Quantitative analysis of the Trendelenburg test and invention of a modified method

著者	Fujita Kenji, Kabata Tamon, Kajino Yoshitomo, Iwai Shintaro, Kuroda Kazunari, Hasegawa Kazuhiro, Fujiwara Katsuo, Tsuchiya Hiroyuki
journal or	Journal of Orthopaedic Science
publication title	
volume	22
number	1
page range	81-88
year	2017-01-01
URL	http://hdl.handle.net/2297/46797

doi: 10.1016/j.jos.2016.09.007

TITLE PAGE

Title

Quantitative Analysis of the Trendelenburg Test and Invention of a Modified Method

Author names and final degree

Kenji Fujita, MD, PhD¹ (kkkkkenji76@yahoo.co.jp) Tamon Kabata, MD, PhD¹ (tamonkabata@yahoo.co.jp) Yoshitomo Kajino, MD, PhD¹ (yoshitomokajino@gmail.com) Shintaro Iwai, MD, PhD¹ (shntr.iwai@gmail.com) Kazunari Kuroda, MD, PhD¹ (kurokazu0108@yahoo.co.jp) Kazuhiro Hasegawa, MD¹ (kazuhiro63hasegawa@gmail.com) Katsuo Fujiwara, PhD² (fujikatu@med.m.kanazawa-u.ac.jp) Hiroyuki Tsuchiya, MD, PhD¹ (tsuchi@med.kanazawa-u.ac.jp)

The affiliation and address

- 1. Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University
- 2. Department of Human Movement and Health, Graduate School of Medical Science, Kanazawa University

Conflict of interest statement

None

Ethical review committee statement

This investigational protocol was conducted with the approval of the Kanazawa University Graduate School of Medicine Ethics Committee. In accordance with the requirements of this review, all subjects were provided informed consent.

Please address all correspondence to:

Tamon Kabata, MD, PhD Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan Phone: +81-76-265-2374 Fax: +81-76-234-4261 E-mail: tamonkabata@yahoo.co.jp

1	Quantitative Analysis of the Trendelenburg Test and Invention of a Modified Method
2	
3	Abstract
4	Background While the Trendelenburg test has been used for 120 years to detect hip abductor
5	muscle weakness, the methodology has not been standardised.
6	Purposes This study undertook to quantitatively analyze the relation between abductor
7	muscle activity and pelvic tilt angle in the Trendelenburg one-leg stance, examine the pitfalls
8	associated with performing the T-test, and develop a modified method that will produce
9	reliable results.
10	Methods A convenience sample of 15 healthy males was asked to assume a one-leg stance in
11	ten different postures, five with mild flexion on the unsupported side, and five with severe
12	flexion. Trunk sway angle, pelvic tilt angle, and the pelvic on femur (POF) angle were
13	measured for each posture. Statistical analysis was used to assess differences in hip abductor
14	activity and public tilt angle between the control posture and the test postures.
15	Results With minimum trunk sway, hip abductor muscle activity increases when the pelvis is
16	elevated and decreases when it is dropped. With trunk sway toward the test side, abductor
17	muscle activity decreased when the pelvis was elevated; with trunk sway toward the non-test
18	side, muscle activity stayed approximately constant when the pelvis was dropped.

19	Conclusions Based on the results we developed a modified T-test methodology that would
20	improve reliability. This test should be performed with minimum trunk sway and severe
21	flexion on the non-test side. The assessment of muscle weakness is based on whether the
22	patient can keep the single-leg standing posture when forced to elevate the pelvis, not simply
23	on the pelvic drop. In future research, we will perform the modified T-test on patients with a
24	suspected hip abductor deficiency, and assess the usefulness of the modified test.
25	

