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Abstract 
 
Naturally CETP-deficient animals and genetic CETP deficiency 
caused by TaqIB polymorphism in human are relatively resistant to 
atherosclerosis including coronary artery disease (CAD). Cholesteryl 
ester transfer protein (CETP) inhibitors were developed for new 
therapeutic measure against atherosclerotic vascular disease 
through increasing HDL-cholesterol and decreasing LDL-cholesterol. 
Although a clinical trials with torcetrapib was terminated due to 
hypertension related side effects, two other compounds of 
anacetrapib and evacetrapib are under clinical trials of the phase III. 
Although additional failure of dalcetrapib suggested that 
hypertension-related adverse effect is not only the cause of failure of 
torcetrapib, but also validity of CETP inhibitor itself is questionable, 
this review summarized a hope remained in CETP inhibitors as a 
potential agent reducing residual CAD risk in some clinical setting. 
Rationale for the CETP inhibitor development is discussed from 
clinical and experimental insights of lipoprotein phenotype, functional 
activity on LDL and HDL, and role of CETP activity in relation to 
inflammation. Structure and function relationship between the 
N-terminal hydrophobic tunnel of CETP and CE/TG with/without a 
CETP inhibitor is discussed. CETP antibody may have a differential 
potential on directional selectivity of neutral lipid transfer in plasma 
lipoproteins. 
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Introduction 

In the first edition of the HDL handbook in 2010, I have written a chapter on 

plasma cholesteryl ester transfer protein (CETP) in relation to human 
pathophysiology of genetic CETP deficiency (1). Since then, more reports have 
been published to fill a gap in the CETP research area. Furthermore, more 

progress has been made in the development of CETP inhibitors. This chapter 
includes a recent knowledge on CETP structure and function relationship, and 
emerging evidence of CETP inhibitors in the last 5 years along with my opinion. 

 

HDL-TG as a key component determining neutral lipid transfer (Figure 1) 

CETP is a 74kD glycoprotein consisted of 476 amino acids and N-glycosylation. 
Its crystal structure reveals a banana-shaped molecule with N- and C-terminal 

β-barrel domains, a central β-sheet and a ~60 Å-long hydrophobic central cavity. 
A long tunnel has a space for hydrophobic 2 molecules of cholestery ester (CE) 
or triacylglycerol (TG) and plugged by an amphiphilic phosphatidylcholine (PC) at 

each ends. C-terminal amino acids of 433, 443, 457 and 459 appeared to be 
close to the tunnel neck (2).  By an optimized negative-staining 
electronmicroscope protocol, CETP C-terminal is more globular and N-terminal is 

more tapered end (3). HDL and CETP form a binary complex, which could be 
seen as a tadpole-shape: CETP protruding from spherical HDL surface. The 
banana-shaped CETP has a concave surface protruding ~45 degree angle from 

the HDL surface. Since PC-binding pores are located at central β-sheet of CETP, 
the pore is close to HDL surface, which is composed of PL layers. Thus, CETP 
bridge HDL to LDL or VLDL to form ternary complex. Based on the asymmetric 

structure of CETP, N-terminal CETP prefers to bind to HDL and C-terminal end 
does to VLDL or LDL. Furthermore, recent studies suggested that the distal 
portion flexibility of N-terminal β-barrel domain is considerably greater in solution 
than in crystal and it remains hydrophobic in solution (4). 
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It is believed that CETP mediates hetero-exchange of TG and CE by moving 
between VLDL and HDL like a shuttle. If a shuttle model is correct, CETP adopts 
a conformation to enable binding to a large lipoprotein like VLDL in addition to 

HDL. However, in a recent model proposed by Charles and Kane (5), based on a 
recent experiment data, it appears to depend on the ternary complex between 
CETP-HDL and VLDL. The process includes sensing, penetration, and docking 

of CETP. CETP penetrates ~50 Å into HDL with the N-termial β-barrel domain, 
while penetrating LDL or VLDL only 20-25 Å through its distal C-terminal β-barrel 
domain since the outer PL shell of lipoproteins is 18-27 Å thick. CETP, 

phospholipid transfer protein (PLTP) and lipopolysaccaride (LPS) binding protein 
(LBP) belong to the tubular lipid-binding (TULIP) domain superfamily (6). 

  

HDL metabolism in CETP deficiency (Figure 2) 

Lipoprotein phenotype in CETP deficiency has been well investigated; high HDL 

and low LDL, but fewer consistent finding was found in TG metabolism. 
Concentation of preβ1-HDL is inconsistent between homo- and heterozygotes 
with CETP deficiency (7). Mild reduction of CETP activity found in heterozygotes 

had low levels of preβ1-HDL. However, complete CETP deficiency had 
oppositely higher levels of preβ1-HDL, suggesting that reduction of CETP activity 
is not linearly correlated with preβ1-HDL levels. Preβ1-HDL is believed to be an 

efficient acceptor for ATP-binding cassette transporter A1 (ABCA1)-mediated 
cholesterol efflux activity. Preβ1-HDL is converted to spherical HDL via 
lecithin:cholesterol acyltransferase (LCAT)-mediated cholesterol esterification. 

