30.4 25.9 

70 kV 0.2-mm Cu 43.7 37.7 

80 kV - - 

80 kV 0.1-mm Cu 29.2 23.7 

80 kV 0.2-mm Cu 35.4 28.1 

 

3．Discussion 

The image contrasts of the acrylic and bone plates at the highest tube voltage of 100 kV were 

decreased by approximately 34% and 45%, respectively, compared with 70 kV without the Cu-filter. 

On the contrary, the contrast decreases of 70 kV with 0.2-mm-thick Cu-filter were significantly 

lower (approximately 6% and 11%, respectively), despite the higher effective energy than that with 

100 kV (41.8 keV for 70 kV with 0.2–mm-thick Cu-filter, 37.2 keV for 100 kV). These results 

demonstrated simulation results of Martin et al., which indicated that the Cu-filter absorbed the 

low-energy X-ray proportion that did not contribute to imaging and simultaneously maintained the 

proportion that contributed to imaging [4]. Therefore, the main cause of contrast reduction was 

increasing the maximum energy and not increasing the effective energy in this comparison. 

For the same ESD, the SDNR2 values significantly increased when using Cu-filters at both 70 and 

80 kV, which demonstrates the dose reduction capability of Cu-filters. The estimated percentage 

entrance dose reductions for the acrylic contrasts with 0.1- and 0.2-mm-thick Cu-filters were 

approximately 30% and 44% at 70 kV and 29% and 35% at 80 kV, respectively. For the bone 
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contrast, the percentage entrance dose reductions were slightly reduced (approximately 30% and 

37% at 70 kV and 24% and 26% at 80 kV, respectively). The bone with higher mean atomic number 

has higher energy dependency of the contrast, compared with the soft tissue (acrylic), due to the 

higher energy dependency of the photo-electric effect. Therefore, as shown in Table 2, the bone 

contrast was slightly more reduced by Cu-filters compared with the acrylic contrast, which affected 

the percentage entrance dose reduction. Therefore, due to the equivalency between acrylic and 

soft-tissues [13], the use of a Cu-filter would be effective for soft-tissues and would provide slightly 

reduced effects for bone (i.e., spinal bones in abdominal images). In addition, our results indicate that 

high tube voltages of 90 and 100 kV are ineffective for dose reduction in abdominal X-ray 

radiography. Even though the percentage entrance dose reduction with a 0.2-mm-thick Cu-filter 

reported by Martin was 50% at 70−80 kV [4], our results, which were actually measured using a 

clinical DR system, did not reach this level and the percentages for bones were significantly reduced. 

The estimated dose reduction was proved by the equalized SDNR2 results shown in Figs. 4 and 5. 

The dose reduction estimated using the SDNR2 values, which was simply calculated from the 

background standard deviation (31.2% for the 0.2-mm-thick Cu-filter at 70 kV), was significantly 

lower than our percentage entrance dose reduction (43.7%) estimated using NPS analysis performed 

to avoid the influence of the periodic patterns from grid lines. When using the percentage value of 

31.2%, it was apparent that the SDNR2 values would not equalize, which indicates that the random 

noise components in image would not equalize. The frequency analysis we used in this study to 

avoid the influence of the grid lines seemed to be effective to assess the percentage entrance dose 

reduction using Cu-filters in the presence of a grid. However, since noise evaluation methods 

including the periodic patterns have not been established, further investigations with the grid line 

would be needed.  

It has been said that filtration forces increase in the current time product (mAs); therefore, it is 

difficult to use clinically due to increases in X-ray tube heating. In our results, the mAs increase 
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factors for the 0.1- and 0.2-mm-thick Cu-filters were approximately 1.4 and 1.8, respectively, for the 

equalized image qualities. In the hospital where the first and second authors work, approximately 17 

mAs on average is used for an adult abdomen and corresponding ESD was 1.0 mGy. The timer is 

approximately 34 ms for a tube current of 500 mA, which is automatically set in the mAs-control 

mode of the X-ray system. Therefore, the timers for the 0.1- and 0.2-mm-thick Cu-filters would need 

to be prolonged to 48 and 61 ms, respectively. However, these times are not too long to obtain 

abdominal images without motion artifacts. For the ESD of 3.0 mGy corresponding to Japan DRL, 

the timer was 100 ms for the 20-cm phantom, and thereby the timer would be prolonged to 140 and 

180 ms, which were still smaller than recommendations (<400 ms) found in a guide line [8].  

In clinical examinations, AEC systems have been routinely used. The AEC system works to 

approximately equalize the detector entrance dose and consequently nearly equalize the image noise. 

