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Abstract 

N-myc downstream-regulated gene 2 (Ndrg2) is a differentiation- and stress-associated 

molecule predominantly expressed in astrocytes in the central nervous system. In this study, 

we examined the expression and the role of Ndrg2 after cortical stab injury. We observed that 

Ndrg2 expression was elevated in astrocytes surrounding the wounded area as early as day 1 

after injury in wild-type mice. Deletion of Ndrg2 resulted in lower induction of reactive 

astroglial and microglial markers in the injured cortex. Histological analysis showed reduced 

levels of hypertrophic changes in astrocytes, accumulation of microglia, and neuronal death in 

Ndrg2-/- mice after injury. Furthermore, activation of the IL-6/STAT3 pathway, including the 

expression of IL-6 family cytokines and phosphorylation of STAT3, was markedly reduced in 

Ndrg2-/- mice after injury. In a culture system, both of Il6 and Gfap were upregulated in 

wild-type astrocytes treated with forskolin. Deletion of Ndrg2 attenuated induction of these 

genes, but did not alter proliferation or migration of astrocytes. Adenovirus-mediated 

re-expression of Ndrg2 rescued the reduction of IL-6 expression after forskolin stimulation. 

These findings suggest that Ndrg2 plays a key role in reactive astrogliosis after cortical stab 

injury through a mechanism involving the positive regulation of IL-6/STAT3 signaling. 
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Introduction 

Astrocytes, which are the most abundant cells in the central nervous system (CNS), play 

pivotal roles not only in the nutritional support for neurons but also in the regulation of neural 

activity at the tripartite synapse by modulation of extracellular transmitters and at sites of 

neurovascular coupling by controlling microcirculation (Araque et al. 1999, Iadecola and 

Nedergaard 2007, Schummers et al. 2008). In addition to these homeostatic functions in 

physiological conditions, astrocytes play important roles in various neuropathological 

conditions, including acute brain insults, such as trauma and stroke, and chronic 

neurodegeneration. In these conditions, astrocytes undergo hypertrophy and upregulate 

intermediate filament proteins such as glial fibrillary acidic protein (GFAP) and vimentin, 

which are referred to as reactive astrogliosis or astroglial activation. In some cases, astrocytes 

undergo proliferation and form a tight barrier between the injury site and the healthy areas, 

termed a glial scar (Sofroniew 2009). Reactive astrogliosis has both detrimental and beneficial 

aspects. Astrocytes are known to release inflammatory mediators and participate in innate 

immune reactions, and the glial scar inhibits axonal regeneration after injury (Siliver and 

Miller 2004, Brambilla et al. 2005, Widestrand et al. 2007). However, recent studies using 

mice with experimentally ablated astroglial function have demonstrated that activated 

astrocytes exert neuroprotection through the prevention of spread of inflammatory cells and 

restoration of tissue damage (Sung et al. 2003, Okada et al. 2006, Huang et al. 2012). 

Therefore, it is critical to understand the molecular mechanism underlying reactive astrogliosis 

in order to appropriately regulate its level and timing. 

N-myc downstream-regulated gene 2 (Ndrg2) is one of the recently identified 

differentiation- and stress- associated genes, and a high level of Ndrg2 expression has been 

observed in the brain, heart, and muscle, and to a lesser extent in the liver and kidney (Qu et al. 

2002). Ndrg2 is a cytoplasmic protein that contains several phosphorylation sites (Murray et al. 
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2004). Its structure is similar to that of the members of the alpha-beta hydrolase family, but it 

lacks the enzymatic sequence (Hwang et al. 2011); therefore, its direct function and the target 

proteins are still unknown. An increasing number of studies have indicated a correlation 

between downregulation of Ndrg2 (Lusis et al. 2005, Jeschke et al. 2012) and increased levels 

of proliferation (Deng et al. 2003, Kim et al. 2009b) and/or invasion (Kim et al. 2009a) of 

cancer cells. Recently, analysis using Ndrg2 gain-of-function and loss-of-function mutant mice 

showed that Ndrg2 regulates the vertebral specification in the differentiating somite (Zhu et al. 

2012). In the CNS, Ndrg2 has been reported to be predominantly expressed in astrocytes 

(Nichols 2003, Okuda et al. 2008, Takeichi et al. 2011) and in dystrophic neurons in 

Alzheimer’s disease (AD) (Mitchelmore et al. 2004). Ndrg2 has also been reported to be 

upregulated by adrenal steroid hormones (Boulkroun et al. 2002, Nichols 2003) and also in a 

relatively early phase after experimental ischemia (Li et al. 2011), while being downregulated 

by antidepressant and electroconvulsive treatments (Takahashi et al. 2005a). In our previous 

study, we demonstrated that Ndrg2 has an inhibitory effect on the proliferation of astrocytes in 

a culture system and that it is highly expressed in astrocyte-like cells in the substantia nigra of 