Therefore, either increased ABC-A1 or phospholipid（PL） transfer activity or 
decreased LCAT activity would be associated with increased levels of preβ1-HDL. 
A cause of increased preβ1-HDL found in homozygous CETP deficiency is 

currently unknown, but it is likely associated with decreased LCAT activity rather 
than accelerated lipolysis of  VLDL/ chylomicron (CM) (8,9). 

As shown in a kinetic study (10), fractional catabolic rate (FCR) of apoA-I is 
decreased in CETP deficiency, however, cholesterol/CE clearance rate from 
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HDL is not established in CETP deficiency. Scavenger receptor class B type I 
(SR-BI) receptor mediates selective uptake of HDL lipids in the liver, as SR-BI 
deficiency is a cause of increased HDL levels in humans (11). 

RCT from peripheral tissues appeared to be pro-atherogenic if FC/CE in HDL 
would transfer to the VLDL-intermediate density lipoprotein (IDL)- low density 

lipoprotein (LDL) pathway via CETP activity, and FC/CE could be reutilize in 
VLDL formed in the liver after lipoprotein uptake of VLDL-IDL-LDL by the liver 
receptors such as LDL receptors. In contrast, the SR-BI pathway selectively 

promoted cholesterol secretion from plasma HDL into bile (12), thereby it is 
anti-atherogenic. Relationship between RCT and LDL receptor activity is 
discussed later in the section of statin in perspective of CETP inhibitor. 

  

LDL metabolism in CETP deficiency 

LDL-C is largely consisted of CE, which is esterified by LCAT in HDL. 
CETP-mediated CE transferred from HDL to VLDL is a major determinant of 

LDL-C, because LDL-C tends to be lower in complete CETP deficiency. However, 
a reciprocal transfer of TG from VLDL to LDL and HDL is diminished in CETP 
deficiency, consistent with findings of TG-rich VLDL and TG-poor HDL in CETP 

deficiency (13). The CETP-deficient homozygotes had polydisperse LDL 
subclasses from IDL-like particles to small and dense LDL on a native 
polyacrylamide gel, suggesting that complete CETP deficiency 

would inhibit inter-conversion of lipids between LDL subclasses (14,15). In 
contrast, partial CETP deficiency increased LDL size. Since heteroexchange of 
CE and TG between HDL and LDL, leading to formation of TG-rich LDL and it 

consequently becomes to be small and dense LDL after lipolysis of the core TG. 
Thus, decreased formation of TG-rich LDL is expected in heterozygous CETP 
deficiency, resulting in increase in relatively larger LDL subclasses. 

  
 
VLDL metabolism in CETP deficiency 
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Postprandial lipemia is the most common risk of cardiovascular disease. 
Although predominant lipoproteins appeared in the postprandial periods have 
been discussed, it appears to be VLDL remnants (16). In post-prandial periods 

challenged by oral fat load, plasma TG response was diminished in the hetero- 
and homozygous CETP deficiency (17). It is compatible that CETP deficiency 
induced LDL receptor expression in the liver, which may accelerate TG-rich 
lipoprotein clearance.  

However, relationship between CETP activity and the magnitude of 

post-prandial lipemia is controversial, as it appears to be dependent on the 
metabolic context of subjects. In women who have lower hepatic lipase activity 
than men, it is shown that low CETP activity would deteriorate post-prandial TG 

response (19). Since CETP mediates the transfer of CE from HDL particles to 
VLDL in exchange for TG. When VLDL increases post-prandially, VLDL act as 
CE acceptors for CETP activity, thereby an increased net rate of TG transfer from 

VLDL to HDL/LDL is expected. In result, TG-rich HDL and LDL are avidly bound 
to hepatic lipase that effectively hydrolyzed TG, and they become HDL3 and 
small dense LDL, respectively. Thus, in this step CETP helps to lower TG in 
plasma via enhancing lipolysis of TG in LDL and HDL fractions. 

  

Antioxidant activity in CETP deficiency 

Serum PON1 activity was increased in two cases with homozygous CETP 

deficiency but PON1 activity / apoA-I level ratio are comparable to controls (20). 
The oxidized LDL (oxLDL) levels were positively correlated with apoB, PLTP 
activity, but negatively with CETP activity in the general population (21).  Since 

CETP enhances the ability of HDL to inhibit LDL oxidation in vitro, low CETP 
activity state may be susceptible to oxidative stress (22). However, 
CETP-deficient subjects did not reveal elevated levels of oxLDL and 
8-isoprostane, nor decreased levels of paraoxonase activity (23). 
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Plasma PLTP concentration was increased in CETP deficiency by +57%, but 
PLTP activity was not increased (24). The role of increased PLTP mass is 
currently unclear in CETP deficiency. 

