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Abstract 

 

We investigated artifacts due to late-arriving contrast medium (CM) during C-arm 

cone-beam computed tomography. We scanned a phantom filled with water or with 100, 

50, or 5% v/v concentrations of CM and then virtually produced CM-delayed projection 

data by partially replacing the projection images. Artifacts as a function of concentration, 

percentage of filling time, and size and position of the filling area were assessed. In 

addition, we used an automatic power injector with different injection delays to inject 

CM during the scans. A decrease in filling times caused by a lag in CM arrival during 

the scan resulted in a decrease in pixel values, distortion of the filling area, and 

appearance of streak artifacts. Even a delay of approximately 20% in CM arrival in the 

total scan time resulted in obvious distortion of the filling area. The distortion and streak 

artifacts tended to worsen at higher CM concentrations. Use of a minimum CM 

concentration based on the purpose of the examination and constant filling at the target 

region are effective for avoiding these artifacts. 
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1 Introduction 

 

C-arm cone-beam computed tomography (CBCT) is a technique that reconstructs a 

three-dimensional (3D) image from a rotational scan by using the C-arm system [1]. 

This technique is useful for 3D image analysis in the diagnosis of aneurysm and vessel 

stenosis [2,3], in addition to evaluation by use of CT-like images of the perfusion area 

[4,5]. 

 C-arm CBCT with a flat panel detector has higher spatial resolution, but has a number 

of disadvantages, such as lower dose efficiency, a smaller field of view, and lower 

temporal resolution, in comparison with the standard multi-slice CT. This type of 

system acquires all of the data in one scan over a period of a few seconds [6]. Therefore, 

there is a high probability that negative effects will occur in the scan volume with 

temporal changes in the patient during the scan. Inadequate breath holding or movement 

of body parts and of internal organs leads to motion artifacts due to inconsistent 

projection data [7]. 

 Conventional digital subtraction angiography provides significant diagnostic value for 

the hemodynamic evaluation of the patient. C-arm CBCT allows 3D diagnosis, but is 

limited in static images. A dynamic change in a contrast medium (CM) can cause 
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inconsistent projection data in C-arm CBCT scans that use CM. Therefore, the target 

region needs to be filled uniformly by CM during the scan for accurate evaluation of the 

vessel form and the perfusion area. However, the arrival time of the injected CM is 

considered to differ depending on the injection protocol, the distance from the injection 

catheter, and the form of tissue [8]. Thus, the target region can potentially receive 

insufficient filling because of late arrival of CM. 

We used a phantom to investigate the influence of insufficient filling during C-arm 

CBCT scans on image quality, which, to our knowledge, has not been reported on 

previously. We hypothesized that the results could be useful for determining the cause 

of artifacts observed incidentally in clinical examinations and for designing injection 

protocols. 

 

2 Materials and methods 

 

In this study, we used two methods to acquire images of CM arriving late during C-arm 

CBCT scans. The first method involved a simulation in which we scanned a phantom 

filled with different concentrations of CM and with water and then replaced the 

projection images partially between the different projection series. The second method 
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involved using an automatic power injector for injection of CM during scans. 

 

2.1 Simulation method involving replacement of the projection images 

 

In this method, we simulated CM filled into a vessel by replacing the projection images. 

This procedure allows elimination of experimental error and flexible construction of the 

intended projection data. All C-arm CBCT scans were performed on a C-arm 

angiography system (Artis zee ceiling-mounted system; Siemens AG, Forchheim, 

Germany) with a CsI amorphous silicon detector which has a pixel pitch of 154 µm. 

Projection images were acquired at a constant detector entrance dose (0.36 µGy/view) 

by automatic exposure control with use of the following parameters: tube voltage, 90 

kVp; scan time, 8 s; total number of projection images, 396; projection image matrix, 

616 × 480; angular scan range, 200°; fan angle, 18°; cone angle, 14°. We used 

iopamidol (Oypalomin 300; Fuji Pharma, Tokyo, Japan) as the target that simulated the 

vessel or the perfusion stain. A water- or CM-filled acrylic cylinder (internal diameter, 7 

mm; external diameter, 9 mm) was inserted into the center hole of a 200-mm-diameter 

polyurethane cylindrical phantom (MHT type; Kyoto kagaku, Kyoto, Japan) that 

contained 13-mm-diameter holes at the center and at two peripheral points. This 
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phantom was fixed at the bed with vinyl tape and was located at the rotation center (Fig. 