Thereby, when using the Cu-filters with AEC, it is expected that the SDNR is nearly maintained due 

to the AEC performance. We performed acquisitions of the 20-cm acrylic phantom with AEC at 70 

kV using the DR system used in this study. As a result, the mAs values were adjusted so that the dose 

reductions near our results were obtained (34.0% and 46.5% for 0.1- and 0.2-mm thickness Cu-filters, 

respectively), which would slightly degrade SDNRs. Therefore, it appeared that the Cu-filters could 

be used in the routine examination using the AEC system and contribute to the ESD reduction. 

The dose distributions in the depth direction are different for different radiation qualities due to 

their different energy absorptions. The 70 and 80 kV cases without a Cu-filter present rapid decreases 

from the phantom surface to deep points compared to the 70 and 80 kV cases with Cu-filters. 

Therefore, it is likely that the average depth-dose for the radiation quality with a Cu-filter tends to be 

higher than that without a Cu-filter; consequently, the image quality improves owing to the higher 

transmitted dose. Conversely, for conditions with the same image quality (the equalized SDNR2 

values in this study), the Cu-filter decreases the ESD and the transmitted dose becomes similar to 

that without a Cu-filter. Therefore, the average depth-dose with a Cu-filter could be reduced 
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compared to the condition without a Cu-filter, whereas this reduction will be less than with ESD. 

This point was indicated in the results of average organ dose reduction estimated using PCXMC 

(27% at 70 kV and 22% at 80 kV for average organ dose versus 44% at 70 kV and 35% at 80 kV for 

ESD, with a 0.2-mm-thick Cu-filter). Each organ dose differed depending on its depth from the 

surface. The organ doses close to the surface, such as liver, are more affected by the ESD difference 

caused by the Cu-filters, and the organ doses at deep locations such as kidney and lower spine 

become similar because the transmitted doses with and without a Cu-filter are nearly equalized to 

achieve the equalized SDNR2. Therefore, it appeared that the average organ dose reductions were 

less than those of ESD. In addition, the tissue weighting factors of organs are multiplied to the organ 

doses for deriving the effective dose. As a result, affected by the tissue weighting factors (for 

example, a low weighting factor of liver), the effective dose reduction became a little less than the 

average organ dose reduction, and thus the dose reductions estimating using effective dose, which 

were related to risk to the patient, became approximately half of those for ESD. However, it was 

indicated that the effective dose reductions of 23% at 70 kV and 19% at 80 kV would be expected 

using the 0.2-mm-thick Cu-filter. 

This study was based on one specific phantom thickness (20 cm) corresponding to a standard adult 

abdomen, and dose reduction estimations would be different for other thicknesses and field sizes. 

The dose reduction ability of Cu-filters obtained in this study needs to be confirmed by an adequate 

clinical study. 

 

4. Conclusions 

We validated the dose reduction capability of including Cu-filters for abdominal 

radiography using a DR system equipped with an indirect-type CsI detector and automatic Cu-filter 

insertion mechanism. The estimated entrance dose reductions for soft tissue using the 0.1- and 

0.2-mm-thick Cu-filters were found to be approximately 30% and 44% at 70 kV and 29% and 35% 
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at 80 kV, respectively, and corresponding dose reductions estimated using the effective dose are 

nearly half of those for ESD. In this case, the increasing mAs factors for the 0.1- and 0.2-mm-thick 

Cu-filters were 1.4 and 1.8, respectively. 
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Figure 

 

 Fig. 1 Geometric arrangement for image quality measurement. 

 

 
 Fig.2 Detailed view of a region of interest in an image obtained at 70 kV without Cu-filters. 

Grid lines were not entirely suppressed and remained as aliased signals (periodic patterns) in the 

image. 
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 Fig. 3 SDNR2 results for (a) acrylic and (b) bone with the same ESD. 

 

 

 Fig. 4 SDNR2 results of the dose-reduced conditions for acrylic with Cu-filters estimated 
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from the percentage entrance dose reduction shown in Table 3 and original conditions without a 

Cu-filter.  

 

 

 Fig. 5 Images of a part of an acrylic contrast detail phantom, which was placed on an 

18.5-cm-thick acrylic contrast detail phantom (a total thickness of 20 cm). (a) 70 kV without a 

Cu-filter at 3mGy, (b) 70 kV with 0.2-mm-thick Cu-filter at 3 mGy, and (c) 70 kV with 0.2–

mm-thick Cu-filter at a 40% reduced dose intending to nearly equalize SDNR to (a). The diameters 

and depths of the drilled holes were 7–9 mm and 1–2 mm, respectively. The window conditions for 

the three images were adjusted such that the display contrasts became almost identical. 

 


