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Abstract

The covalently closed circular DNA (cccDNA) of the hepatitis B virus (HBV) plays an essential role in chronic hepatitis. The
cellular repair system is proposed to convert cytoplasmic nucleocapsid (NC) DNA (partially double-stranded DNA) into
cccDNA in the nucleus. Recently, antiviral cytidine deaminases, AID/APOBEC proteins, were shown to generate uracil
residues in the NC-DNA through deamination, resulting in cytidine-to-uracil (C-to-U) hypermutation of the viral genome. We
investigated whether uracil residues in hepadnavirus DNA were excised by uracil-DNA glycosylase (UNG), a host factor for
base excision repair (BER). When UNG activity was inhibited by the expression of the UNG inhibitory protein (UGI),
hypermutation of NC-DNA induced by either APOBEC3G or interferon treatment was enhanced in a human hepatocyte cell
line. To assess the effect of UNG on the cccDNA viral intermediate, we used the duck HBV (DHBV) replication model.
Sequence analyses of DHBV DNAs showed that cccDNA accumulated G-to-A or C-to-T mutations in APOBEC3G-expressing
cells, and this was extensively enhanced by UNG inhibition. The cccDNA hypermutation generated many premature stop
codons in the P gene. UNG inhibition also enhanced the APOBEC3G-mediated suppression of viral replication, including
reduction of NC-DNA, pre-C mRNA, and secreted viral particle-associated DNA in prolonged culture. Enhancement of
APOBEC3G-mediated suppression by UNG inhibition was not observed when the catalytic site of APOBEC3G was mutated.
Transfection experiments of recloned cccDNAs revealed that the combination of UNG inhibition and APOBEC3G expression
reduced the replication ability of cccDNA. Taken together, these data indicate that UNG excises uracil residues from the viral
genome during or after cccDNA formation in the nucleus and imply that BER pathway activities decrease the antiviral effect
of APOBEC3-mediated hypermutation.
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Introduction

The hepatitis B virus (HBV) is one of the major causative factors

of liver cirrhosis and hepatocellular carcinoma. Chronic inflam-

mation due to persistent HBV infection plays a major causative

role in these severe liver diseases. However, it is still unknown how

HBV establishes persistent infection and how this infection results

in these diseases [1,2]. The HBV genome in virions forms a

relaxed circular DNA (rcDNA) that is converted into covalently

closed circular DNA (cccDNA) in the nuclei of infected

hepatocytes. The cccDNA transcribes all viral RNAs including

pregenomic (pg) RNA as a replicative RNA intermediate. In the

cytoplasm, pgRNA, viral core, and polymerase proteins are

assembled into the nucleocapsid (NC), after which the pgRNA is

converted into an rcDNA by viral polymerase activity. The mature

NCs are transferred to either the endoplasmic reticulum to be

secreted after combining with envelope proteins or the nucleus to

form cccDNA again for the next replication cycle. Although the

host repair system is thought to play a major role in conversion of

rcDNA into cccDNA, the molecules responsible for the conversion

have not been determined experimentally [3,4,5].

cccDNA plays a key role in the persistence of viral infection

because it is maintained as a stable episome in the nucleus.

Moreover, cccDNA is not targeted by anti-HBV drugs and thus

enables the re-establishment of viral replication after cessation

of antiviral therapy [4,6,7]. Despite the importance of cccDNA

in HBV chronic infection, host factors that control cccDNA are

poorly understood in the absence of an efficient experimental

system that can produce HBV cccDNA at a level sufficient for

analysis. In view of the limitation of HBV in vitro systems, the

duck HBV (DHBV) model has been commonly used to study

HBV infection [8]. DHBV is an avian counterpart of HBV,

sharing fundamental features including genomic organization,

replication processes, and biological characteristics [9]. Impor-

tantly, DHBV produces cccDNA more efficiently than HBV

[10].

Previously, we isolated a B-cell-specific gene, activation-

induced cytidine deaminase (AID), which is essential for class-

switch recombination and somatic hypermutation of immuno-

globulin genes [11,12]. AID belongs to the APOBEC (apolipo-

protein B mRNA editing catalytic polypeptide) family of proteins.

In humans, this family comprises at least 11 members, including
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AID and APOBECs 1, 2, 3A, 3B, 3C, 3DE, 3F, 3G, 3H, and 4.

These AID/APOBEC proteins have enzyme activity that can

deaminate a cytidine base in DNA and/or RNA and thereby

generate a uridine base. APOBEC3G (A3G) restricts replication

of retroviruses, including human immunodeficiency virus type 1

(HIV-1), and retrotransposable elements [13,14,15]. A3G has

been shown to also restrict other viruses such as HBV

[16,17,18,19,20,21,22,23,24], but the exact mechanism of

restriction of HBV replication remains unresolved. Earlier studies

suggested that accumulation of extensive G-to-A (in an opposite

strand of C-to-U) hypermutation in retroviral DNA might initiate

the deamination-mediated restriction pathway of A3G [25,26].

However, such hypermutation may not account for rapid

reduction of HBV NC-DNA by A3G overexpression because

only a limited fraction of NC-DNA accumulates these extensive

mutations [16,19,27,28]. Another proposed mechanism is that

A3G is encapsidated within NC with pgRNA and interferes in the

process of minus-stranded DNA synthesis, such that a catalyti-

cally inactive mutant of A3G has been shown to still inhibit viral

replication [19,21]. Deaminase-independent restriction by A3G

has also been demonstrated for HIV-1 [14,15].