 

Difference of lipoprotein phenotype between homozygotes and 
heterozygotes with CETP deficiency (Table 1) 

CETP may have dual aspects of its atherogenicity. On one hand of 
pro-atherogenicity, CETP would increase CE contents in VLDL-IDL; after LPL 

and hepatic lipase-mediated lipolysis, VLDL-IDL becomes CE-rich LDL. If VLDL 
is concurrently increased in combined hyperlipidemia (also called as mixed 
hyperlipidemia) or in post-prandial periods, hetero-exchange of CE and TG 

between VLDL and LDL results in formation of small, dense LDL via 
HDL-mediated lipid transfer. Similarly, TG-rich HDL produced by CETP-mediated 
TG transfer enhances catabolism of HDL. On the other hand, CETP-mediated 

CE net-transfer from HDL to VLDL-IDL-LDL is beneficial as long as hepatic LDL 
receptor activity is not saturated. CETP may help lipoprotein conversion among 
HDL subclasses via recycling from large HDL to small HDL including preβ1-HDL 
formation. 

CETP deficiency increased HDL-C and decreased LDL-C levels in adults. Thus, 
CETP inhibition may delay cholesterol clearance as plasma HDL-C levels 
increase. However, heterozygous CETP deficiency in a fetus showed decreased 

LDL-C without HDL-C changes (25), which may be associated with concurrently 
decreased LCAT activity. 

  

Source of CETP and cholesteryl ester transfer (CET) determinant 

CETP mRNA is abundant in tissues of liver, spleen and adipose. Net CE transfer 

rate is determined not only by plasma CETP activity but also VLDL levels, which 
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is a potent CE acceptor for the CETP-mediated lipid transfer. Some studies 
suggested that increased CET is a stronger risk factor than plasma CETP mass 
or activity. CET is associated with PAF-AH activity, which is also known as 

lipoprotein-associated phospholipase A2 (31). Since free fatty acid (FFA) 
generated by phosholipase activity by PAF-AH may increase binding of CETP to 
LDL, CET is accelerated.  

 

Cardiovascular disease risk in CETP deficiency and single nucleotide 
polymorphisms (SNPs) in the CETP gene 

The low CETP genotype of TaqIB2 was associated with decreased prevalence of 
coronary disease as well as increased HDL-C levels and large LDL size in men of 

the Framingham Heart Study (32). However, a recent study measuring plasma 
CETP activity suggested that lower plasma CETP activity was unexpectedly 
associated with greater cardiovascular risk (myocardial infarction, stroke, or heart 

failure) with relative risk 1.4 (33). The reason for this apparent discrepancy is 
unknown. As such, it is important to define whether the cause of the decrease in 
plasma CETP activity is genetic or environmental, since acute phase reaction 

and inflammation would decrease CETP expression. It is possible that lower 
CETP levels may be just a surrogate marker for inflammation rather than the 
genetic effect in the latter study as discussed below. 

Anti-atherogenic effect of genetically lower CETP levels caused by the TaqI B2 

allele has been reproduced in a recent meta-analysis (34). In heterozygous 
CETP deficiency, the Honolulu Heart Study showed that heterozygotes are 
anti-atherogenic at least when they have increased HDL-C > 60 mg/dL (35). 

Homozygous CETP deficiency has been mainly found in Japan. Only very few 
cases are found in the other populations including European descendants. Thus, 
epidemiological studies that have been made in a relatively small number in 

Japan have suggested mixed results in the coronary artery disease (CAD) risk 
(36,37). 
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Longevity is expected in some CETP-deficient heterozygous subjects (26,38). A 
promising effect on longevity has been reported in Ashkenazi Jewish population, 
where increased homozygosity of I405V was found in offspring of individuals with 

exceptional longevity (39). Furthermore, the homozygosity of I405V was 
associated with slower memory decline and lower incident dementia (40). 

Meta-analysis of CETP SNPs associating with low CETP activity and high 
HDL-cholesterol levels are anti-atherogenic such as TaqIB [rs708272] and 
-629C>A [rs1800775] (34,41). In prospective cohort studies, the Copenhagen 

City Heart Study and the Women’s Genome Health Study showed that 
genetically low CETP activity is anti-atherogenic in men and women (42,43). 

However, some recent studies reported inconsistent results. Hiura et al reported 
that the minor allele of rs3764261, located in the CETP promoter, is associated 

with elevated HDL levels and unexpectedly increased myocardial infarction (MI) 
risk in Japanese population (44). Similarly, SNPs located between intron 8 and 
exon 9, which were associated with exon 9 skipping, manifested an increased MI 
risk in men (45). 

Opposite trends that TaqIB2 is associated with an increased vascular risk were 

found in statin-treated cardiovascular patients and very high-risk population who 
had increased HDL and C-reactive protein (CRP) levels and low PAF-AH activity 
(46,47). These opposite results need to be fully investigated whether or not that 
finding is related with reverse causality. 