Parkinson’s disease patients (Takeichi et al. 2011). These lines of evidence indicate that Ndrg2 

expression in astrocytes could be involved in the pathogenesis of neurological disorders. In the 

present study, we investigated the expression of Ndrg2 and the effects of its deletion on the 

processes of astroglial activation, inflammatory response, and neuronal death in a cortical stab 

injury model.  
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Materials and Methods 

Mice 

All animal experiments were approved by the Animal Care and Use Committee of 

Kanazawa University (AP-122395). Ndrg2-deficient mice were generated through a 

combination of homologous recombination and Cre-mediated recombination. The targeting 

vector, including two loxP sites flanking exons 3 and 4 of the mouse Ndrg2 locus and 

neomycin (Neo) cassette, was linearized and transfected into 129Sv/J embryonic stem cells by 

electroporation. Recombinant embryonic stem clones were selected with G418 antibiotic and 

identified by PCR analysis. Secondary confirmation was performed by Southern blotting 

analysis by using 2 types of [32P] labeled probes for the target region of genomic DNA after 

digestion with EcoT221 (5′ probe) or DraI (3′ probe). The expected sizes were 8.2 and 8.8 kb 

for the wild-type (WT) allele and 9.8 and 9.9 kb for the targeted allele. Two correctly targeted 

heterozygote embryonic stem cell clones were obtained and were microinjected into C57BL/6 

blastocysts. The resulting chimeras were mated to C57BL/6 mice (Sankyo Labo Service 

Corporation, Tokyo, Japan) to generate F1 heterozygous offspring. Germ line transmission of 

Ndrg2 mutant gene was achieved in one of those lines. Ndrg2neo/+ mice were crossed with 

CAG-Cre transgenic mice that express Cre recombinase under a CAG promoter to generate 

Ndrg2+/- mice. CAG-Cre mice were kindly provided by Dr. Miyazakai (Osaka university, 

Osaka, Japan) (Sasaki and Miyazaki 1997). Mice were backcrossed into the C57BL/6 

background for 8 generations. Genotyping was performed by PCR using tail genomic DNA. 

Primer sequences were listed in supplemental table 1. 

 

Cortical stab injury 

Adult male mice aged 3–4 months were used for all the experiments. Cortical stab injury 

was performed as described earlier (Auguste et al. 2007, Buffo et al. 2008, Robel et al. 2011a), 
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with slight modifications. Briefly, mice were anesthetized deeply with chloral hydrate at a dose 

of 400 mg/kg by intraperitoneal injection (Nacalai Tesque, Kyoto, Japan). A stab wound lesion 

was created with a scalpel blade by sagittal insertion through the skull to the right cerebral 

cortex at a depth of 1.0 mm, 1.7 mm lateral to the midline and 1.0–2.5 mm posterior to the 

bregma. The mice were sacrificed from 1 d to 7 d after the stab injury and subjected to the 

morphological and biochemical analyses described below. 

 

Histological and immunohistochemical analyses 

Brains were removed from the C57BL/6 mice after perfusion with 4% paraformaldehyde, 

and cortical sections (10-µm-thick sections) were cut on a cryostat. Sections were processed 

for Fluoro-Jade C staining (Millipore, Billerica, MA) or for immunostaining with antibodies 

against Ndrg2 (Santa Cruz Biotechnology, Dallas, TX), GFAP (Dako, Glostrup, Denmark; 

Sigma, St. Louis, MO), Iba1 (Wako, Osaka, Japan), NeuN (Millipore), nestin (Millipore), 

SRY-box containing gene 2 (Sox2) (Santa Cruz Biotechnology), single strand DNA (ssDNA) 

(Dako), and S100β (Sigma). Alexa488 (Invitrogen, Carlsbad, CA)- or Cy3-conjugated 

secondary antibody (Jackson ImmunoResearch Laboratories, West Grove, PA) were used for 

visualization of immunolabeling. Imaging was performed on a laser scanning confocal 

microscope (Eclipse TE2000U; Nikon, Tokyo, Japan) with the Nikon EZ-C1 software. The 

immunoreactivity of GFAP was quantified using Image J (version 1.42, Wayne Rasband, 

National Institutes of Health, Bethesda, Maryland, USA), and the number of Iba1-positive cells 

was counted in four 0.07-mm2 rectangles stepwise from the center of the stab wound to a 

distance of 0.4 mm. The number of Fluoro-Jade C- or ssDNA-positive cells, and the number of 

GFAP- and IL-6-double positive cells were counted in 0.27-mm2 rectangles at the center of the 

lesion.  
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Western blot and ELISA 

Samples from mouse brains, including the stab wound lesion or the corresponding region 

in the contralateral side, and from cultured astrocytes were solubilized in buffer containing 10 

mM Tris (pH 7.6), 1 mM EDTA, 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.2% sodium 

deoxycholate, 1 mM PMSF, 1 µg/mL aprotinin, 10 mM NaF, and 1 mM Na3VO4. Western blot 

was performed using antibodies against Ndrg2, GFAP, HO-1 (Abcam, Cambridge, UK), 

phospho-STAT3 (Tyr705) (Cell Signaling Technology, Danvers, MA), STAT3 (Cell 

Signaling Technology), and β-actin (Sigma). Sites of primary antibody binding were 

determined by using an ECL system (GE Healthcare, Pittsburgh, PA) with horseradish 

peroxidase (HRP)-conjugated secondary antibodies (Santa Cruz Biotechnology). The intensity 

of each band was quantified using Image J (version 1.42). The IL-6 levels in the brain samples 

and the culture media of astrocytes were measured using an ELISA kit (eBioscience, San 

Diego, CA) following the manufacturer’s instructions. 