1a). Water or 100, 50, or 5% v/v concentration of CM in the phantom was scanned. 

These concentrations were selected based on previous studies demonstrating vessel [2], 

liver [4,5], and carotid artery with a stent [9]. In addition, we used an extension tube 

(internal diameter, 1.7 mm; Create Medic, Yokohama, Japan) with 100% v/v 

concentration of CM or water as the object for investigating artifacts generated as a 

function of target size. The positioning and scan conditions for this extension tube were 

the same as described above. We also investigated the positional dependence of the 

artifacts. The 7-mm-diameter 100% v/v CM- or water-filled phantom was located -80 

mm along z-direction of the central hole (foot side) or the center of the top hole (top 

side) of the polyurethane cylindrical phantom, and scanned, respectively (Fig. 1b). 

 The acquired projection images were written to Digital Versatile Disc as Digital 

Imaging and Communications in Medicine files and imported to a personal computer. 

We used a binary editor (Stirling; available at 

http://www.vector.co.jp/soft/win95/util/se079072.html) to replace partially the front side 

of the projection series at each CM concentration with that of the projection series with 

water (Fig. 2). The projection series that contained 95, 90, 80, 70, 60, 50, 40, 30, 20, or 

10% CM-filled projection images in the latter part of the projection series were 
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constructed by use of this process (Fig. 3). We define the percentage of CM-filled 

projection as follows, 

.100
imagesprojectionofnumbertotal

CMcontainingimagesprojectionofnumbertheprojectionfilled-CMofPercentage ×=

(1) 

Then, we imported the edited projection series to a postprocessing workstation (X 

Workplace; Siemens AG). The projection images imported to the workstation were 

confirmed to include the correct number of images and the required image quality. We 

used the following parameters to perform Feldkamp-type reconstructions [10]: slice 

matrix, 512 × 512; kernel type, “HU”; and image impression, “normal”; we then used a 

1024 × 1024 matrix (0.26 mm/pixel) to reconstruct the 5-mm-thick axial images. The 

kernel type “HU” was designed to reconstruct the images proportional to X-ray 

absorption, and it had high density resolution. Therefore, we used this kernel for 

quantitative image evaluation. In the reconstruction process, the projection data were 

corrected by restoring of the linear relationship between the projection value and the 

X-ray path length through an assumed water-equivalent object in order to avoid beam 

hardening artifacts [11]. 

 

2.2 Injection study 
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The C-arm CBCT scan parameters were the same as those described in the previous 

section. Undiluted CM and water were placed in a dual-head power injector (Press 

DUO; Nemoto Kyorindo, Tokyo, Japan) and connected to a dual injection tube (Create 

Medic, Yokohama, Japan). The downstream side of the dual injection tube was 

connected to the extension tube (internal diameter, 1.7 mm) mentioned in the previous 

section, and this tube was passed through the central hole of the polyurethane 

cylindrical phantom. The tube was filled with CM until it reached the junction of the 

dual injection tube, and was filled with water until it reached the tube end. 

 The injection rate was 2 ml/s in all protocols, and only CM was injected. The injection 

protocols were as follows: the injection was started 4 s before the scan start (scan delay, 

4 s), and the injection was started 0, 2, or 4 s after the scan start (injection delay, 0, 2, or 

4 s). The experiment was repeated 3 times. 

 

2.3 Image analysis 

 

ImageJ software (available at http://rsb.info.nih.gov/ij/) was used for image analysis. 

 The average pixel value of a circular region of interest (ROI) of 4-mm diameter 
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centered in the CM area was measured in three consecutive slices for assessment of the 

lowering of pixel values due to insufficient CM filling. A circular ROI of 1-mm 

diameter was used for the extension tube. 