26 Introduction

Weakness of the abductor muscle is the major cause of claudication resulting from diseases of 27the hip joint. Therefore, evaluation of hip abductor muscle strength is important in diagnosing 28and treating such diseases. The Trendelenburg (T) test was first reported by Friedrich 2930 Trendelenburg in 1895 as a physical examination method for detecting severe abductor muscle weakness [1]. Generally, if the patient assumes a one-leg stance and the pelvis drops 31on the non-test (the non-stance) side, the test result is read as positive; in other words, the 32abductor muscle is weak. The T-test has long been a popular method for physical 33examinations; however, the details and evaluation method of the procedure are usually 3435described vaguely and have not been standardised. In 1985, Hardcastle et al [2] developed a T-test method which they called the standard Trendelenburg (sT)-test. In this method, the 36 participant is instructed to elevate the pelvis as high as possible on the non-test side, and if 3738sufficient elevation of the pelvis can be maintained for 30 seconds, the test result is considered negative. If insufficient elevation and drop of the pelvis occur, the test result is 39 40 considered positive. This method is now used worldwide as a method for evaluating hip abductor function after total hip replacement (THR). However, its reliability does not yet 41clear. In daily medical practice, we often hesitate to judge that the test is positive or negative 42because the pelvic drop (or insufficient pelvic elevation) is not immediately obvious. 43Additionally, we wonder whether the hip flexion angle of non-test side and a trunk sway has 44

45	an effect on the results. The aims of this study were to quantitatively analyze the relationship
46	between abductor muscle activity and the pelvic tilt angle in the one-leg stance posture; to
47	examine the pitfalls associated with performing the T-test; and ultimately, to invent a better
48	method, which we call the modified Trendelenburg (mT)-test.

50 Materials and Methods

51 Participants

52	A convenience sample of 15 healthy men (30 hips) was recruited. Inclusion criteria were as
53	follows: 1) older than 18 years, 2) no current or previous injury to the lumbar spine, pelvis,
54	or lower extremities within the past 12 months, 3) no previous surgery to the lumbar spine,
55	pelvis, or hip, 4) normal passive and active range of motion of both hips, 5) 5 of 5 scores
56	bilaterally on manual muscle testing of the hip abductor muscle. The mean age was 31.4
57	years (range, 22-55 years) , the mean body weight was 63.9 kg (range, $54.5-86.0 \text{ kg}$),
58	and the mean height was 171.5 cm (range, 163.2-180.7 cm).

59

60 Methods

61 Procedures

62 Participants assumed a one-leg stance in 10 different postures, as described below (Figure

63	1) ; measurements were taken of the trunk sway angle, the pelvic tilt angle, and the pelvic-
64	on-femur (POF) angle (Figure 2); and the relationship between hip abductor muscle
65	activity and the pelvic tilt angle was assessed. "Posture 1: control" was defined as a one-leg
66	stance posture in which participants were given no instruction regarding pelvic tilt. In
67	"Posture 2: pelvic drop" and "Posture 3: pelvic elevation" the participants were instructed to
68	drop the pelvis, and to elevate it, respectively. In postures 1-3, the participants were instructed
69	to minimize trunk sway, in order to eliminate any effect which the trunk sway might have on
70	hip abductor muscle activity and pelvic tilt angle. Finally, in order to assess the effect which
71	trunk sway has on hip abductor muscle activity and pelvic tilt angle, in "Posture 4: trunk
72	sway toward test side" and "Posture 5: trunk sway toward non-test side" the participants were
73	instructed to lean the trunk toward the test side and non-test side, respectively. In postures 4
74	and 5, the participants were given no instruction regarding pelvic tilt.
75	For each posture, the participants were asked to perform mild and severe flexion of the non-
76	test side hip in order to assess the effect that the flexion angle of the non-test side hip has on
77	hip abductor muscle activity and pelvic tilt angle. Mild flexion was defined as raising the toe
78	of the non-stance side as high as the medial malleolus of the stance side, for approximately
79	30 degrees of hip flexion. Severe flexion was defined as raising the toe of the non-stance side
80	as high as the knee of the stance side, approximately 80 degrees of hip flexion. Measurements
81	of the one-leg stance postures and the hip abductor muscle activity were performed once, for

two seconds per posture, for 10 different postures.