Human uracil DNA glycosylase (UNG) is a base excision repair

(BER) enzyme that removes uracil residues from DNA following

dUTP misincorporations or cytosine deaminations [29]. UNG is

also essential for class-switch recombination and somatic

hypermutation. In UNG deficiency (human and mouse), class-

switch recombination is markedly reduced because uracil bases

generated by AID do not produce DNA strand breaks in the

absence of UNG. However, UNG-deficient mice and patients

accumulate more frequent C-to-T and G-to-A somatic hypermu-

tations because uracil bases generated by AID remain as thymine

residues in UNG-deficient condition [29,30]. The UNG gene

encodes 2 alternative splicing isoforms with unique N-terminal

amino acid sequences, mitochondrial type UNG1 and nuclear

type UNG2. Early HIV-1 studies showed that UNG2 is

encapsidated into the virion through physical association with

the Vpr protein and reduces the mutation rate of viral DNA

[31,32]. However, the contribution of UNG activity to APO-

BEC3 (A3)-mediated HIV-1 restriction is controversial. Yang et

al. proposed that uracil residues generated by A3G might be

eliminated by UNG associated with Vpr and that subsequent

DNA cleavage of abasic sites by apurinic/apyrimidinic endonu-

clease-1 (APE-1) might occur [33]. Meanwhile, other groups

reported that A3G-mediated HIV-1 restriction occurs even in the

absence of UNG [34,35,36]. Importantly, HBV does not harbor

the Vpr counterpart, and UNG encapsidation in HBV particles

has not been reported. Unlike HIV-1, HBV forms episomal

cccDNA, which is a potential target for nuclear UNG activity;

however, whether APOBECs can hypermutate the cccDNA and

whether UNG has any role in cccDNA maintenance has not been

investigated.

In the present study, we investigated the possible role of UNG in

A3G-mediated antiviral activities on HBV and DHBV. When

UNG activity was inhibited by expression of the UNG inhibitory

protein (UGI), hypermutation of HBV and DHBV NC-DNA was

enhanced in A3G-expressing hepatocytes. We found that more

than half of DHBV cccDNA clones accumulated extensive

hypermutation by A3G overexpression and UNG inhibition.

Moreover, we demonstrated that the cccDNA isolated from cells

expressing both A3G and UGI showed decrease in replication

activity. These experimental observations indicate that UNG

efficiently repairs dysfunctional C-to-U mutations induced by A3G

in cccDNA.

Results

UNG inhibition enhanced A3G-induced hypermutation of
HBV NC-associated DNA

To investigate the potential role of UNG in HBV hypermuta-

tion, the UNG activity of the human hepatocyte cell line HepG2

was suppressed with UGI, which is an irreversible inhibitor that

forms an exceptionally stable complex with the UNG protein

[37]. We generated the HepG2 cell line that stably expressed

the UGI–estrogen receptor (ER) protein by retrovirus-mediated

gene transduction following drug selection. We had previously

demonstrated that the addition of an ER ligand, 4-hydro-

xytamoxifen (OHT), to the culture medium activated the

enzymatic activity of the fusion partner [38,39]. Accordingly,

we reasoned that expression of the UGI–ER fusion protein

could be applied to control UNG activity in HBV-replicating

cells. The UNG assay revealed that OHT stimulation of the

UGI–ER protein resulted in very limited UNG activity,

amounting to 7% of the activity in the parental HepG2 cells,

whereas 97% of activity remained in unstimulated (EtOH) cells

(Figure 1A). Using this cell line, we estimated the effects of UNG

inhibition on A3G-induced hypermutation of HBV NC-DNA.

An HBV replicon plasmid, pHBV1.5 [40,41], was cotransfected

with the FLAG-tagged A3G expression plasmid [or green

fluorescent protein (GFP) as a negative control] into the UGI–

ER HepG2 cells. Three days after transfection, the cells were

harvested and cytoplasmic NCs were purified. The NC-DNA

was analyzed by differential DNA denaturation polymerase

chain reaction (3D-PCR) on a region of the X gene [28]. The

3D-PCR technique is a highly sensitive assay for detecting AT-

rich DNA. It was applied to reveal the presence of hypermuta-

tion in NC-DNA. Consistent with reports from other groups

[18,19,23,24,28,42,43], A3G expression induced HBV hyper-

mutation, represented as a lower denaturation temperature

band (83.9uC) than negative controls in 3D-PCR (Figure 1B).

OHT addition enhanced the hypermutation in the A3G-

expressing cells because the band was detected at the lowest

Author Summary

Human cytidine deaminases, AID/APOBECs, are restriction
factors against various types of viruses. These proteins
have the ability to introduce a cytidine-to-uridine (C-to-U)
hypermutation in the viral DNAs of the hepadnaviruses
hepatitis B virus (HBV) and duck HBV (DHBV) models. It is
well known that uracil residues in human genomic DNA
are removed by uracil-DNA glycosylase (UNG), resulting in
the creation of abasic sites that are repaired by down-
stream repair factors. However, the consequence of uracil
removal from the viral genomic DNA remains controver-
sial, given that it may be possible for abasic sites to trigger
DNA degradation with strand breakage. We investigated
the role of UNG in viral hypermutation and hepadnaviruses
replication using in vitro cell culture systems. We found
that UNG inhibition enhanced APOBEC3G-induced hyper-
mutation of hepadnaviral DNAs, especially DHBV cccDNA,
a template used for viral replication in the nucleus. We
measured the replication ability of purified cccDNA and
found that recloned cccDNA from cells expressed by both
APOBEC3G and UNG inhibitor protein replicated less
efficiently due to higher hypermutation rates. These results
suggest that hepadnaviruses usurp the repair system of
host cells to compete with AID/APOBEC mutators.

UNG Counteracts Extensive Hypermutation of cccDNA
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melting temperature (83.0uC). OHT addition did not influence

A3G transgene expression in these cells (Figure 1C). The 83.9uC
PCR products shown in Figure 1B were cloned and sequenced.

As predicted by the 3D-PCR assay, the cloned PCR fragments

accumulated extensive G-to-A mutations (Figure 1D).