 For evaluating the distortion of the CM area, we created binary images with 

Image–Adjust–Threshold command as the threshold of the half value of the mean pixel 

value in the CM area and then used the Analyze–Analyze Particles command to 

determine the long and short axes of the CM area. Finally, we calculated the average 

long/short axis ratio in three consecutive slices. 

 The root mean square error (RMSE) between the axial image of perfect filling and that 

of insufficient filling was calculated by use of imageJ plug-in “SNR” (available 

from http://bigwww.epfl.ch/sage/soft/snr/) for evaluation of the differences of the 

artifacts. The RMSE is defined as follows, 

( ) ( )[ ] 2
1

0

1

0
,,1 yxtyxr

nn
RMSE

yx nn

yx
−⋅= ∑∑

−−

  ,(2) 

where ( )yxr ,  is the reference image (perfect filling), ( )yxt ,  is the test image 

(insufficient filling), and n  is the matrix size. 

 We also evaluated the intensity profiles of the CM area for assessment of the cupping 

effect [12]. 
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3 Results 

 

3.1 Simulation method involving replacement of the projection images 

 

Figure 4 shows the reconstruction of axial images of the undiluted 100% v/v 

concentration of CM. The percentages indicated in Fig. 4 represent the percentages of 

CM-filled projections. The “100%” value indicates that the projection images were not 

replaced. The image of 95% of the CM-filled projection shows no visible change in the 

CM area, but shows a slight streak artifact in the horizontal direction. The 90% image 

shows a streak artifact and a change in the circular shape of the CM area. The direction 

of the streak artifact changed clockwise, and the shape of the CM area changed 

elliptically with decreasing percentage of the CM-filled projection (in other words, with 

increased delay in CM arrival). In the axial images of the 1.7-mm-diameter CM-filled 

phantom, the dark and bright areas with streak artifacts were narrower than those in the 

7-mm-diameter CM-filled phantom. The reconstructed axial images of 100, 50, and 5% 

v/v concentrations of CM at 50% of the CM-filled projection are shown in Fig. 4c. 

Strong streak artifacts that had large changes in the pixel values were observed at higher 

CM concentrations. 
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The average pixel values of the CM area decreased monotonically at each CM 

concentration (Fig. 5). The long/short axis ratios of the CM area for 100, 50, and 5% v/v 

concentrations are shown in Fig. 6. 

The long/short axis ratio of the 7-mm-diameter phantom increased with decreasing 

percentage of the CM-filled projection and decreased after peaking at 40% for any CM 

concentration. The long/short axis ratio tended to be higher at higher CM concentrations 

at <60% of the CM-filled projection. In the long/short axis ratio of the 1.7-mm-diameter 

phantom, the distortion tendencies were approximately similar, except for the 

amplitude. 

 RMSEs of the axial images for 100, 50, and 5% v/v concentrations are shown in Fig. 7. 

The RMSE increased with decreasing percentage of the CM-filled projection, and was 

higher at higher concentrations of CM. The increasing rate of the RMSE of the 

1.7-mm-diameter phantom was very much slower than that of the 7-mm-diameter 

phantom. 

The intensity profiles of the CM area in Fig. 4a,c are shown in Fig. 8. The lower 

portion of the profiles was observed, and this portion became lower with decreasing 

percentages of the CM-filled projection. The higher concentration of CM also decreased 

the pixel value in the central portion of the CM. 
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Figure 9 shows the pixel values, RMSE, and the long/short axis ratios in comparison 

with different positions of the CM-filled phantom. Slight differences of the pixel values 

were observed at a lower percentage of the CM-filled projection. The RMSE of the foot 

side was slightly higher than that of the center at a lower percentage of the CM-filled 

projection, and the RMSE of the top side was lower than that of the center at <70% of 

the CM-filled projection. There was no significant difference in the long/short axis 

ratios. 

 

3.2 Injection study 

 

The axial images scanned in each scan delay and injection delay time are shown in Fig. 