83 Measurement of the one-leg stance posture (Figure 2)

The Trunk sway angle, pelvic tilt angle, and pelvic on femur (POF) angle were measured for 84 each posture using retroreflective markers fixed by adhesive tape. A total of six retroreflective 85markers were placed on the bilateral acromion processes of the scapula, the bilateral anterior 86 superior iliac spine (ASIS), and the bilateral second metatarsal head. The postures were 87 measured using a camera (EOS Kiss X3, canon, Japan) and two-dimensional motion analysis 88 89 software (Move-tr/2D, Library, Japan). The camera was positioned 10 meters from the 90 participants. A first photograph was taken in the bilateral-leg standing posture just after all markers were placed. If the line between two markers of the bilateral acromion processes of 9192the scapula and/or the line between two markers of the bilateral ASIS were oblique relative to the floor, the markers were placed correctly again. We started the measurement only after 93 ensuring these markers were placed almost horizontally to the floor. Once the participant was 94balanced in the one-leg stance posture, the camera shot continuously every 0.3 seconds for 9596 two seconds and the mean value of these angles over the two- second duration was calculated with the analysis software. As illustrated in Fig. 2, the pelvic tilt angle is formed by the line 97of the bilateral ASIS and the horizontal line. The trunk sway angle is formed by the line of 98 the bilateral acromion processes and the horizontal line. We assigned a positive value to the 99 100 pelvic elevation of the non-stance side, the trunk sway toward the stance side. The POF angle

is formed by the line of the bilateral ASIS and the line connecting the ASIS and the secondmetatarsal head on the test side.

103	Measurement of hip abductor muscle activity with electromyography (EMG)
104	The hip abductor muscle activity in each one-leg posture were measured quantitatively by a
105	surface EMG of the gluteus medius muscle. Surface electrodes were used in a bipolar
106	derivation in order to record the EMG from the gluteus medius muscle, after proper skin
107	preparation to reduce electrode input impedance to below $5k\Omega$. EMG data were sent to a
108	computer (Dimension 9150, DELL, DELL Japan) via an A/D converter (AD16-64(LPCI)LA,
109	Contec, Japan) at 1,000 Hz with 16-bit resolution. Subsequent analyses were performed using
110	BIMUTAS II software (Kissei Comtec Co. Ltd.). EMG data were 40-Hz high-pass filtered in
111	order to exclude electrocardiographic and movement artifacts, and then were full-wave
112	rectified and integrated for two seconds, which is the same time used to measure postures
113	with the camera. Hip abductor muscle activity was expressed as relative muscle activity of
114	the gluteus medius muscle; relative muscle activity was assessed by the relative ratio of the
115	activity on the EMG recording for two seconds during 100% maximal muscle force in
116	manual muscle testing.

117 Statistical analysis

118 Statistical analysis was performed using SPSS (PASW Statistics Base v19; SPSS Inc.,

 $\overline{7}$

119	Chicago, Illinois). A two-sided paired t-test was used to assess the differences in hip abductor
120	muscle activity and the pelvic tilt angle between the control posture and each of the four test
121	postures. Data were expressed as mean and standard deviation (SD). The level of significance
122	was set at $p < 0.05$. The study had ethical approval from XXXXX Hospital Ethical Review
123	Board. All subjects gave their consent to participate in this study.

125 **Results**

126Abductor muscle activity, the pelvic tilt angle, the trunk sway angle, and the POF angle on the stance side of each posture are shown in detail in Table 1 (for mild flexion) and Table 2 127(for severe flexion). For ease of understanding, the results of the abductor muscle activity and 128measurement of each posture are shown as a pattern diagram in Figure 3. The relationship 129between abductor muscle activity and the pelvic tilt angle is shown in Figures 4 and 5. In 130131summary, the results show that in relation to hip abductor muscle activity and pelvic tilt in the control posture and under conditions of minimal trunk sway, hip abductor muscle activity 132increased when the pelvis was elevated, and decreased when the pelvis was dropped 133compared with that in the control posture. However, with trunk sway toward the test side, hip 134abductor muscle activity decreased when the pelvis was elevated compared with that in the 135136control posture; with trunk sway toward the non-test side, the hip abductor muscle activity stayed approximately constant when the pelvis was dropped. The difference in hip flexion 137