We also suppressed UNG activity using a short-interfering RNA

(siRNA) approach to avoid any artifacts due to the UGI–ER

inducible activation system. We used 293T cells for the siRNA

experiment because of better transfection efficiency of the siRNA

than that afforded by HepG2 cells. For viral replication in human

embryonic kidney 293T cells, another replicon plasmid pPB that

expresses HBV pgRNA by the CMV promoter was used [44,45].

The UNG assay revealed that both UNG-specific siRNAs reduced

UNG activity in 293T cells, although at low suppression efficiency

(a maximum of 47% of the control; Figure S1A). Nonetheless, 3D-

PCR showed amplification at a slightly lower denaturation

temperature, indicating the presence of hypermutated HBV

DNA from the UNG-specific siRNA-treated cells (Figure S1B).

These data indicate that inhibition of UNG activity increases

A3G-induced hypermutation of HBV NC-DNA.

UNG inhibition enhanced endogenous deaminase-
induced hypermutation of HBV NC-associated DNA

Next, we investigated whether the enhancement of hypermuta-

tion by UNG inhibition was reproduced by endogenous AID/

APOBEC3 proteins. We generated a stable HepG2 cell line that

constitutively supports both HBV replication and UGI–ER

expression in order to establish a transfection-free system (see

Materials & Methods for details). Inhibition of UNG activity by

OHT addition in this cell line was confirmed by the UNG assay

(Figure 2A). IFNc was used to stimulate the cells to induce

endogenous APOBEC deaminases, and changes in deaminase

gene expression levels were measured by quantitative reverse

transcription-PCR (qRT-PCR). Consistent with that in previous

studies [20,46,47], A3G was the major responder to IFNc
stimulation among AID/APOBEC3s (A3s) in this cell line

(Figure 2B). The hypermutation load on NC-DNA in IFNc-

stimulated UGI–ER HepG2 was analyzed by 3D-PCR. Our

analyses revealed that UNG inhibition enhanced IFNc-induced

NC-DNA hypermutation (Figure 2C). To evaluate the contribu-

tions of endogenous APOBEC3G, we used A3G-specific siRNAs.

Figure 1. UNG inhibition enhances A3G-induced hypermutation of HBV NC-associated DNA. (A) Uracil excision activity was measured
using an UNG assay with a synthetic single-stranded DNA containing a dU. UGI–ER-expressing HepG2 and parental cells were treated with either
1 mM OHT or the same amount of solvent (ethanol, EtOH) for 48 h, and UNG activity was measured. Asterisk (*), abasic site. The percent density of
signals for the 15-mer is indicated. Signal density of the OHT-treated HepG2 cells was defined as 100%. (B) The HBV replicon plasmid (pHBV1.5) and
FLAG-A3G or FLAG-GFP expression vectors were used to transfect the UGI–ER HepG2 cells. Twenty-four hours after transfection, 1 mM OHT (or EtOH)
was added to activate the UGI–ER protein. After further 48-h incubation, the cells were harvested and the HBV NC-DNA was purified. HBV DNAs from
each transfectant were amplified by 3D-PCR with denaturation temperature gradient of 94–83uC. (C) Expression of exogenous A3G and GFP proteins
in the conditions of (B) was determined by Western blotting with anti-FLAG antibody. Expression of GAPDH is also shown to demonstrate equivalent
protein loading. (D) Alignment of hypermutated HBV sequences. PCR fragments from the 83.9uC denaturation temperature reaction in (B) were
excised from agarose gel and cloned into T vectors, and then 4 randomly selected clones from each sample were sequenced. The sequence (GenBank
accession number: X02763) from the pHBV1.5 is shown on the top as a reference. Dots in the alignment represent identity to the reference sequence.
doi:10.1371/journal.ppat.1003361.g001

UNG Counteracts Extensive Hypermutation of cccDNA
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The efficiency of siRNA knockdown was determined by qRT-

PCR (Figure S1C). As shown in Figure 2D, the knockdown of

A3G expression counteracted the induction of hypermutation by

IFNc, suggesting that A3G is responsible for HBV hypermutation

induced by IFNc stimulation. The 87.2uC PCR products shown in

Figure 1D were cloned and sequenced, and confirmed the

hypermutation (Figure S1D). These data suggest that UNG

counteracts the deamination of HBV NC-DNA triggered by

endogenous A3s.

Most HBV NC-associated DNAs were not affected by UNG
inhibition

To determine the overall hypermutation frequency of HBV

DNA, we sequenced the NC-DNA from the A3G-transfected

UGI–ER HepG2. PCR fragments of the X gene partial sequence

(94uC for denaturation) of NC-DNA were cloned in a T vector.

Fifty clones of each sample were randomly selected for DNA

sequencing. Figure 3A shows the mutations found in the

sequenced clones. Consistent with 3D-PCR results, the total G-

to-A mutation frequency was enhanced by UNG inhibition in

A3G transfectants (indicated as ‘‘A3G, OHT’’ in Figure 3).

However, 39 of the 50 sequenced clones were free from

hypermutation in both UNG-inhibited and uninhibited cells

(Figure 3B). Previous studies [16,19,27,28] also reported few

clones harboring A3G-induced mutations in NC-DNA.

Since UNG inhibition enhanced hypermutation, we next

investigated whether UNG inhibition affects another antiviral

activity of A3G, the suppression of NC-DNA production.

Cytoplasmic HBV NC-DNA was quantified by native agarose

gel electrophoresis (NAGE) followed by Southern blotting. NAGE

specifically separates intact NC particles, and after the NC

particles are transferred to a nylon filter, the DNA content in the

NC fraction is measured by hybridization analysis with the HBV

DNA probe [21,22,48]. As shown in Figure 4A, Southern blotting

after NAGE revealed that A3G reduced the NC-DNA content, a

result consistent with previous reports [16,17,18,19,20,21,

22,23,24]. We found that the signal intensity of NC-DNA band

from A3G-UGI cotransfectants were slightly higher than that from

A3G transfectants in HepG2 cells. However, A3G-mediated

reduction was not disturbed by UNG inhibition in Huh7 cells.