 

CETP in relation to inflammation and adiposity 

In a prospective observational study of patients with stable CAD in Germany 

(KAROLA study), low CETP was associated with increased risk for death with an 
adjusted hazard ratio 1.84 (48). In the Ludwigshafen Risk and Cardiovascular 
Health (LURIC) study, CETP levels are lower in smokers, diabetics and unstable 

CAD. CETP showed a negative correlation with CRP and IL-6 and a positive 
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correlation with homocysteine and adiponectin. Low CETP is associated with 
increased hazard ratios for death after multivariate adjustment (49). During 
experimental endotoxemia, decreased activity of CETP and LCAT were found, in 
contrast PLTP activity was increased in human subjects (50). 

The common allele of TaqIB, i.e. TaqIB1, increased CETP activity and decreased 

HDL levels, was associated with insulin resistance and metabolic syndrome (51). 
Hyperalphalipoproteinemic subjects tend to have decreased CRP levels (52). 
However, there is no evidence that CETP deficiency had low CRP levels. 
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Drug designs in clinical trials (Figure 3) 
 
 1) Torcetrapib (Pfizer) 

Torcetrapib is a compound of tetrahydroquinoline that binds to CETP, 
forming CETP-HDL complex in plasma. It is a noncompetitive inhibitor that 

could bind to CETP reversibly. The IC50 values for CETP activity are 17-79 
nM. The binding site on CETP for torcetrapib is in the lipid-binding pocket 
near N-terminal CETP (53). Favorable lipoprotein profile of increased HDL2 

and large LDL are shown with increasing HDL (+106%) and decreasing LDL 
(−17%) with 240mg torcetrapib in humans. In December 2006, the phase III 
trial of the ILLUMINATE Study, a combination study with atorvastatin, was 

terminated because of excess death (hazard ratio 1.58) and major 
cardiovascular events (hazard ratio 1.25) in the combination arm (54). 

The large part of cause of death appeared to be related to 
hypertension-related vascular events. Later, torcetrapib is found to be 

associated with high aldosterone levels, which are associated with increased 
aldosterone synthase (CYP11B2) (55) and endothelial dysfunction (56). 
Blood pressure was increased in spontaneously hypertensive rats treated 

with torcetrapib, but not Wistar-Kyoto rats (57). Torcetrapib induced a 
sustained impairment of endothelial function, decreased eNOS mRNA, 
protein as well as NO release, stimulates vascular ROS and endothelin-1 

production in addition to aldosterone. Since rat and mice are deficient in 
CETP activity, these hormonal changes related in artery tonus are 
independent of CETP activity. 

Furthermore, imaging trials of coronary and carotid arteries were negative, 
but a post hoc analysis of the IVUS study of the ILLUSTRATE Study 

indicated that the only highest HDL group (HDL-C > 87 mg/dL) showed the 
regression of coronary atherosclerosis (58). Beneficial effects of increased 
HDL2 are associated with higher cholesterol efflux via SR-BI or ABCG1 
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pathways (59). Moreover, torcetrapib attenuates the atherogenicity of 
postprandial TG-rich lipoproteins in type IIB hyperlipidemia (60). 

Despite the failure in the clinical trials, torcetrapib is considered to induce 
RCT efficacy. Increased RCT from peripheral macrophages to feces is 
considered to be anti-atherogenic. A selective uptake of CE from HDL in the 

liver was increased by 1.7-fold in the treatment of torcetrapib in 
CETP-transgenic mice (59). In hamsters, a naturally CETP-expressed 
species, it was shown that increased cholesterol excretion in the feces was 
found during CETP inhibition by torcetrapib alone (61). 

  

2) Dalcetrapib (RO4607381, Roche; JTT-705, JT) 

This compound, formerly named JTT-705, is structurally different from 

fluorine-containing structures of torcetrapib, anacetrapib and evacetrapib, 
because it has an ortho-thio-anilide core and it requires Cys-13 of CETP 
molecule to form a covalent disulfide bond, thereby dalcetrapib irreversible 

binds to CETP (62). The SH group of Cys-13 resides at the bottom of the 
lipid-binding pocket of CETP (63). Inhibiting CETP activity is relatively mild 
(IC50 0.4-10 μM), accordingly it would increase HDL-C levels modestly. 

Indeed, dalcetrapib is not associated with increased aldosterone and high 
blood pressure (64). Moreover, no clinically relevant changes in lymph 

nodes, or other safety parameters were found in phase I and phase II trials 
(65). Clinical outcome study is expected in dal-OUTCOMES using 600 mg 
dalcetrapib in patients (N=15,600), which has been initiated in 2008. Thus, 

one might expect that dalcetrapib is more effective because it is a weak 
CETP inhibitor maintaining inter-conversions of HDL subclasses. Moreover, 
dal-VESSEL is focused on modulation of vascular function such as 

endothelial function by CETP inhibition. The dal-PLAQUE has been initiated 
to assess the impact of dalcetrapib on atherosclerotic plaque development 
using PET-CT and MRI (66). 
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However, unfortunately, in May 2012, the dal-OUTCOMES Phase III trials 
were terminated because of a lack of clinically meaningful efficacy, which is 
recommended by the independent Data and Safety Monitoring Board. All the 

studies in the dal-HEART program decided to be terminated. Although it is 
unclear why benefit by increasing HDL levels are not seen in that study, it 
may be explained by potential adverse effects as follows: the median CRP 

levels was 0.2 mg/L higher and mean systolic blood pressure was 0.6 mmHg 
higher with dalcetrapib as compared with a placebo in patients with a recent 
acute coronary syndrome (67). It is reasonable to state that dalcetrapib is a 

weak inhibitor without an effect on reducing LDL-C and TG which may be 
one of reasons for the failure of the dal-OUTCOMES. 