10. The axial images at a scan delay of 4 s had no visible artifacts and had a circular CM 

area because of CM arrival before the scan start (Fig. 10a). The axial images for cases in 

which the CM arrived after the scan start (injection delay, 0, 2, or 4 s) had streak 

artifacts, with an elliptical CM area (Fig. 10b–d). The direction of the streak artifacts 

was changed, and the CM area was distorted strongly with increasing delay in CM 

arrival, as was the case in the simulation method. The average pixel values of the CM 

area were 7034 ± 38 (mean ± SD), 5827 ± 55, 3936 ± 29, and 1849 ± 47 in the order of 
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earliest to latest arrival time. The long/short axis ratios were 1.09 ± 0.08, 1.31 ± 0.06, 

2.07 ± 0.07, and 2.69 ± 0.05.  

 

4 Discussion 

 

Our study showed that streak artifacts and distortion of the CM area were observed in 

the images when the CM concentration during the C-arm CBCT scan was changed 

rapidly. These artifacts were considered to be caused by inconsistent projection 

associated with dynamically changing CM. 

 The direction of the streak artifacts changed depending on the arrival time of the CM, 

and the streak artifact was stronger at higher CM concentrations. Such strong artifacts 

could lead to difficulties in assessment of the target vessel and perfusion area. Distortion 

of the CM area could also prevent accurate diagnosis. This distortion increased with 

increasing inconsistency of projection. Furthermore, the relative distortion was larger at 

smaller target sizes; therefore, the measurement error would be large at targets, such as 

small vessels with insufficient CM-filling data. 

 The variation in the RMSE which represents the total amount of artifacts increases 

depending on the higher concentration of CM and filling insufficiency (Fig. 7). In 

13 



addition, the lower portion of the intensity profiles represents the cupping effect based 

on beam hardening, and this cupping effect is also worse, depending on the same 

factors. 

The C-arm CBCT technique requires high-contrast images of undiluted CM for 

evaluation of a vessel [2], but evaluation of the perfusion area requires images of diluted 

CM [4,5]. If insufficient filling occurs during the scan, high CM concentrations not only 

cause beam-hardening artifacts [13], but also have a high probability of generating 

strong streak artifacts and distortion, as described above. Therefore, it is desirable to use 

diluted CM except in cases in which especially high contrast is needed. In general, 

although the target area is unlikely to show insufficient filling during scanning at the 

time the CM reaches the target area, the area distal from the target tends to be filled 

insufficiently because the CM arrives later there than at the target area. However, 

artifacts in the distal area would not be likely to be observed because the dilution effect 

is higher distally than proximally. 

 As Fig. 9 a shows, the pixel value at the center is lower than that of the periphery; this 

would be due to an increasing out-of-plane scatter contribution [14]. The RMSE of the 

top side decreased because the area affected by streak artifacts is limited by the position 

of the CM in the phantom. 
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The phantom we used in this study was uniform in composition; however, an object in 

clinical case is uniformity and not a circular shape. Therefore, in clinical examinations, 

the inconsistency of the projection data could be higher due to the variation of the 

transmission through the object. Moreover, as distinct from this study, there is a 

probability of the existence of a number of CM areas in and out of the field of view in a 

clinical object. In such cases, the influence of beam hardening and scatter is higher. As a 

result, the variation of pixel values, the cupping effect, and streak artifacts could be 

high. 

 Acquired images showed the decreasing pixel value and distortion in the CM area in 

the injection study as well as in the simulation. However, the streak artifacts were less 

visible in the injection study than with the simulation method, which might be caused 

by the discontinuities resulting from changes in the CM with the simulation method. 

Therefore, the streak artifacts could depend on the change in the CM concentration per 

time. The percentages of the CM-filled projections were 83, 62, and 32% for injection 

delays of 0, 2, and 4 s, respectively; these percentages were determined by analysis of 

the projection images in the injection study. The directions of the streak artifacts in 

these axial images in the injection study (Fig. 10b-d) were almost the same as those in 

the 80, 60, and 30% projections (Fig. 4b), used in the simulation method. The 
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tendencies toward decreasing pixel values and increasing distortion were also the same 

as those observed with the simulation method (Fig. 11), which validated the simulation 

method. Moreover, although we did not demonstrate washout by blood flow after 

stopping the injection in this experiment, injection of a small amount of CM in short 

times in a clinical examination could cause a similar artifact because of inconsistent 

projection in the later part of the scan. 