Quantitative PCR (qPCR) analyses of the NC-DNA revealed no

appreciable difference between the presence and absence of UGI

in HepG2 cells (Figure 4B). We concluded that UNG did not affect

A3G-mediated reduction of NC-DNA, although enhanced

hypermutation was observed in the same experimental culture

conditions for 3 days.

Figure 2. UNG inhibition enhances the endogenous deaminase-induced hypermutation of HBV NC-associated DNA. (A) Uracil excision
activity in a HepG2 double-stable transfectant of UGI–ER (or Mock–ER) and HBV was assessed as in Figure 1A (left panel). Expression of UGI–ER and
mock–ER proteins was confirmed by Western blotting with anti-ER antibody (right panel, indicated by arrowheads). (B) Quantification of the
expression of AID/APOBECs on interferon stimulation. HepG2 cells were stimulated with 1000 U/mL IFNc for 24 or 48 h. qRT-PCR was performed to
determine the expression level for each deaminase. Under these conditions, AID (AICDA) and A3A expression were not detected (n.d.). Expression at
0 h was defined as a 1-fold change. (C) 3D-PCR analysis of the stable double transfectants of UGI–ER and HBV used in (A). The cells were treated with
1000 U/mL IFNc and 1 mM OHT as indicated. After the 48-h incubation, the cells were harvested and the HBV NC-DNA was analyzed. (D) 3D-PCR
analysis of the IFNc-stimulated and A3G knockdown cells. The A3G-specific (or control) siRNAs and pPB were used to transfect HepG2 cells, and at
16 h after transfection, the cells were treated with 1000 U/mL IFNc. After further 48-h incubation, the HBV NC-DNA was purified and analyzed. PCR
fragments (87.2uC) indicated by an arrow were sequenced and the results were shown in Figure S1D.
doi:10.1371/journal.ppat.1003361.g002

UNG Counteracts Extensive Hypermutation of cccDNA
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To observe possible encapsidation of the UNG protein in the

HBV NCs, we evaluated the physical association between NC and

UNG by immunoprecipitation (IP). Nuclear type of UNG (UNG2)

was overexpressed together with the HBV plasmid pPB and

FLAG-A3G expression vector in 293T cells. The cytoplasmic

fraction containing NCs was used for IP with anti-core (HBc)

antibody and Western blotting. As shown in Figure S2A,

endogenous mitochondrial UNG (UNG1) was clearly detected in

input from the cytoplasmic fractions. Leaked UNG2 from the

nucleus was also detected in the input. As reported previously [18],

the A3G protein was immunoprecipitated with anti-HBc antibody.

However, the signals for UNG2 and GFP disappeared after IP,

suggesting that the A3G protein but not the UNG protein is

encapsidated into NC. Faint signals for UNG1 were still observed

in all lanes of the IP samples at equal signal strength, suggesting

nonspecific capture of the UNG1 protein on the protein G

sepharose beads. We also investigated the subcellular localization

of the UNG2 protein in human hepatocytes. GFP-fused UNG2

localized in the nucleus even in HBV-replicating HepG2 cells

(Figure S2B). Taken together, these findings did not reveal

evidence for the NC-associated UNG protein, although the NC

UNG protein level below detection sensitivity may be sufficient to

change the NC-DNA hypermutation frequency.

DHBV cccDNA was extensively hypermutated by A3G
and repaired via the UNG-mediated BER pathway

We next investigated whether the nuclear viral intermediate,

cccDNA, is a target of UNG activity. Since analysis of cccDNA

has been difficult using our HBV in vitro model because of the low

abundance of cccDNA (data not shown), we exploited the DHBV

replication system, which efficiently produces cccDNA for analysis

[9,10]. In this study, the surface-deficient DHBV replicon plasmid

pCSD3.5DS was used to transfect a chicken hepatocyte cell line,

LMH, because deficiency of surface protein leads to accumulate

more cccDNA than wild-type DHBV [10,49]. The UNG assay

indicated that UGI transfection resulted in efficient decrease in

UNG activity even in the LMH cell (Figure 5A). Inhibition of

chicken UNG by UGI has been reported previously [50,51].

Western blotting confirmed that the expression levels of A3G and

catalytically inactive mutant (mutA3G) transgenes were not

influenced by UGI (Figure 5B). The DHBV plasmid was

cotransfected with A3G and UGI vectors into LMH cells. After

3 days, the cells were harvested and NC-DNA was analyzed by

3D-PCR [23] (primer position is indicated in Figure S3A). Data

indicate that amplification occurred at the lowest temperature

(83uC) from A3G transfectants both with and without UGI

expression (Figure 5C), indicating that the A3G protein can

hypermutate DHBV NC-DNA. NC-DNA fragments amplified by

a standard PCR (94uC) were cloned into the T vector and 10

clones were randomly selected for DNA sequencing. These

sequences are shown in Figure 5D (indicated as ‘‘NC-DNA’’)

and Figure S3B. Consistent with other HBV experiments

(Figure 3), these data demonstrate the enhanced hypermutation

of NC-DNA by UNG inhibition.