 

Quantitative real-time RT-PCR 

Total RNA was extracted from cultured astrocytes and the contralateral or ipsilateral 

cortex after stab injury by using the RNeasy Lipid Tissue Mini Kit (Qiagen, Valencia, CA). 

cDNA was prepared using PrimeScript (Takara, Shiga, Japan) with 1 µg of total RNA. Each 

cDNA sample was amplified in a reaction mixture containing 1 unit of Taq DNA polymerase 

(Takara) and primers specific for Ndrg2. For quantitative analysis, cDNA was amplified with 

Thunderbird SYBR qPCR Mix (Toyobo, Osaka, Japan) by using primers specific for Gfap, 

Hmox1 (heme oxygenase 1), Serpina3n (serine peptidase inhibitor clade A member 3), Lcn2 

(lipocalin 2), Iba1, Cxcl1 (chemokine [C-X-C motif] ligand 1), Ccl2 (chemokine [C-C motif] 

ligand 2), Tnfa (tumor necrosis factor α), Lif (leukemia-inhibitory factor), Il6 (interleukin-6), 

Cntf (ciliary neurotrophic factor), Tgfb1  (transforming growth factor β), Edn1 (endothelin-1), 
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Ndrg2, Atf3 (activating transcription factor 3) and Ccnd1 (cyclin D1). The comparative Ct 

method was used for data analyses with MxPro 4.10 (Agilent Technologies, Santa Clara, CA). 

The expression levels for each gene were normalized to those of Gapdh 

(glyceraldehyde-3-phosphate dehydrogenase) or Actb (β-actin). Primer sequences were listed 

in supplemental table 1. 

 

Recombinant adenovirus 

Recombinant adenovirus AxCALNLZ2 Ndrg2 (AdV-Ndrg2) expressing FLAG 

(DYKDDDK)-tagged Ndrg2 under the control of Cre-recombinase was developed as 

described before (Takeichi et al. 2011), and adenovirus was amplified in HEK293 cells. Viral 

titers were determined by the tissue culture infectious dose method (TCID50) in HEK 293 cells. 

Viral stocks had titers of ~1 × 108 PFU/mL. Cre-recombinase–expressing adenovirus 

AxCANCre and the control virus AxCALNLZ2 LacZ (AdV-LacZ) were obtained from 

Takara. 

 

Cell culture 

Astrocytes were isolated from cerebral cortex of 1- to 3-d-old neonatal mice following a 

previously described method with minor modifications (Kuwabara et al. 1996). Briefly, 

cerebral hemispheres were harvested from neonatal mice, and the meninges were carefully 

removed. Brain tissue was then digested at 37ºC in HEPES-buffered saline (HBS) containing 

Dispase II (2 mg/mL). Cells were collected by centrifugation and resuspended in minimum 

essential medium (MEM) supplemented with 10% fetal bovine serum (FBS). After 10-d 

cultivation, microglial cells were removed by aspiration after shaking and the adherent cell 

population was collected and used for experiments. When the cultures achieved confluence, 

cells were incubated in serum-free medium overnight and then treated with several astroglial 
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activators such as forskolin (10 µM; Wako, Osaka, Japan), ATP (1 mM; Sigma), LPS (1 

µg/mL; Sigma), endothelin-1 (200 nM; Sigma), and TGFβ (25 ng/mL; Peprotech Inc. London, 

UK) in serum-free medium for indicated time. In some cases, cells were co-infected with 

Cre-expressing adenovirus and either Ndrg2-expressing adenovirus (AdV-Ndrg2) or a control 

adenovirus (AdV-LacZ), in which gene expression was controlled by the Cre-loxP system. 

Two days after adenovirus infection, the cells were incubated in the presence or absence of 10 

µM forskolin for 8 h in serum-free medium. Total RNA and culture media were subjected to 

quantitative real-time RT-PCR (qRT-PCR) and ELISA, respectively. 

 

3-(4, 5-Dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay 

Cell proliferation analysis was performed by the 3-(4, 

5-Dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay to assess the 

mitochondrial activity at every 24 h up to 5 d after plating. Astrocytes isolated from WT or 

Ndrg2-/- mice were incubated with 0.5 mg/mL MTT (Nacalai Tesque) for 1 h at 37ºC. After 

aspiration of the MTT solution, the formazan crystals were dissolved in dimethyl sulfoxide. 

The absorbance of the dissolved solution was measured at a wavelength of 590 nm.  