 

3) Anacetrapib (MK-0859, Merck) 

Anacetrapib has a triad of trifluoro-methyl-benzene derivative like torcetrapib 

but it has a distinct biaryl moiety. Although this compound effectively 
elevates HDL-C along with lowering LDL-C as well as torcetrapib, 
anacetrapib is not associated with increased aldosterone and high blood 

pressure (68). It is a noncompetitive inhibitor binding to CETP reversibly. 
The IC50 values for CETP activity are 10-17 nM (69). 

The Determining the Efficacy and Tolerability of CETP Inhibition with 
anacetrapib (DEFINE) Study was reported in 2010 (70). Patients with CAD 

or at high risks who were taking a statin are included in a randomized, 
double-blinded, placebo-controlled trial to receive 100 mg of anacetrapib or 
placebo. LDL-C was decreased from 81 mg/dL to 45 mg/dL (−40%) and 

HDL-C was increased from 41 mg/dL to 101 mg/dL (+138%) as compared 
with a placebo with acceptable side effects. In addition to LDL-C lowering 
effect, anacetrapib decreased plasma Lp(a) levels by −50% (71). 

In a detailed analysis of lipoprotein subfraction by density gradient 
ultracentrifugation in healthy individuals treated with anacetrapib 20 mg, 
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medium and small LDL levels were decreased whereas very small and 
dense LDL levels were increased, which is compatible with LDL subclasses 
found in severe CETP deficiency, but not in partial deficiency (72). 

Large reduction in LDL-C needs to be confirmed by another method than the 
Friedewald formula (calculated LDL-C = TC – HDL-C – TG/5), since the 

method would underestimate LDL-C because VLDL-C, which is estimated 
as TG/5, is lower in CETP deficiency and patients treated with anacetrapib 
than controls (1,73). However, the direct HDL-C method would 

underestimate HDL-C levels in plasmas with apoE-rich HDL found in CETP 
deficiency, therefore the direct HDL-C method would overestimate 
calculated LDL-C through the formula (1). 

As anti-atherogenicity of HDL, HDL after treatment with niacin or anacetrapib 

exhibits potent ability to suppress macrophage toll-like receptor 4-mediated 
inflammatory responses. The increased HDL fraction is rich in apoE and 
LCAT, but not in PAF-AH activity (74). 

In May 2011, the REVEAL trial (Randomized Evaluation of the Effects of 
Anacetrapib Through Lipid Modification) was started with a daily dose of 100 

mg anacetrapib in patients with CAD with statin therapy (75). This study will 
recruit 30,000 CAD patients with >=50 years of age. Their LDL-C levels will 
be controlled with atorvastation with total cholesterol < 155 mg/dL, then 

patients will be randomized to have anacetrapib or not. It is expected that the 
REVEAL trial will provide valuable results by January 2017. 

 
4) Evacetrapib (LY2484595, Eli Lilly) 

A novel benzazepine compound is a potent, selective CETP inhibitor (76). It 
contains a quinoline core like torcetrapib and the 
3,5-bis-trifluoromethylbenzyl group but also a methyl tetrazole and 

cyclohexane carboxylic acid side chain. Evacetrapib inhibited human 
recombinant CETP (5.5 nM IC50) and CETP activity in human plasma (36 
nM IC50) as well as torcetrapib and anacetrapib. Importantly, evacetrapib 
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did not induce aldosterone and cortisol biosynthesis in a human adrenal 
cortical carcinoma cell line. 

Evacetrapib was evaluated in patients with high LDL levels as monotherapy 
or in combination with statins (77). Evacetrapib 100mg/d increased HDL-C 
(+54~ +129%) and decreased LDL-C (-14~-36%) in the monotherapy 

through decreasing CETP activity (-50 ~ -89%) but increasing CETP mass 
(+64 ~ +137%). 

 

Structural difference of CETP inhibitors in the cavity of CETP 

All compounds appeared to be related to increased plasma CETP mass up to 
3-fold increase, which is contrast with antisense therapy. The reason for the 
increase in mass is not fully understood, it may be related to decreased clearance 

of CETP in plasma. The CETP-CETP inhibitor complex is increased with HDL as 
seen in the electromicroscope. 