Next, cccDNA was isolated by nuclear Hirt extraction and

further treated with DpnI to digest transfected plasmids. A

cccDNA fragment (1.4 kb) was amplified by standard PCR (94uC)

using cccDNA-selective primers spanning the gap region of

rcDNA (Figure S3A) [52,53]. We tested the amplification

efficiency of DNAs from nuclear Hirt extract, secreted viral

particle, and the replicon plasmid to verify the specificity of

cccDNA-selective PCR (Figure S3C). As expected, the 1.4 kb

fragment was predominantly amplified from the nuclear Hirt

extract containing cccDNA. We also evaluated the specificity of

the cccDNA-selective PCR with a replication-defected DHBV

replicon plasmid (pCSD3.5DP). The cccDNA-selective PCR

amplified the 1.4 kb fragment from transfectants of the replica-

tion-competent plasmid but not from those of replication-defective

plasmid (pCSD3.5DP) (Figure S3D). The result clearly demon-

strates that our cccDNA-selective PCR amplifies the 1.4 kb from

nuclear viral DNA but not from replicon plasmid.

We compared the mutation frequency of cccDNA with those of

NC-DNA and pre-C mRNA. Ten randomly selected clones from

the A3G-UGI cotransfectants and A3G alone were sequenced,

Figure 3. Mutation frequency of HBV NC-associated DNA in A3G expression and UNG inhibition. DNA fragments amplified through
standard PCR (94uC in Figure 1B) were cloned into T vectors. NC-DNA sequences from randomly selected 50 clones were analyzed for each group. (A)
Mutation matrices of the HBV NC-DNA with or without A3G expression and in the presence or absence of OHT. *P,0.05. The statistical significance
for the frequency of G-to-A mutations was calculated by chi-square test. (B) Pie charts represent the proportion of clones with G-to-A and C-to-T
mutations for (A). The total number of sequenced clones is indicated in the center. The number of mutations is indicated on the periphery of the pie
segment. Thirty-nine clones were intact in both samples (white segment, 0 mutation). The satellite chart depicts the proportion of clones with more
than 2 mutations.
doi:10.1371/journal.ppat.1003361.g003

UNG Counteracts Extensive Hypermutation of cccDNA
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and the mutation frequencies were compared (Figure 5D).

Surprisingly, cccDNA clones from the A3G-UGI cotransfectants

were hypermutated much more extensively than NC-DNA.

Increase in the G-to-A mutation frequency was observed not only

in the mutation load per clone but also in the number of clones

harboring hypermutation. Eight of 10 cccDNA clones from A3G-

UGI cotransfectants carried at least 1 G-to-A/C-to-T mutation,

whereas hypermutation was much less frequent on the cccDNA

derived from the A3G transfectants. Interestingly, enhanced

hypermutations by A3G-UGI were also observed in cDNA clones

derived from pre-C mRNA (Figure 5D). The pre-C mRNA is

transcribed from cccDNA but not from the replicon plasmid.

Overlapping sequences of 2 PCR-amplified regions for NC-DNA

and cccDNA (Figure 5E) showed that hypermutation was

distributed throughout the P gene and that its distribution patterns

were similar between samples. Extensive G-to-A hypermutation by

A3G and UGI in this region was confirmed. As expected,

mutations were biased toward the GpG dinucleotide, a preferen-

tial target of A3G (the underlined nucleotide represents a mutation

position) [28]. Considering the dinucleotide preference, the in-

frame TGG codon must be susceptible to nonsense mutations

(TGA, TAG, and TAA). In this sequence analysis, 6 of 10 clones

of cccDNA from A3G-UGI cotransfectants had premature stop

codons in the viral P gene open reading frame (ORF), suggesting

an effect on downregulation of viral replication. To estimate the

overall mutation frequency of the cccDNA, 2.9-kb PCR fragments

corresponding to 98% of the whole viral genome were amplified

by standard PCR (94uC) and cloned in the T vector. Seven clones

were randomly selected from each group and sequenced.

Mutation matrices of cccDNA are shown in Figure 5F. As

expected from Figure 5D, much more frequent G-to-A mutations

were detected in the cccDNA from A3G-UGI cotransfectants than

in those from other samples. We observed similar mutation

frequencies between the C and P genes (data not shown). Only a

few mutations (2 mutations in 7920 nt) in the neomycin-resistant

gene of the transfected plasmid (Figure S3E) were detected. The

results indicate that cccDNA was extensively hypermutated, while

the transfected plasmid was not, in A3G-UGI cotransfectants.

Since nuclear cccDNA was highly mutated by A3G and UGI

coexpression, we investigated the subcellular localization of A3G

in LMH cells. Microscopic observation revealed that the majority

of GFP–A3G fusion proteins were localized in the cytoplasm and

that the nuclear A3G protein was not obvious even in DHBV-

replicating LMH cells (Figure S4). The data indicate that even the

A3G protein in LMH cells localizes in the cytoplasm in a manner

similar to that in mammal cells [18,54,55,56] and that the

extensive hypermutation in cccDNA is not due to misregulation of

A3G intracellular localization.

UNG inhibition reduced DHBV replication in the presence
of A3G

To assess the role of UNG in the A3G-induced suppression of

DHBV replication, cytoplasmic and nuclear viral DNAs were

analyzed by Southern blotting at days 3 and 6 after transfection.

A3G-induced suppression was obvious in all samples of NC-DNAs

and cccDNAs from both days (Figure 6A and B). The suppression

occurred in a deaminase-dependent manner, given that the

mutant A3G did not reduce the DHBV DNA levels. Similar to

the HBV result in Figure 4, UNG inhibition by UGI did not affect

the A3G-mediated reduction of NC-DNA and cccDNA at day 3.

However, at day 6, UGI expression enhanced the NC-DNA

reduction of A3G-expressing cells, while the cccDNA level of the

same transfectants was slightly increased (Figure 6B, lanes 3 and

6). We also performed qPCR to analyze the secreted virion DNA

levels from day 2 to 6 after transfection of wild-type DHBV, A3G,

and UGI vectors (Figure 6C and D). Culture supernatant was

collected daily and viral particles were precipitated by polyethyl-

ene glycol (PEG) precipitation. Purified DNA from the precipitants

was treated with DpnI to digest any contaminating plasmids. In

comparison with A3G alone, secreted viral particle-associated

DNA levels in cells cotransfected with A3G and UGI were not

significantly different at days 2 and 3. However, consistent with the

cytoplasmic Southern blotting data, at day 5, the level of secreted

viral DNA in A3G and UGI cotransfectants was lower than that of

A3G transfectants (Figure 6C and D).