Even if the CM arrives before the scan start, an intricately shaped object such as a 

cerebral aneurysm has the probability of insufficient filling. There was a report that an 

initial bolus with a two-phase injection technique improved the filling of a cerebral 

aneurysm model, in comparison with the continuous-flow technique [15]. A saline flush 

generally improves the late of time-intensity profile. Therefore, various injection 

techniques, including a variable injection rate, should be considered for uniform filling 

of the target in a clinical case. 

Figures 4 and 10b show approximately 20% delay in CM arrival relative to the total 

scan time, which resulted in obvious distortion of the filling area. To avoid such artifacts, 

injection protocols should specify that most of the CM has arrived at the target region at 

the start of scanning. On the other hand, the frequency of contrast-induced acute kidney 

injury has been shown to be associated with an increasing CM volume [16]; therefore, 
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the CM volume should be minimized as much as possible. Optimal dilution of CM 

based on the purpose of the examination [9,17] should reduce CM volumes and avoid 

these artifacts. 

 

5 Conclusion 

 

Our study indicated that insufficient CM filling during C-arm CBCT scans causes 

decreased pixel values and increased distortion of the CM area, in addition to streak 

artifacts. Use of a minimum CM concentration based on the purpose of the examination 

and constant filling of the CM at the target region are important for avoiding these 

artifacts. 
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Figure captions 

 

Fig. 1 

(a) Schematic of the polyurethane cylindrical phantom positioned at the rotation center 
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of the C-arm CBCT system. Arrow indicates C-arm 200° rotational scans. (b) 

Cross-sectional view of the polyurethane cylindrical phantom (upper) and the 

7-mm-diameter and the 1.7-mm-diameter CM- or water-filled phantom (lower). The 

7-mm-diameter 100% v/v CM- or water-filled phantom was located as shown in this 

illustration. 

 

Fig. 2 

Outline drawing representing the scheme for replacing the projection images between 

the projection series of the CM- and the water-filled phantom.  

 

Fig. 3 

Example showing the constitution of the created projection series. The ordinate 

represents the CM concentration, and the abscissa represents the percentage of 

projection. 

 

Fig. 4 

Reconstructed axial images of 100, 95, 90, 80, 70, 60, 50, 40, 30, 20, and 10% of 

projections of the undiluted 100% v/v concentration of CM in (a) the 7-mm-diameter 
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phantom and (b) the 1.7-mm-diameter phantom. (c) Reconstructed axial images of 100, 

50, and 5% v/v concentrations of CM in the 50% of CM-filled projection. 

 

Fig. 5 

Variation in the pixel values of the CM-filling area as a function of the percentage of the 

CM-filled projection for 100, 50, and 5% v/v concentrations of CM. 

 

Fig. 6 

The long/short axis ratio of the CM area as a function of the percentage of the CM-filled 

projection for 100, 50, and 5% v/v concentrations of CM in the 7-mm-diameter 

phantom, and for 100% v/v concentration in the 1.7-mm-diameter phantom. 

 

Fig. 7  

RMSE of the axial images as a function of the percentage of the CM-filled projection 

for 100, 50, and 5% v/v concentrations of CM in the 7-mm-diameter phantom, and for 

100% v/v concentration in the 1.7-mm-diameter phantom. 

 

Fig. 8 
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(a) Intensity profiles of the CM area of 100% v/v concentration of CM for 100, 70, 50, 

and 20% of CM-filled projection. (b) The intensity profiles of 50% of CM-filled 

projection for 100, 50, and 5% v/v concentrations of CM. The intensities were 

normalized by each peak intensity. 

 

Fig. 9 

(a) The pixel values, (b) RMSE, and (c) long/short axis ratio as a function of the 

percentage of the CM-filled projection in comparison with different positions of the 

CM-filled phantom. 

 

Fig. 10 

Axial images acquired in the injection study at a (a) scan delay of 4 s and injection 

delays of (b) 0 s, (c) 2 s, and (d) 4 s. 

 

Fig. 11 

The long/short axis ratio of the CM area in the extension tube compared between the 

simulation method and the injection study. 
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