 

Scratch wound assay 

Confluent monolayers of astrocytes were wounded by scratching with a sterile plastic 10 

µL tip from left side to right side of the well (Robel et al. 2011a).  Culture medium were 

immediately changed to remove the cell debris. Images were taken 24 h and immediately after 

medium change with using light microscope. The wound area was measured using ImageJ 

software, as described above.   

 

Luciferase assay 
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Cultured astrocytes were co-transfected with cAMP-response element (CRE)- luciferase 

reporter plasmid (Stratagene) and control plasmid pRL-SV40 Renilla luciferase (Promega) 

using Lipofectamine 2000 (Invitrogen) as the transfection agent. Cells were incubated in 

serum-free medium overnight and then treated with forskolin at 10 µM for 6 h. The dual 

luciferase assay was performed according to the manufacturer’s protocol (Promega). For each 

samples, the firefly luciferase activity (CRE-Luc) was normalized by reference to renilla 

luciferase activity (pRL-SV40). 

 

Statistical analysis 

All the results have been expressed in terms of mean ± standard error of the mean 

(S.E.M.), and statistical significance was determined by two-tailed and unpaired Student’s 

t-tests or one-way analysis of variance (ANOVA) with the Bonferroni/Dunnett post-hoc test. 
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Results 

 

Elevated expression of Ndrg2 and GFAP in the injured cerebral cortex 

Consistent with our previous report (Takeichi et al. 2011), Ndrg2 was expressed 

selectively in astrocytes in the normal cerebral cortex (Supplemental Fig. 1A). To investigate 

the expression of Ndrg2 in the course of reactive astrogliosis, we used a mouse cortical stab 

injury model, which is a well-established model of acute brain injury (Auguste et al. 2007, 

Buffo et al. 2008, Robel et al. 2011a). Immunohistochemical analysis revealed that expression 

of GFAP, which is a marker of reactive astrocytes, began to elevate at day 1 after injury in fine 

processes of astrocytes and further increased at day 4 after injury in hypertrophic astrocytes 

around the lesion (Fig. 1A). It was rarely seen in the contralateral cortex with the exception in 

the surface of region. Western blot analysis revealed that expression of Ndrg2 protein was 

significantly higher in the ipsilateral side than that in the contralateral side, as early as day 1 

after injury, in which significant GFAP induction did not occur yet (Fig. 1B). 

Immunohistochemical analysis also indicated high levels of Ndrg2 expression in the ipsilateral 

side, compared with the contralateral side at day 1 after injury in the both GFAP-positive and 

GFAP-negative cells around the lesion (Fig. 1C and Supplemental Fig. 1B). At day 4, most of 

the Ndrg2-expressing cells were co-labeled with GFAP, but not with NeuN or Iba1, the latter 

two are neuronal and microglial cell markers, respectively (Fig. 1D). Some of the 

Ndrg2-expressing cells in the injured cortex were co-labeled with nestin (Fig. 1D), which is a 

marker for progenitor cells and also reported to be expressed in reactive astrocytes (Buffo et al. 

2008, Robel et al. 2011b, Shimada et al. 2012). These data indicate that expression of Ndrg2 is 

selectively observed in astrocytes, and its enhancement precedes that of GFAP after cotrical 

stab injury.  
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Generation of Ndrg2-deficient mice 

To investigate the role of Ndrg2 in vivo, we generated Ndrg2 knockout mouse using 

homologous recombination and the Cre/loxP system. As shown in Fig. 2A, Ndrg2 was targeted 

with loxP-flanking sequences containing exons 3 and 4 of Ndrg2. Successful targeting was 

confirmed by Southern blot analysis (Fig. 2B). Then, Ndrg2neo/+ mice were crossed with 

CAG-Cre transgenic mice to generate Ndrg2+/- mice. Ndrg2-/- mice grew normally and were 

fertile. Disruption of Ndrg2 was confirmed in several tissues such as the brain, liver and heart 

at both mRNA and protein levels by RT-PCR and western blot analysis, respectively (Fig. 2C 

and D).   

 

Impaired glial response in Ndrg2-deficient mice after stab injury 

To study the effect of Ndrg2 deletion after brain injury, WT and Ndrg2-/- mice received a 

cortical stab injury. In WT mice, the stab injury markedly increased the mRNA expression of 

the following genes, which started to increase at day 1 and peaked at day 4 after injury (Fig. 3A 

and supplemental Fig. 2A): reactive astroglial markers such as Gfap, Serpna3n, and Lcn2 

(Naudé et al. 2012, Zamanian et al. 2012); the microglial marker Iba1; the antioxidative gene 

Hmox1 known as HO-1 (Park et al. 2008, Hashida et al. 2012); and inflammatory mediators 

such as Cxcl1, Ccl2 and Tnfa. In Ndrg2-/- mice, the levels of mRNA expression of these genes 

were significantly lower than those of WT mice at day 1 and/or day 4 after stab injury (Fig. 3A). 