The CETP inhibitors are buried deeply within the CETP protein, shifting the 
bound CE in the N-terminal pocket of the long hydrophobic tunnel and displacing 
the PL from the pocket. The lipids in the C-terminal pocket of the hydrophobic 

tunnel remain unchanged. Polar residues of Gln-199, Ser-230 and His-232 are 
found in the inhibitor-binding site. For example, torcetrapib occupies a volume of 
~12 Å x 12 Å x 7 Å within the N-terminal pocket of the CETP tunnel (78).Thus, 

torcetrapib binding physically interferes with PL binding and forces CE into a 
position that is presumably unfavorable for lipid transfer by blocking the narrow 
passage. The trifluoromethyl group of the torcetrapib projects deeply into the 

N-terminal pocket; sub-pocket formed by Ile-11, Cys-13, Ile-215 and the aromatic 
faces of His-232 and Phe-263. The binding site of dalcetrapib, Cys-13 is located 
in between the side chains of His-232 and Phe-263 in the model by Liu et al. Thus, 

dalcetrapib binding to the CETP is time-dependent in the disulfide bond formation 
to Cys-13. However, other compounds with trifluoromethyl group are competitive 
in CETP binding. 
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Differential effects among CETP inhibitors 
1) Differences of levels of preβ1-HDL and HDL2, and cholesterol efflux capacity 

 

Like PLTP, CETP itself is a conversion factor of HDL subclasses. CETP 
increased size of HDL from HDL3 to HDL2 with giving formation of smaller 
HDL particles ~ 8 nm. In vitro levels of preβ1-HDL levels are varied after 

incubation with dalcetrapib or torcetrapib/ anacetrapib. Torcetrapib/ 
anacetrapib decreased preβ1-HDL levels in the concentration-dependent 
manner, but dalcetrapib did not decrease them (79). A similar finding is found 

when neutralizing antibody TP1 was incubated in human plasma (80), 
complete inhibition of CETP activity would retard preβ1-HDL formation. 
However, ex vivo analysis of plasmas of CETP deficient human resulted in 

opposite data (Table 1), partial inhibition would result in low levels of 
preβ1-HDL, but complete inhibition would increase in the preβ1-HDL levels. 
 

Torcetrapib increased plasma larger HDL2 particles, which are increased 
post-prandially up to 8 hours and act as active cholesterol acceptor via SR-BI 
and ABCG1-dependent cholesterol efflux pathway (81). 

 
Cholesterol efflux was also increased to HDL from anacetrapib-treated 
hamsters via both ABCA1 and ABCG1/ SR-BI pathway. Indeed, anacetrapib 

induced HDL-C levels rich in cholesteryl linoleate (18:2), which is compatible 
with findings in CETP deficiency (82). 
 

Khera et al reported that cholesterol efflux capacity was negatively associated 
with CAD risk independently of HDL-C levels (83). The capacity was 
determined ex vivo that radiolabeled J774 macrophage cells were incubated 

with apoB-depleted serum from patients for 4 hours, reflecting HDL capacity 
for cholesterol efflux activity mediated by ABCA1, ABCG1, and SR-BI 
pathways as well as aqueous diffusion. Thus, among several HDL functions, 

acceptor capacity for cholesterol efflux was likely enhanced in patients with 
CETP inhibitors.  
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2) Differences of in vivo macrophage-derived reverse cholesterol transport  
(RCT) among CETP inhibitors 
 

In a method administrating a radioactive cholesterol-labeled macrophage in 
the peritoneum, Tanigawa et al have measured direct RCT activity from 
peripheral macrophages to liver, bile and feces (84). In LDL receptor-KO mice, 

CETP cDNA adeno-associated virus mediated transfection promotes 
cholesterol to the liver, but not to bile and feces. In contrast, in SR-BI-KO mice, 
CETP cDNA transfection increased cholesterol loss in the feces, indicating 

that overall RCT induced by CETP is not via SR-BI, but through LDL receptor 
in the liver in mice. 

In 0.3% cholesterol-diet induced combined hyperlipidemia of 
hamsters; an increase of aortic cholesterol content is correlated with 
higher cholesterol/TG ratio in the liver as well as increased plasma levels of 

non-HDL-cholesterol (3.8 fold) and increased CETP activity (+40%). In the 
gene expression during cholesterol-fed hamster, mRNA levels of ABCA1 and 
ABCG5 increased, but those levels of LDL receptor and SR-BI decreased in 

the liver. In vivo, cholesterol efflux activity from macrophages to plasma and 
to bile/feces was decreased despite increased HDL-C levels (+90%) in 
hamsters (85), suggesting that HDL levels do not directly reflect efficacy of 
macrophage-derived RCT. 