We also analyzed pre-C mRNA expression levels in day 5

samples. Since pre-C mRNA is transcribed from cccDNA but not

from the replicon plasmid, pre-C mRNA expression reflects

functional activity of the upstream viral intermediate, cccDNA. As

Figure 4. UNG does not affect HBV NC-associated DNA levels
during 3 days of culture. (A) Analyses of HBV NCs by NAGE. The
CMV-driven HBV plasmid (pPB) and indicated vectors were transfected
into human hepatocyte cell lines (Huh7 or HepG2). mutA3G is a
deaminase-inactive mutant of A3G (E67Q/E259Q). Cells were harvested
72 h after transfection. Cytoplasmic extracts were subjected to NAGE to
measure the HBV NC-DNA by Southern blotting. (B) Quantification of
cytoplasmic HBV DNA in HepG2 cells in (A) by qPCR. The level of GFP
transfectants was defined as 1-fold. Asterisks indicate statistically
significant differences, *P,0.05.
doi:10.1371/journal.ppat.1003361.g004
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Figure 5. DHBV cccDNA was extensively hypermutated by A3G and repaired via the UNG-mediated BER pathway. (A) Uracil excision
activity in the UGI-transfected LMH cells. LMH cells were transfected with different amounts of the UGI vector (1, 2, and 3 mg for 60-mm dish), and
after 48-h incubation, uracil excision activities were determined. The signal density for the 15-mer in the lane of the mock transfectant (0 mg of UGI
input) was defined as 100%. Synthetic oligonucleotides (substrate and control 15-mer) were also electrophoresed as size markers. (B) Expression
levels of exogenous A3G and mutA3G proteins with or without UGI in LMH cells were confirmed by Western blotting with anti-A3G antibody.
Expression of GAPDH was also shown to demonstrate equivalent protein loading. (C) The surface-deficient DHBV replicon plasmid (pCSD3.5DS) and
GFP, A3G, or UGI expression vectors were used to transfect LMH cells as indicated. After 72-h incubation, the cells were harvested and the NC-DNA
was purified and amplified by 3D-PCR, using a denaturation temperature gradient of 94–83uC. (D) Frequency of G-to-A and C-to-T mutations in DHBV
NC-DNA, cccDNA, and pre-C mRNA. LMH cells were transfected with pCSD3.5DS and A3G with or without UGI-expressing vectors. After 6 days of
incubation, the cells were harvested. After standard (94uC denaturation) PCR and sequencing, frequencies of G-to-A and C-to-T mutations in NC-DNA
(nt 371–2419, the numbering of the nucleotide of the 3021-bp-length DHBV genome starts at the unique EcoRI site), cccDNA (nt 2476–3021/1–860),
and cDNA of pre-C mRNA (the same region as cccDNA) were determined and compared. Physical maps are presented in Figure S3A. Each plot
represents an independent clone (10 clones for each sample). The average mutation load per clone was indicated by horizontal lines. Asterisks
indicate statistically significant differences, *P,0.05. (E) Distribution of G-to-A hypermutation. The boxes in illustration represent 96 G bases within
the overlapping sequenced region (490 nt) between NC-DNA and cccDNA. All NC-DNA and cccDNA clones in (D) containing at least 1 G-to-A
mutation in the overlapping region are plotted. Black, G-to-A mutation; white, intact G; gray, 59-GpG-39 dinucleotide (the underline represents
possible mutation target). Position of the TGG codon of the P gene is indicated by double asterisks. The TGG codon can be converted to a premature
stop codon when G-to-A conversion occurs. (F) Mutation matrices of the cccDNA. The longer cccDNA fragments (2960 bp; nt 2624–3021/1–2562)
were amplified with standard PCR using the same cell source as in (D) and sequenced. DNA sequences that cover almost the complete DHBV genome
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(3021 bp, full-length) from 7 clones were analyzed for each sample. ****P,0.001. The statistical significance for the frequency of G-to-A mutations
was calculated by chi-square test.
doi:10.1371/journal.ppat.1003361.g005

Figure 6. UNG inhibition affects DHBV replication during 6 days of culture. (A and B) Southern blotting for cytoplasmic and nuclear DHBV
DNAs at day 3 (A) or day 6 (B) after transfection, with the same conditions as in Figure 5. NC-DNA (rcDNA and double-strand linear [dl]DNA) from the
cytoplasmic fraction and Hirt-extracted DNA from the nuclear fraction were purified from the indicated transfectants and subjected to Southern
blotting with a DHBV probe. (C) The wild-type DHBV replicon plasmid (pCSD3.5) and A3G vectors were cotransfected with or without the UGI vector.
At days 2–6 after transfection, DHBV DNA from secreted viral particles was purified and measured by qPCR assay. Graph shows the relative DHBV DNA
level from the A3G-UGI transfectants in the time course. The DNA level from the A3G transfectants was set as 1. **P,0.01. (D) Relative DNA levels of
the secreted DHBV. LMH cells were transfected with indicated vectors. DHBV DNAs from secreted viral particles at days 3 and 5 after transfection were
purified and measured by qPCR assay. Vertical axis shows the relative DHBV DNA level from the indicated transfectants. The DNA level from the GFP
transfectants of each time point was set as 1. **P,0.01. (E) qRT-PCR to determine the expression levels of pre-C mRNA at day 5 in indicated LMH
transfectants. The pre-C cDNA level from the GFP transfectants was set as 1. **P,0.01.
doi:10.1371/journal.ppat.1003361.g006
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shown in Figure 6E, qRT-PCR showed a consistent reduction

with result of Figure 6D.