Consistent with these results, the levels of protein expression of GFAP, Iba1 and HO-1 were 

significantly lower in Ndrg2-/- mice at day 4 after stab injury (Fig. 3B and Supplemental Fig. 

2E). Similarly, immunohistochemical analysis showed that the intensity of the GFAP signal 

was significantly lower in Ndrg2-/- mice than in WT mice in all the regions within 400 µm from 

the injury site (Fig. 3C). In contrast, the number of Iba1-positive microglia was significantly 

lower in Ndrg2-/- mice in the regions closer to the injury site (Fig. 3C). Taken together with the 
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fact that Ndrg2 is expressed in astrocytes, reduced levels of microglial accumulation in 

Ndrg2-/- mice after stab injury may be a secondary effect of impaired astroglial activation.  

 

Impaired IL-6/STAT3 signaling in Ndrg2-deficient mice 

To investigate whether impaired astroglial activation in Ndrg2-/-mice occurs at early 

periods after stab injury, the expression of several astroglial activators such as IL-6 family 

cytokines, including Il6, Lif and Cntf, and other soluble factors such as Tgfβ and Edn1 were 

analyzed by qRT-PCR. Cortical stab injury strongly induced Il6 and Lif at day 1 and Cntf at day 

4 after stab injury in WT mice, but the induction was significantly reduced in Ndrg2-/- mice 

(Fig. 4A). In our model, Tgfb1 or Edn1 was not significantly induced in both genotypes 

(Supplemental Fig. 2B). Consistent with these results, immunohistochemical analysis revealed 

that IL-6-positive astrocytes were observed more often in the lesion site of WT mice than 

Ndrg2-/- mice at day 1 after injury (Fig. 4B). Additionally, there was a tendency for decrease in 

the level of IL-6 protein, which was examined by ELISA; the level was lower in Ndrg2-/- mice 

than in WT mice after stab injury (Supplemental Fig. 2D; 37.4 pg/mL in the ipsilateral side and 

16.8 pg/mL in the contralateral side in WT mice, and 24.4 pg/mL in the ipsilateral side and 17.1 

pg/mL in the contralateral side in Ndrg2-/- mice). Next, the status of IL-6 signaling was studied. 

The binding of IL-6 family cytokines to their receptors triggers the activation of STAT3, which 

has been reported to play a critical role in astrogliosis (Okada et al. 2006, Hermann et al. 2008). 

Cortical stab injury induced phosphorylation of STAT3 at tyrosine 705 in WT mice to a level 

significantly higher than that in Ndrg2-/- mice (Fig. 4C).  

 

Attenuated response in Ndrg2-deficient astrocytes after forskolin stimulation 

To examine whether the impaired glial response in Ndrg2-/- mice was the effect of Ndrg2 

deficiency in astrocytes, we employed primary astroglial cultures derived from WT and 
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Ndrg2-/- mice. In cultured astrocytes, there was no difference in proliferation and migration 

between both genotypes determined by MTT reduction assay and scratch wound assay, 

respectively (Fig. 5A and B). In the latter assay in WT astrocytes, there was no significant 

difference in the expression of Ndrg2, Il6 or Gfap (Supplemental Fig. 3A and B). Next, 

astrocytes were stimulated by the several reagents known to induce astroglial activation in 

vitro and/or in vivo (Gadea et al. 2008, Sofroniew 2009, Schachtrup et al. 2010). Western blot 

analysis revealed that the expression of Ndrg2 was enhanced most by forskolin treatment 

among the reagents tested (Fig. 5C, D and E). Consistent with the results in vivo, the level of 

induction of Il6 and Gfap was significantly lower in Ndrg2-/- astrocytes 8 h and 24 h after 

forskolin treatment, respectively, although the CRE reporter activity was somehow increased 

at 6 h (Fig. 5F, G and H). To investigate whether downregulation of IL-6 expression was 

caused by the deletion of Ndrg2, re-expression of Ndrg2 in Ndrg2-/- astrocytes was carried out 

by the infection of Ndrg2-expressing adenovirus. The expression levels of Ndrg2 were 

determined by qRT-PCR and western blot (Fig. 5I and J). The reduced level of IL-6 expression 

in Ndrg2-/- astrocytes was completely restored by adenovirus-mediated Ndrg2 expression at 

both mRNA and protein levels (Fig. 5K and L), while the restoration in Gfap expression was 

milder (Supplemental Fig. 3C). These results suggest that the Ndrg2 positively regulates IL-6 

expression in astrocytes. 