Using a hamster macrophage, RCT of radiolabeled cholesterol from the 
macrophages is maintained in the experiments with dalcetrapib, but it is 
diminished in studies with torcetrapib and anacetrapib (79). The apparent 

difference on the induced cholesterol efflux activity appeared to be correlated 
with levels of preβ1-HDL; namely, dalcetrapib would maintain the levels, but 
strong inhibitors such as torcetrapib and anacetrapib decreased them. Thus, 

dalcetrapib may have unique lipoprotein profile such as preserved levels of 
preβ1-HDL, but it would be interesting to know whether or not it is due to a 
weaker inhibitor or a compound-specific effect. 
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Torcetrapib increased HDL-C, accelerating a secretion of cholesterol and bile 
acids in feces in hamsters but not in humans (86). Several regulations in lipid 
homeostasis in hamsters are different from those in human. In the liver of 

hamsters, dietary cholesterol-fed increased hepatic expression levels of 
ABCG5/G8 and PCSK9, but decreased CYP7A, with increasing bile 
cholesterol secretion. Therefore, decreasing both expression of LDLR and 

bile acid formation deteriorated magnitude of dyslipidemia in hamsters 
(87,88). Although dyslipidemic hamsters that are statin-resistant, the 
LDL-lowering drug berberine upregulates RCT with torcetrapib (89). 

    Effect of anacetrapib on macrophage-to-feces RCT in hamster models is 
conflicting (90). Although anacetrapib failed to show induced RCT in 

normolipidemic hamster in a previous study (79), a recent study showed that 
dyslipidemic hamster resulted in improved RCT under the condition of 
strongly inhibited CETP activity by −94% (90). 

  

3) Effects on paraoxonase, PAF-AH (Lp-PLA2), and anti-inflammatory activity 
(Table 2) 

     Serum CRP reduction was not reported in any compound, although 

anti-oxidative enzymes were substantially changed. In an ex-vivo study, 
anti-inflammatory properties of HDL were maintained in hamsters treated by 
anacetrapib as in controls (91). 

  

4) Vascular effects 

Flow-mediated dilation (FMD) of the brachial artery was increased by 41% in 
patients with low HDL-C (< 46 mg/dL) treated with dalcetrapib 600 mg, 
but that effect was not seen in patients with higher HDL-C in the baseline (94). 
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However, in the dal-VESSEL randomized clinical trial, FMD was not changed 
during the treatment with dalcetrapib 600 mg (93). 
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Perspective of CETP inhibitor 
 
1) Glucose tolerance, diabetes incidence during CETPi 

 
High HDL syndrome is often associated with low prevalence of diabetes mellitus 
(37). In vitro, studies suggested that HDL may offer an anti-diabetic effect by an 

increased pancreas beta-cell insulin secretion through mediated by ABCA1 and 
ABCG1 transporters (95). Moreover, HDL may activate AMP-activated protein 
kinase in skeletal muscle (96), thereby accelerating glucose uptake. 

 
Plasma CETP activity is increased in obesity or metabolic syndrome, but it is 
decreased in type2 diabetes (97). This may be related to out-of-regulation of 

SREBP1 and 2 in skeletal muscles and adipose tissues of type2 diabetes (98). 
However, CETP gene TaqI B2 allele is protective in diabetes, suggesting 
genetically low CETP activity is beneficial in macroangiopathy development of 

coronary disease, arteriosclerosis obliterans and cerebral vascular disease 
(99). 
 

Thus, it would be interesting to know whether or not impact on cardiovascular 
events by torcetrapib are stronger in diabetic patients involved in the 
ILLUMINATE trial. Conversely, Barter et al recently reported in the analysis of 

the ILLUMINATE trial that torcetrapib decreased HOMA-IR in the 
torcetrapib/atorvastatin arm as compared to the atorvastatin arm, which is 
associated with increased insulin sensitivity (100). Similarly, torcetrapib induced 

decrease in HOMA-IR in obese insulin-resistant CETP-apoB100 transgenic 
mice (101). 
 

2) CETPi in relation to combination therapy with HMG-CoA reductase inhibitor 
(statin) or other drugs 
 

Statin per se would decrease plasma CETP levels modestly (102), but on-stain 
CETP is inversely related to coronary outcomes in a large clinical trial based 
cohort (103). However, Barter et al negated an idea of adverse interaction 
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between atorvastatin and torcetrapib based on findings of the ILLUMINATE trial. 
Indeed, higher doses of atorvastatin appeared to protect against the harm effect 
caused by torcetrapib (104). A recent study suggested that low CETP 

phenotype linked with genotype of TaqI B2 may predict increased mortality in 
statin-treated men in contrast with the fact that the genotype is associated with 
lower coronary risk in a meta-analysis (34,46). Thus, role of low CETP activity is 

conflicting in the statin-treated population. It should be investigated in a 
prospective manner. 
 
Plasma CET is not only associated with CETP activity, but also other 
modulators: VLDL mass and FFA contents of lipoproteins. Thus, either a fibrate 
or a PAF-AH inhibitor may be good candidates for combination therapy with the 

CETP inhibitor since fibrate will decrease VLDL levels and PAF-AH inhibitors 
decrease CET by decreasing LDL-FFA levels. 

 

3) CETPi in relation to apoE-rich HDL levels 

Reverse cholesterol transport is enhanced by increase in apoE-rich HDL levels. 

Xanthohumol, a prenylated chalcone derived from natural products, is a CETP 
inhibitor. The compound was shown to prevent atherosclerosis in 
CETP-transgenic mice. Importantly, other factors such as LCAT, apoE, SR-BI 

and LDLR, which are upregulated in the liver, accelerate RCT along with 
increased apoE-rich HDL levels (105). 