To evaluate the outcome of cccDNA hypermutation by A3G

expression and UNG inhibition, we used rolling circle amplifi-

cation (RCA), a method widely used to prove the presence of

covalently closed circular DNA, including cccDNA of HBV and

episomes of human papillomavirus [57,58] (Figure 7A and S5).

cccDNAs were purified from cells 7 days after transfection and

then treated with DpnI. The cccDNA was amplified by RCA and

digested with EcoRI to cleave the concatemer into individual full-

length viral genomes (3.0 kb, Figure 7A). The samples containing

cccDNA show 3.0-kb bands (Figure 7A, lanes 1–4), whereas a

control RCA reaction of the DHBV plasmid (lane 5) shows both

3.0-kb and 4.7-kb bands. Amplification of the 3.0-kb band

without the 4.7-kb DNA (Figure 7A, lanes 1–4) indicates specific

amplification of cccDNA but not of the replicon plasmid. The

3.0-kb DNAs were cloned into the replicon plasmid backbone to

reconstruct the DHBV plasmids. Reconstructed 20 clones from

each sample were pooled and transfected into LMH cells to

measure viral replication activity. Importantly, this secondary

transfection was performed without A3G and UGI expression

vectors. At day 3 after transfection, cytoplasmic NC-DNA was

quantified by qPCR (Figure 7B). The reconstructed plasmid with

cccDNA from A3G-UGI transfectants showed a significant

decrease in NC-DNA production. Consistent with this data,

sequence analysis of the P gene in the reconstructed DHBV

plasmid revealed that extensive G-to-A hypermutation had

accumulated in the RCA products from A3G-UGI cotransfec-

tants (Figure 7C). The data shown in Figure 7B and C may

underscore the real impact of hypermutation, given that only

23.8% (720 bp) of the full viral genome per clone was sequenced

and that any destructive mutations on the DHBV promoter

region would have been rescued by the CMV promoter provided

by the backbone in the reconstructed plasmids (Figure S5).

Considering all the data, we concluded that nuclear UNG activity

repaired uracil bases in cccDNA that were generated by the

action of A3s.

Discussion

To avoid the mutagenic impact of dUTP misincorporation or

cytosine deamination, organisms have dUTPase and uracil DNA

glycosylases, including UNG. Some viruses such as poxviruses

(vaccinia viruses) or herpesviruses (HSV-1 and cytomegaloviruses)

also encode UNG homologs, and primate lentiviruses incorporate

host UNG into the virion through interaction with the viral Vpr

protein [29,32,59]. However, the involvement of uracil excision

activity during replication and infection of these viruses has not

been fully investigated. The effect of Vpr-bound UNG on the

deaminated HIV-1 DNA is apparently controversial, although it is

thought to be involved in DNA repair [31,32] or DNA

degradation [33] or to have no role [34,35,36]. Thus, it seems

that there is no unified view whether UNG plays a protective or

suppressive role in viral replication. In this study, using in vitro

models of HBV and DHBV, we investigated the role of UNG

activity in hypermutation and viral replication in the presence of

A3G. We found that UNG inhibition resulted in the enhancement

of A3G-induced NC-DNA hypermutation. This study for the first

time also found that the A3G protein induced cccDNA

hypermutation (Figures 5 and 7). The cccDNA hypermutation

was enhanced on UNG inhibition and subsequently resulted in

significant decrease in viral production (Figure 7), suggesting a

protective role of UNG for viral replication against cccDNA

hypermutation.

It has been difficult to determine which HBV intermediates

are catalyzed by UNG because HBV shuttles between the

cytoplasm and the nucleus during its life cycle. Plasmids can also

act as a target molecule. Stenglein et al. showed that

APOBEC3A induces C-to-U hypermutation in transfected

plasmids and that uracilated plasmids were processed by UNG

activity using UGI-expressing 293T cells [60]. In the present

study, APOBEC3A was not expressed in HepG2 and LMH cells

(Figure 2B). The contaminated DHBV plasmid does not

contribute to the results of cccDNA sequencing (Figures 7A

and S3C–E). Comparison of hypermutation frequencies of NC-

DNA, cccDNA, and pre-C mRNA from the same cell source

revealed that the mutation frequency of cccDNA was higher

than that of NC-DNA. G-to-A mutations were predominant in

cccDNA clones (Figure 5), whereas C-to-T mutation is a

characteristic feature of plasmid hypermutation [60]. The

transfected vector backbone did not accumulate hypermutation

(Figure S3E). Accordingly, we concluded that A3G does not

target the replicon plasmid and that the mechanism of cccDNA

hypermutation differs from that of plasmid hypermutation [60].

The observed G-to-A hypermutation is one of the prominent

features of cccDNA hypermutation. Predominant G-to-A

hypermutation in NC-DNA (Figures 5 and S3B), a precursor

of cccDNA, may partly account for the G-to-A cccDNA

hypermutation. However, it does not explain the higher

mutation frequency of exclusive G-to-A hypermutation in

cccDNA than that in NC-DNA. Further study is required to

clarify the mechanism of cccDNA hypermutation.

A3G is known to be encapsidated into NC and deaminate NC-

DNA. We propose that an additional deamination event by A3G

may occur during or after cccDNA formation in the nucleus.

Although the nuclear localization of GFP-A3G was not obvious in

DHBV-replicating LMH cells (Figure S4), the encapsidated A3G

may be able to enter the nucleus in the same manner as viral

rcDNA. Indeed, a recent HIV-1 study showed that infection with

Vif-deficient HIV-1 led to uracil accumulation in the host genome,

implying that Vif-sensitive A3s, including A3G, can also deami-

nate nuclear DNA [61]. We found that A3G and UGI

coexpression caused extensive nuclear cccDNA hypermutation

(Figures 5 and 7). Neither a UNG nor a Vpr homolog has been

identified in HBV, unlike the HIV-1 genome, and we failed to

detect UNG proteins in HBV NC (Figure S2). It is reasonable to

suggest that UNG excises uracils in the nucleus, resulting in

extensive nuclear cccDNA hypermutation in A3G-UGI transfec-

tants.