138	angle did not have much influence on the relationship between abductor muscle activity and
139	the pelvic tilt angle. Pelvises tended to be more elevated in severe hip flection postures than
140	in mild hip flection postures.
141	
142	Discussion
143	The common causes of claudication resulting from diseases of the hip joint are hip pain, leg
144	length discrepancy, and weakness of the abductor muscle. Therefore, we think that
145	orthopaedic doctors should be able to diagnose the causes of claudication in patients in just
146	under a minute in the consultation room by performing the T-test, determining the presence
147	or absence of pain, and checking for leg length discrepancy on a plain X-ray. The T-test is the
148	simplest practical screening method for deciding whether or not weakness of the abductor
149	muscle is the cause of claudication.
150	The T-test was developed by Friedrich Trendelenburg in 1895, even before the widespread
151	use of radiography [1], and in the almost 120 years since then, it has become a standard
152	physical examination method for identifying weakness in the hip abductor muscles. However,
153	the details and evaluation method of the procedure have never been standardised.
154	A famous text described how to perform the classic T-test as follows: the foot on the non-test
155	side should be lifted by flexing the knee while keeping the thigh extended so that the psoas

156	muscle cannot elevate on that side [3]. Generally, a normal hip will be held stable; if the
157	pelvis drops on the non-stance side during the one-leg stance posture, the test result is
158	considered to be positive, indicating weakness of the hip on which the subject is standing.
159	Baker et al. performed the T-test in the classic way [4], but this procedure is very likely to
160	result in a pelvic drop on the non-test side, leading to false positive results. Because the psoas
161	muscle of the non-stance side and abductor muscle of the stance side seem to act in
162	coordination, it can be difficult even for normal people to elevate the pelvis on the non-stance
163	side without hip flexion of that side.
164	In 1985, Hardcastle et al [2] developed a detailed methodology for the T-test, which they
165	reported as the sT-test. In this method, the participant is instructed to elevate the pelvis as
166	high as possible on the non-test side, and if sufficient elevation can be maintained for 30
167	seconds, the test result is considered negative. Pai et al. [5] used the sT-test to conduct
168	evaluations after THR, and emphasised the significance of the method. The sT-test has also
169	been cited in many other papers [6-10], and it is currently recognised worldwide as a standard
170	method for the postoperative evaluation of the hip abduction function after THR. However,
171	the validity of the sT-test has not yet been verified in quantifiable terms.
172	The reliability of T-test and sT-test does not yet clear. Kendall et al. [11] used
173	ultrasonography, after causing a considerable decrease in hip abductor muscle strength by
174	administering a superior gluteal nerve block, to evaluate the validity of the sT-test. Their

175	results indicated that muscle weakness and pelvic drop were not correlated and they
176	concluded that the sT-test was not useful as a method for diagnosing a decrease in hip
177	abductor muscle strength. Other reports [12, 13] also have stated that the correlation between
178	abductor muscle weakness and pelvic tilt is weak. Therefore, the assessment of the results in
179	the sT-tests described in previous reports [5-10] might have depended more on the examiners'
180	preconceptions than on actual hip abductor muscle function.
181	In our daily medical practice, we also have often hesitated to make a definitive judgment as
182	to whether a particular test is positive or negative. We wanted to develop a T-test
183	methodology that would improve its accuracy in the diagnosis of hip abductor deficiency.
184	Therefore, we quantitatively analyzed the relationship between abductor muscle activity and
185	the pelvic tilt angle in the one-leg stance posture, using the results of that analysis to examine
186	the pitfalls of performing the Trendelenburg test, and to invent a better method, which we call
187	the mT-test.
188	Our measurement results indicate first, that a direct correlation between the pelvic drop (or
189	elevation) and the decrease (or the increase) of hip abductor muscle activity occurs only
190	when there is minimal trunk sway. Therefore, we specify that the mT-test should be
191	performed under the condition of minimal trunk sway.

192 Secondly, it can be stated that, in the control posture, a naturally, artless pelvic elevation

193 occurs while standing on a single leg, even if the patient is not conscious of it. Therefore, to

avoid false-negative results during the T-tests to detect pelvic drop due to abductor muscle
weakness, patients incapable of achieving a sufficient pelvic elevation will also need to be
included among positive cases, along with patients whose pelvis is noticeably lower than the
horizontal reference line. Similarly, Hardcastle et al [2] stated that they considered patients
with insufficient pelvic elevation as positive cases.