 

Attenuated neuronal death in Ndrg2-/- mice after cortical stab injury 

To evaluate the neuronal damage in Ndrg2-/- mice after stab injury, histological and 

immunohistochemical analyses were performed at day 4 after lesion. Both Fluoro-Jade C 

staining and ssDNA immunostaining, which detect apoptotic cells and degenerating neurons, 

respectively, revealed that Ndrg2-/- mice exhibited significantly less damage in the wounded 

area than WT mice (Fig. 6A). Most of the cells positive for ssDNA in their nuclei were also 
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positive for Fluoro-Jade C in both genotypes (WT: 97.5%, Ndrg2-/- mice: 97.8%). Consistent 

with this finding, qRT-PCR revealed that the induction level of Atf3, which is known to 

increase in response to neuronal injury (van der Weerd et al. 2010, Zhang et al. 2011), was 

significantly reduced in Ndrg2-/- mice (Fig. 6B). These results indicated that Ndrg2 deletion 

leads to reduction of neuronal death after cortical stab injury.  
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Discussion 

In this study, we demonstrated that Ndrg2 plays an important role in the positive 

regulation of early reactive astrogliosis, at least in part, through the activation of IL-6/STAT3 

signaling after cortical stab injury. Additionally, the deletion of Ndrg2 resulted in the 

attenuated recruitment of microglia to the lesion site and prevented neuronal death. To our 

knowledge, this is the first report clarifying the role of Ndrg2 in pathological conditions in vivo 

by using Ndrg2-deficient mice.  

Reactive astrogliosis is not an all-or-none response but is a graded spectrum of molecular 

changes associated with cellular hypertrophy, proliferation, and glial scar formation 

(Sofroniew and Vinters 2010). It is accompanied by the up-regulation of intermediate filament 

proteins including GFAP. Important finding in this study is that Ndrg2 is an early 

injury-responsive gene in astrocytes. Upregulation of Ndrg2 was observed at day 1 after injury, 

in which that of GFAP was partially obserbed by immunohistochemical analysis (Fig. 1A, B, C 

and Fig. 3B). Furthermore, we demonstrated that the induction of reactive astroglial markers, 

such as GFAP, Serpina3n, and Lcn2 (Fig. 3A and B), and cellular hypertrophy (Fig. 3C) were 

significantly lower in Ndrg2-/- mice than in WT mice after cortical stab injury. These 

observations are consistent with our previous report describing the role of Ndrg2 in the 

morphological changes in cultured astrocytes (Takeichi et al. 2011). In contrast, the effect of 

Ndrg2 on cell proliferation during astrogliosis was not clear in this study. Previous studies 

from our and other groups demonstrated the inhibitory role of Ndrg2 on cell proliferation in 

different tumor cells and in astrocytes (Deng et al. 2003, Kim et al. 2009, Takeichi et al. 2011). 

There may be a couple of explanations for this discrepancy. One is the functional redundancy 

of Ndrg2 in the astroglial proliferation. In most of the previous reports, Ndrg2 was transiently 

silenced at mRNA level (Foletta et al. 2009) or inactivated at the protein level by 

overexpressing mutant proteins (Kim et al. 2009), while Ndrg2 was genetically deleted from 
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the developmental/embryonic stages in this study. This may cause altered gene expression by 

complementary mechanisms. Another explanation is that the cortical stab injury used in this 

study was relatively mild and may not cause high levels of astroglial proliferation. In this 

regard, the induction of Ccnd1, a gene that encodes CyclinD1, a marker of cell cycle 

progression in G1/S phase, was very mild (less than 2-fold increase in both genotypes) after 

stab injury (Supplemental Fig. 2C).  

Among the triggering signals for astrogliosis that were investigated in this study, IL-6 was 

the most active molecule after stab injury. Activation of IL-6/STAT3 signaling in the injured 

CNS has been reported to induce strong astrogliosis. Loss of STAT3 or suppressor of cytokine 

signaling 3 (SOCS3), a negative feedback molecule of STAT3, in mice under the control of 

GFAP or the nestin promoter has been reported to reduce or enhance reactive astrogliosis, 

respectively, in a spinal cord injury model (Okada et al. 2006, Hermann et al. 2008). In this 

study,  the effect of Ndrg2 deletion on IL-6 expression was observed to a larger extent in mouse 

brains (Fig. 4A) than in cultured astrocytes (Fig. 5G), suggesting that Ndrg2 may promote IL-6 

expression through both a cell-autonomous mechanism in astrocytes and a non-cell 

autonomous mechanism through other type of cells including microglia. Consistent with this, 

not only reactive astrogliosis but also microglial accumulation was impaired in Ndrg2-/- mice 

after stab injury (Fig. 3A and C), as previously reported in Il6-/- mice after cortical freeze injury 

(Penkowa et al. 2000). Ndrg2 may contribute to a positive feedback loop for IL-6 signaling, 

which is referred to as IL-6 amplifier activation (Murakami and Hirano 2012).  

 Although Il6-/-, GFAP-Stat3-/-, Nestin-Stat3-/- and Ndrg2-/- mice demonstrated similar 

phenotypes in reactive astrogliosis, they demonstrated different phenotypes in neurons. 

Neuronal damage was exaggerated in the first 3 types of mice (Penkowa et al. 2000, Okada et 

al. 2006, Herrmann et al. 2008), while it was attenuated in Ndrg2-/- mice (Fig. 6). This 

discrepancy could be attributed to the difference of the severity of the insult or to the 
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inflammatory response in each pathological model. In this regard, it is noteworthy that the 

expression level of chemokines and activation of microglia were reduced in Ndrg2-/- mice. 