4) Infectious disease risk in CETPi 
 

Torcetrapib-related excess death appeared to be related to non-cardiovascular 
events such as malignancy and/or infection. Low CETP activity may be 
associated with high mortality as suggested by a recent prospective study in 

hospitalized patients (106). In that study, each 1 mg/dL increase in HDL 
decreased the odds of severe sepsis by 3% during hospitalization, suggesting a 
role of HDL as LPS scavenger. Similarly, recombinant HDL decreased 
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LPS-induced inflammatory response in patients with liver cirrhosis (107). Thus, 
increased HDL would protect from infection. 
 

However, the reduction of plasma CETP was associated with mortality in 
hospitalized patients (106). It may reflect severe infection reducing CETP 
expression in hematopoietic cells. Furthermore, in vitro studies it is unlikely that 

torcetrapib has a direct effect on LBP and bactericidal/permeability increasing 
protein (BPI) function, nor an inhibitory effect on the interaction with LPS (108). 

 

5) Potential of CETPi against C-termial polypeptide 
 
Vaccine-induced antibodies were tested earlier in rabbits (109). The epitope 

was consisted of C-terminal CETP (461-476) and the peptide of Tetanus toxin, 
therefore CETP inhibition was expected in the ternary complex of 
HDL-CETP-VLDL or HDL-CETP-LDL. The approach results in decrease in 

CETP activity by -24%, increasing HDL-C levels by +42% with reduced aortic 
atherosclerosis in cholesterol-fed rabbits. The approach was tested in human 
clinical trials, but the phase II failed to meet the primary endpoint of increasing 

HDL-C levels (110). Thus, low concentrations of anti-human CETP antibody 
need an efficient adjuvant formulation. This approach would be interesting 
because the antibody inhibits CETP activity through C-terminal CETP, which is 

involved in the interaction with lipid transfer acceptors such as VLDL or LDL, but 
not in interconversion among HDL subclasses. 
 

 
 
 
 
 
 
 
 
Conclusion 
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Anti-atherogenicity of low CETP activity appears to be dependent on the cause, 
whether it is genetic or environmental. Also, it is unclear how much lower CETP 

activity would be beneficial in human atherosclerosis. Since CETP inhibitors such 
as anacetrapib and evacetrapib have been tested in the phase III trials, it is 
expected that those trials will provide results on vascular endpoints by 2017. As 

structure and function relationship between the hydrophobic tunnel of CETP and 
CE/TG and PL has been disclosed, different inhibitors targeting the other 
domains are promising. Also, CETP antibody therapy awaited further 

investigation. 
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Table 1. Summary of anti- and pro-atherogenic aspects in CETP deficiency. 
 
Parameter                        Homozygote      Heterozygote      Author, Year (Ref) 

------------------------------------------------------------------------------------------------------ 
 
HDL-C (mg/dL)                        164                    66                 Inazu, 1990(26) 

ApoE-rich HDL1                      Very high          High               Koizumi, 1985(27) 
                                                                                                  Inazu, 2008(17) 
Preβ1-HDL                               Increased        Decreased       Asztalos, 2004(7) 

Cholesterol esterification rate    Very low         Low                  Oliveira, 1997(8)  
ABCG1/SR-BI-mediated chol efflux   
                                                     Very high         High            Matsuura, 2006(28) 

                                                                                                 Miwa, 2009(29) 
LDL-C (mg/dL)                           77                   111               Inazu, 1990(26) 
LDL size                                    Polydispersed      Large         Yamashita, 1988(14) 

                                                                                                  Brown, 1989(15) 
                                                                                                  Wang, 2002(30) 
Lp(a)                                         Decreased       Not reported         unpublished* 

 
--------------------------------------------------------------------------------------------------------- 
* Inazu et al (1993) 
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Table 2. Changes of PON1 and PAF-AH activity in CETP inhibitors 
 

---------------------------------------------------------------------------------------------------------- 
Drug         Subjects            PON1            PAF-AH           Author, Year (Reference) 
 

Dalcetrapib    Low HDL    increased (+41%)      nd             Bisoendial, 2005(92) 
Dalcetrapib    CHD            nd             increased (+17%)    Lüsher, 2012(93) 
 

Anacetrapib    Dyslipidemia      nd           no change           Yvan-Charvet, 2010(74) 
---------------------------------------------------------------------------------------------------------- 
Nd, not determined 
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Figure legends 

1. HDL as a playmaker for the neutral lipid transfer.  

HDL-TG is a source of TG in LDL by CETP-mediated lipid transfer. 
 

2. HDL as a cholesterol vehicle from atherosclerotic lesions to the liver. 

There are two pathways; one is a direct pathway mediated by apoE-rich HDL 
and SR-BI receptor in the liver, and the other is an indirect pathway mediated 
by IDL-LDL or chylomicron remnants and LDLR in the liver. 

 
3. CETP inhibitors 
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