Finally, the pelvic drop is likely to occur even in the absence of abductor muscle weakness if 199200the hip abductor muscle is not being worked fully, as the pelvic drop occurs in healthy subjects when they relax their muscles. Therefore, to avoid false-negative results, a forced 201elevation of the pelvis needs to be performed during the T-test. We examined methods that 202203allow for performing that forced elevation of the pelvis. We noticed that the pelvic drop is accompanied by a lateral movement of the pelvis towards the test side (Figure 6) to maintain 204 balance on one leg. We considered that the lateral movements of the pelvis during testing can 205206be prevented through immobilization if the examiner places a hand on the outer side of the greater trochanter, thus forcing elevation of the pelvis. Furthermore, as noted previously, 207208natural elevation of the pelvis might more likely be achieved through severe flexion of the hip joint on the non-test side. 209

From these considerations, we determined that in performing the T-test we should 1) ask patients to minimize trunk sway, 2) ask them to flex hips severely on non-test side, and 3) make our judgment based on whether or not the patient can elevate the pelvis when forced to

213	do so, not just from the pelvic drop. Thus, we developed a modified Trendelenburg (mT)
214	test as follows (see Figure 7).
215	1. The participant is instructed to adopt a standing posture with feet close together, and the
216	examiner immobilises the participant by holding the hip outside the greater trochanter on the
217	test side. (This is designed to prevent the greater trochanter moving outside, but the
218	examiner must not try to push it inside.)
219	2. The participant is instructed to flex the hip on the non-test side and to lift that knee high,
220	while minimizing trunk sway. If the single-leg standing posture is impossible to maintain, the
221	test result is considered positive. (The participant will find it easier to understand an order
222	to "flex the hip and lift the knee high" than "to flex the hip severely.")
223	The biggest advantage of this method is that it is not necessary to base the diagnosis on a
224	slight pelvic tilt change, because the single-leg standing posture in itself becomes difficult
225	when a hip abductor muscle deficiency exists.
226	Limitation
227	Downing ND et al. [4] and Picado CH et al. [11] evaluated hip abductor function using the T-
228	test before and after THR and reported a significant decrease in T-test positive results.
229	However, it is easy to get false-positive T test readings from patients with significant hip
230	pain, since even a patient who has normal hip abductor power in a supine position cannot

231	nroduce hi	n abductor	nower in the	a one-lea	stance r	nocition u	uhen hin	nain is	cevere Th	ie ie
	produce in		power in the	one leg	Stance p		vnen mp	pann 15		115 15

- 232 <u>because when the patient produces hip abductor power while standing on one leg, the</u>
- 233 resultant force goes up to the hip joint [10], and hip pain becomes acute. Thus, T-test-
- 234 evaluations before and after THR may only indicate lessening of hip pain rather than an-
- 235 <u>improvement of the hip abduction muscle deficiency. We believe that the T-test, including the</u>
- 236 <u>mT-test, may be not useful at all for assessing hip abductor deficiency before THR and soon</u>
- 237 <u>after THR in patients with strong hip pain.</u>
- 238 This study is for young healthy males. The original subject of the mT test is patients of
- diseases of hip joint, for instance, osteoarthritis of the hip. However, we think that the
- relationship between the pelvic tilt and the abductor muscle strength is equivalent in these
- 241 patients and healthy individuals, unless the patients have a severe hip contracture. From now
- on, We would like to evaluate the clinical relevance of the new mT test in patients of diseases

of hip joint.

244

245 **Conclusions**

We quantitatively analyzed the relationship between abductor muscle activity and pelvic tilt angle in the Tredelenburg one-leg stance. The results of our analysis indicate that when we perform the T-test, we should 1) ask the patient to minimize trunk sway, and to flex the hip

249	and elevate the knee high on the non-stance side, and 2) evaluate an insufficient pelvic
250	elevation as well as a pelvic drop as positive. However, since the pelvic tilt is not often
251	immediately obvious, we devised a better method, the mT-test, which does not require an
252	assessment of pelvic tilt. In future research, we will perform the mT-test on patients with a
253	suspected hip abductor deficiency, and assess the usefulness of the modified test.
254	
255	Competing interests
256	The authors declare that they have no competing interests.
257	
258	Authors' contributions
259	XXXXX conceived and carried out the all experiments, performed the statistical analysis, and
260	drafted the manuscript. XXXXX and XXXXX contributed in developing the study design,
261	collecting patients' data. XXXXX, XXXXX and XXXXX conceived of the study, and
262	participated in its design and coordination and helped to draft the manuscript. All authors
263	read and approved the final manuscript.
264	