Furthermore, induction of Lcn2 (lipocalin-2), a chemokine inducer released from reactive 

astrocytes and promotes neuronal death (Bi et al. 2013), was reduced after stab injury in 

Ndrg2-/- mice (Fig. 3A). Although it is still controversial whether astrogliosis is beneficial or 

detrimental, Ndrg2-/- mice will be a useful tool for studying the effect of glial activation on the 

neuronal survival/activity in different disease models. 

It has been reported that Ndrg2 is upregulated by adrenal steroid hormones (Nichols 

2003), which occurs through the glucocorticoid receptor but not through the glucocorticoid 

response element half-site (GRE1/2) (Takahashi et al. 2005b). In the current cortical stab 

injury model, Ndrg2 might be upregulated through the stress-associated steroid hormones or 

some stress-associated signals, including protein kinase A, as described in cultured astrocytes 

in this study (Fig. 5C and D). Further studies are required for clarifying the molecular 

mechanism underlying the regulation of Ndrg2 expression.  

In conclusion, the current study demonstrated that Ndrg2 is an injury-responsive gene that 

is involved in the early phase of astroglial activation and that it positively regulates reactive 

astrogliosis and the subsequent inflammatory response, at least in part, through the activation 

of IL-6/STAT3 signaling. Thus, Ndrg2 could be a new therapeutic target in various 

neurological conditions related to astroglial activation and inflammation. 
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Figure legends 

 

Figure 1. Increased Ndrg2 expression in astrocytes after cortical stab injury. 

(A) GFAP immunostaining was performed using brain sections obtained at day 1 and day 4 

after cortical stab injury. The ipsilateral (ipsi) and the contralateral (contra) areas are presented. 

Dotted lines indicate the stab wounds. Enlarged picture indicates a single GFAP-positive 

astrocyte. Scale bars = 100 µm. (B) Ndrg2 and GFAP protein expression from day 1 to day 7 

after cortical stab injury. Protein extracts from the lesion site (ipsi: ipsilateral) and control side 

(c: contralateral) were subjected to western blot analysis. Quantified data are presented in the 

right graph. Data are shown as mean ± SEM (n = 3–5). *P < 0.05, **P < 0.01 versus the 

contralateral cortex. (C) Ndrg2 (red) and GFAP (green) immunostaining was performed using 

brain sections obtained at day 1 after injury. The ipsilateral and the contralateral areas are 

presented. High magnification of framed area is shown in the enlarged picture. Dotted lines 

indicate the stab wounds. Scale bars = 50 µm. (D) Immunostaining for Ndrg2 (red) and 

cellular markers (green)  including GFAP, Iba1, NeuN and nestin, was performed using brain 

sections obtained at day 4 after injury. Scale bars = 50 µm. 

 

Figure 2. Targeted disruption of Ndrg2. 

(A) Schematic representation of the WT Ndrg2 locus, targeting vector, targeted allele, and 

deleted allele. The targeting vector replaces the coding region of exons 3 and 4 with 

loxP-flanked exons 3 and 4. Neomycin-resistance cassette was removed in the CRE-deleted 

allele. (B) Southern blot-based analysis of genomic DNA isolated from the WT ES cells (+/+) 

and the Ndrg2-targeted ES cells (+/neo). Targeted allele was confirmed by 2 different probes 

that recognize the 5′ site and 3′ site of fragments digested with EcoT221 and DraI, respectively. 
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(C) PCR analysis and (D) western blot analysis showing deletion of Ndrg2 in the brain, liver, 

and heart from mice homozygous for the Ndrg2-deleted allele. 

 

Figure 3. Glial response after cortical stab injury in Ndrg2-deficient mice  

(A) Temporal gene expression profile for gliosis markers and chemokines after stab injury. 

Total RNA prepared from the ipsilateral (ipsi) and contralateral (c) cortices of WT mice and 

Ndrg2-/- mice from day 1 to day 7 after injury were subjected to quantitative RT-PCR using 

primers specific for Gfap, Hmox1, Serpina3n, Lcn2, Iba1, and Ccl2. Data are shown as mean ± 

SEM (n = 3–4). *P < 0.05, **P < 0.01 versus each contralateral cortex. #P < 0.05, ##P < 0.01 

versus indicated conditions. (B) Protein expression of GFAP and HO-1 from day 1 to day 7 

after cortical stab injury. Protein extracts from the ipsilateral (ipsi) and contralateral (c) cortices 

of WT mice and Ndrg2-/- mice were used for western blot analysis. Quantified data are 

presented in the right graphs. Data are shown as mean ± SEM (n = 3–5). #P < 0.05 versus 

indicated conditions. (C) Brain sections were prepared from WT mice and Ndrg2-/- mice at day 

4 after cortical stab injury and subjected to immunostaining for GFAP (red) and Iba1 (green). 