- 266 1. Trendelenburg F. The classic Trendelenburg's test: 1895 Friedrich Trendelenburg, 1844–
- 267 1924 (Reprinted 1966). Clin Orthop and Relat Res. 1998 Oct;355:3–7.
- 268 2. Hardcastle P, Nade S. The significance of the Trendelenburg test. J Bone Joint Surg. 1985
- 269 Nov;67(5):741–746.
- 270 3. Dietrich Tönnis. Congenital Dysplasia and Dislocation of the Hip in Children and Adults.
- 271 With Collaboration of Helmut Legal and Reinhard Graf Translated by Terry C. Telger:
- 272 Springer- Verlag Berlin Heidelberg 1984: 84-85.
- 4. Baker AS, Bitounis VC. Abductor function after total hip replacement. An
- electromyographic and clinical review. J Bone Joint Surg Br. 1989 Jan;71(1):47-50.
- 275 5. Pai VS. Significance of the Trendelenburg test in total hip arthroplasty. Influence of lateral
- approaches. J Arthroplasty. 1996 Feb;11(2):174-9.
- 6. Ramesh M, O'Byrne JM, McCarthy N, Jarvis A, Mahalingham K, Cashman WF. Damage
- to the superior gluteal nerve after the Hardinge approach to the hip. J Bone Joint Surg Br.
- 279 1996 Nov;78(6):903-6.
- 280 7. Downing ND, Clark DI, Hutchinson JW, Colclough K, Howard PW. Hip abductor strength
- 281 following total hip arthroplasty: a prospective comparison of the posterior and lateral
- approach in 100 patients. Acta Orthop Scand. 2001 Jun;72(3):215-20.

8. Asayama I, Chamnongkich S, Simpson KJ, Kinsey TL, Mahoney OM. Reconstructed hip
joint position and abductor muscle strength after total hip arthroplasty. J Arthroplasty. 2005
Jun;20(4):414-20.

286 9. Picado CH, Garcia FL, Marques W Jr. Damage to the superior gluteal nerve after direct

lateral approach to the hip. Clin Orthop Relat Res. 2007 Feb;455:209-11.

288 10. Kiyama T, Naito M, Shitama H, Maeyama A. Hip abductor strengths after total hip

arthroplasty via the lateral and posterolateral approaches. J Arthroplasty. 2010 Jan;25(1):76-

80.

291 11. Kendall KD, Patel C, Wiley JP, Pohl MB, Emery CA, Ferber R. Steps toward the

validation of the Trendelenburg test: the effect of experimentally reduced hip abductor

muscle function on frontal plane mechanics. Clin J Sport Med. 2013 Jan;23(1):45-51.

294 12. Kendall KD, Schmidt C, Ferber R. The relationship between hip-abductor strength and

the magnitude of pelvic drop in patients with low back pain. J Sport Rehabil. 2010

296 Nov;19(4):422-35.

- 297 13. Youdas JW, Madson TJ, Hollman JH. Usefulness of the Trendelenburg test for
- 298 identification of patients with hip joint osteoarthritis. Physiother Theory Pract. 2010

Apr;26(3):184-94.

302	Figure Legends
303	Figure 1: The ten one-leg stance postures
304	Figure 2: The measurement of the one-leg stance posture by trunk sway angle, pelvic tilt
305	angle, and pelvic-on-femur angle
306	Figure 3: Pattern diagram of the one-leg stance postures with the hip abductor muscle
307	activity of each posture
308	Figure 4: The relationship between pelvic tilt angle and hip abductor muscle activity with
309	mild flexion of the hip on the non-test side
310	Figure 5: The relationship between pelvic tilt angle and hip abductor muscle activity with
311	severe flexion of the hip on the non-test side
312	Figure 6: Pelvic outside movement accompanied by pelvic drop (a. Pattern diagram, b.
313	Radiograph)
314	Figure 7: The modified Trendelenburg test (mT-test) method
315	
316	Table 1: Measurement values of the one-leg stance postures and the hip abductor muscle
317	activity of each posture with mild flexion of the hip on the non-test side
	1

- **Table 2:** Measurement values of the one-leg stance postures and the hip abductor muscle
- activity of each posture with severe flexion of the hip on the non-test side

control

pelvic drop

trunk sway toward test side

trunk sway toward non-test side

pelvic

elevation

the mild flexion of the hip on non-test side

the severe flexion of the hip on non-test side

R-ASIS L-ASIS horizontal line

horizontal line

a. the trunk sway angle The trunk sway angle is formed by the line of the bilateral acromion processes and the horizontal line.

b. the pelvic tilt angle The pelvic tilt angle is formed by the line of the bilateral ASIS and the horizontal line.

c. the pelvic-on-femur angle The pelvic-on-femur angle is formed by the line of the bilateral ASIS and the line connecting the ASIS and the

second metatarsal head on the stance side.

R(L)-AP: right(left) acromion processes R(L)-ASIS: right(left) anterior superior iliac spine L-MH: left second metatarsal head

a. the comparison of the pelvic elevation posture with the severe flextion of the hip and the pelvic drop posture with the mild flextion of the hip

b. 33 year-old man. Radiographs of Bilateral leg stance posture with feet close together (b1), and one leg stance posture of the pelvic elavation (b2) and the pelvic drop (b3). He was instructed not to move a stance foot position.

: The greater trochanter moved outside 4.5cm in the pelvic drop posture, compared with the birateral leg stance posture and the pelvic elevation posture.

Solid lines show the lateral edge of the greater trochanter. The dashed lines connecting the bilateral femoral heads show pelvic tilt.

1. The participant is instructed to adopt a standing posture with feet close together, and the examiner immobilises the participant by holding the hip outside the greater trochanter on the test side.

2. The participant is instructed to flex the hip on the non-test side and to lift that knee high, while minimizing trunk sway. If the single-leg standing posture is impossible to maintain, the test result is considered positive.

Figure 7

 Table 1
 Measurement values of the one-leg stance postures and the hip abductor muscle activity of each posture with mild flexion of the hip on

 the non-test side

	1.	2.	3.	4.	5.	
posture	control	pelvic drop	pelvic elevation	trunk sway toward test side	trunk sway toward non-test side	
the trunk sway angle(°) instruction to participants	0.2±2.1 minimize the trunk sway	-2.1±5.3 minimize the trunk sway	2.6±5.7 minimize the trunk sway	24.2±7.3 lean the trunk toward the test side	-20.3±6.8 lean the trunk toward the non-test side	
the pelvic tilt angle(°) instruction to participants	1.9±2.6 none	-4.3±3.2 drop the pelvis on non-test side	10.2±4.7 elevate the pelvis on non-test side	5.6±4.3 none	-1.9±3.2 none	
the POF angle(°) instruction to participants	84.0±2.6 none	77.1±3.6 none	92.6±4.5 none	89.8±4.5 none	77.7±3.2 none	
Abductor muscle activity (%)	18.5±9.9	7.6±5.5	23.9±11.8	12.4±6.3	16.8±10.4	

 Table 2
 Measurement values of the one-leg stance postures and the hip abductor muscle activity of each posture with severe flexion of the hip

 on the non-test side

	1.	2.	3.	4.	5.
posture	control	pelvic drop	pelvic elevation	trunk sway toward	trunk sway toward
-		1 1		test side	non-test side
the trunk sway					
angle(°)	0.4 ± 2.5	-3.5 ± 4.1	1.1±4.3	24.4±7.1	-21.7±7.6
instruction to	minimize the trunk	minimize the trunk	minimize the trunk	lean the trunk toward	lean the trunk toward
participants	sway	sway	sway	the test side	the non-test side
the pelvic tilt angle(°)	6.8 ± 4.3	-3.0±3.0	14.3±6.0	12.1 ± 6.5	1.0 ± 4.0
Instruction to		drop the pelvis on elevate the pelvis on			N
participants	none	non-test side	non-test side	none	None
the POF angle (°)	$89.0{\pm}4.7$	78.1 ± 3.5	96.8 ± 6.1	96.8 ± 7.1	80.6 ± 4.4
instruction to					
participants	none	none	none	none	none
Abductor muscle	19.0+7.8	9 8+7 4	27 0+12 6	13 6+6 5	20.0+12.3
activity (%)	10.0-1.0	0.0-1.1	21.0-12.0	10.0-0.0	20.0-12.0