Lower panels represent high magnification of the white box in the upper panels. Enlarged 

picture in lower panels indicates a representative single GFAP-positive astrocyte. Dotted lines 

indicate the stab wound. Scale bars = 200 µm (upper panel), 50 µm (lower panel). Quantified 

intensity of GFAP immunostaining and cell numbers of Iba1-positive cells are presented in the 

right graphs. Data are shown as mean ± SEM (n = 6). #P < 0.05, ##P < 0.01 versus indicated 

conditions.  

 

Figure 4. IL-6/STAT3 signaling in Ndrg2-deficient mice.  

(A) Temporal gene expression profile for astroglial activators after stab injury. Total RNA was 

extracted from ipsilateral and contralateral cortices from day 1 to day 7 after injury and 
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subjected to qRT-PCR using primers specific for Il6, Lif, and Cntf. Data are shown as mean ± 

SEM (n = 3-4). *P < 0.05 versus indicated conditions. (B) Brain sections were prepared at day 

1 after stab injury and subjected to immunostaining for GFAP (green) and IL-6 (red). GFAP 

and IL-6 double-positive cells in the white box are enlarged in the lower panels. Scale bars = 

20 µm (upper panel), 10 µm (lower panel). Quantified data are presented in the right graph. 

Data are shown as mean ± SEM (n = 5). *P < 0.05 versus WT mice. (C) Phosphorylation of 

STAT3 at day 1 after stab injury. Protein extracts from the ipsilateral (ipsi) and contralateral (c) 

cortices of WT and Ndrg2-/- mice were subjected to western blot analysis with the indicated 

antibodies. Quantified data are presented in the right graph. Data are shown as mean ± SEM (n 

= 5) **P < 0.01 versus WT mice.  

 

Figure 5. Response of Ndrg2-deficient astrocytes in vitro.  

(A) Cell proliferation of WT or Ndrg2-/- astrocytes was analyzed by the MTT reduction assay at 

every 24 h up to day 5. Data are shown as mean ± SEM (n = 4). (B) The scratch wound assay 

was performed to evaluate cell migration by using cultured astrocytes isolated from WT or 

Ndrg2-/- mice. The quantification of cell migration was done by the measurement of coverage 

of the wound area at 24 h after scratching. Data are shown as mean ± SEM (n = 3). (C-E) 

Protein expression of Ndrg2 and GFAP in cultured astrocytes. Cells were stimulated with the 

indicated reagents for 48 h, and protein extracts were subjected to western blot analysis (C). 

The protein expression levels of Ndrg2 (D) and GFAP (E) under forskolin treatment were 

quantified. Data are shown as mean ± SEM (n = 4). *P < 0.05 versus control. Fsk: Forskolin, 

LPS: Lipopolysaccharide, ET1: Endothelin-1, TGFβ: Transforming growth factor-β. (F-H) 

Cultured astrocytes isolated from WT or Ndrg2-/- mice were stimulated by 10 µM forskolin. 

CRE reporter activity was determined by dual luciferase assay in astrocytes isolated from WT 

or Ndrg2-/- mice after the cultivation for 6 h in the presence or absence of 10 µM forskolin (F). 

28 

 



 
 

Gene expression levels were determined after 10 µM forskolin treatment for Il6 (G) at 8 h and 

Gfap (H) at 24 h by qRT-PCR. **P < 0.05 versus astrocytes without forskolin treatment. ##P < 

0.01 versus indicated conditions. (I–L) Astrocytes isolated from WT or Ndrg2-/- mice were 

infected with the Ndrg2 adenovirus or LacZ adenovirus and cultured for 8 h in the presence or 

absence of 10 µM forskolin.  Ndrg2 expression in Ndrg2-/- astrocytes was determined after 

adenovirus infection by qRT-PCR (I) and western blot (J). Il6 expression in the cells and IL-6 

secretion levels in cultured media were determined by qRT-PCR (K) and ELISA (L), 

respectively. Data are shown as mean ± SEM (n = 5–8). The values of IL-6 mRNA and protein 

in WT astrocytes stimulated with forskolin after infection of LacZ adenovirus were designated 

as hundred. #P < 0.05, ##P < 0.01 versus indicated conditions.  

 

Figure 6. Attenuated neuronal damage in Ndrg2-deficient mice after cortical stab injury. 

(A) Brain sections prepared from WT and Ndrg2-/- mice at day 4 after cortical stab injury were 

subjected to staining with FluoroJade C (green) or immunostaining with the anti-ssDNA 

antibody (red). Scale bars = 50 µm. Quantified data are presented in the right graphs. Data are 

shown as mean ± SEM (n = 5). *P < 0.05 versus WT mice. (B) Temporal gene expression 

profile for neuronal injury marker. The total RNA extracted from the ipsilateral and 

contralateral cortices of WT and Ndrg2-/- mice at day 1 to day 7 after injury was subjected to 

qRT-PCR with primers specific for Atf3. Data are shown as mean ± SEM (n = 3–4). *P < 0.05 

versus indicated conditions. 
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