A proposed antiviral role for UNG is DNA degradation

following DNA cleavage of an abasic site generated by uracil

excision [13], although UNG is primarily considered a DNA

repair factor. In the present study, we compared viral production

between UGI presence and absence in A3G-expressing hepato-

cytes. Those experiments did not show obvious rescue of A3G-

mediated suppression of viral replication by UNG inhibition

(Figures 4 and 6). The A3G-mediated reduction of NC-DNA was

enhanced by UNG inhibition in prolonged culture (Figure 6B–E),

coincidentally with extensive hypermutation of cccDNA (Figure 5).

In this experimental setting, UNG-dependent DNA degradation

was not obvious. We accordingly propose that UNG removes

uracil residues on/after cccDNA formation in the nucleus and that

these uracil excisions contribute to reducing dysfunctional

mutagenesis induced by APOBEC deaminases (Figure S6).

Observation of hypermutated pre-C mRNA (Figure 5D) suggests

that hypermutated pgRNA is also transcribed from the cccDNA

and may contribute to the enhanced hypermutation in NC-DNA

by UNG inhibition (Figures 3 and S3B).
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Previous in vivo studies showed no evidence of cytidine

deamination in the DHBV genome during chronic infection

[62]; however, cccDNA sequences were not analyzed. In the

present study, several G-to-A/C-to-T mutations in DHBV

cccDNA were observed in LMH cells even without A3G

overexpression (Figure 5F), suggesting the contribution of endog-

enous deaminase activity. The chicken genome possesses only 3

AID/APOBEC members: AID, APOBEC2 (A2), and APOBEC4

(A4) [13,56,63]. In mammals, A2 is considered to play a role in

muscle development, and A4 may not have deaminase activity

[54,56]. There is a functional association of AID and UNG with

immunoglobulin gene diversification in human, mouse, and

chicken B cells [12,29,30,51]. Recent reports showed that human

AID endogenous expression was detected in hepatocytes after

TGF-b stimulation [64], and overexpression of AID caused HBV

hypermutation of NC-DNA [24]. In future studies, we plan to

assess the contribution of AID to antiviral activity against HBV

and DHBV.

APOBEC3G-mediated hypermutation of Vif-deficient HIV-1

caused deleterious effects on viral replication, whereas partial Vif

activity accelerated viral diversification [65,66]. Similarly, we

speculate that the balance between AID/APOBECs and UNG

activities on mutation frequency decides the consequence to

hepadnaviruses: deleterious mutations vs. diversification. DNA

sequencing showed the existence of several cccDNA clones having

a single G-to-A or C-to-T mutation (Figure 5D), a finding that

favors the concept of generation of clonal diversity by APOBEC

and UNG proteins. This study suggests a possible role of

APOBEC proteins as a mutator of HBV cccDNA. Because

mutation in cccDNA is direct resource of viral variants, we are

currently exploring the possibility that APOBECs and BER factors

are involved in the emergence of drug-resistant mutants of HBV

and DHBV.

Materials and Methods

Plasmids
The HBV replicon plasmids pHBV1.5 and pPB express all the

HBV viral gene products necessary for viral replication and are

under the control of the HBV and CMV promoters, respectively

[40,41,44]. The DHBV replicon plasmid pCSD3.5 was generated

by insertion of DHBV viral genomic DNA (equivalent to 1.17-

mer) into pCMV-script (Stratagene) (kindly provided by Dr. K.

Kuroki, Kanazawa University) [49]. The pCSD3.5DS plasmid was

generated by introduction of in-frame stop codons at positions

1327, 1346, and 1349 in the surface protein ORF without

Figure 7. UNG inhibition decreases the replication activity of DHBV cccDNA in the presence of A3G expression. (A) RCA products from
the cccDNAs. Expression vectors of A3G, UGI, and GFP were used for transfection of LMH cells together with the pCSD3.5DS replicon plasmid. After 7
days of cultivation, cccDNAs were purified from the nuclear fraction by Hirt extraction and treated with DpnI to digest transfected plasmids. The
cccDNAs were amplified with phi29 DNA polymerase. The DHBV replicon plasmid (pCSD3.5DS) was also reacted as a control. RCA concatemeric
products (indicated by an arrow) were digested with EcoRI and electrophoresed on agarose gel to verify successful amplification of the 3.0-kb full-
length DHBV genomic DNA (left side). The 4.7-kb fragment represents the pCSD3.5 backbone (see Figure S3A for the plasmid construct). (B) qPCR
analysis to assess replication activity of reconstructed replicon plasmids. The amplified full-length genomes from cccDNA were cloned into a pCSD3.5
backbone. Resulting reconstructed clones were used to transfect LMH cells without any other vectors (see Figure S5 for the experimental design).
DHBV NC-DNA was purified and quantified 3 days later. The graph shows the relative DHBV DNA level; the level of GFP transfectants was set as 1.
***P,0.005. (C) Mutation matrices for DHBV DNA of reconstructed replicon plasmids. A partial sequence of the P gene (720 bp) from 10
reconstructed replicon plasmid clones was analyzed for each sample. The number of clones containing C-to-T and G-to-A mutations is indicated
below. ****P,0.001. The statistical significance for the frequency of G-to-A mutations was calculated by chi-square test.
doi:10.1371/journal.ppat.1003361.g007
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affecting the P gene ORF [49]. Other expression vectors are listed

in Table S1.

Cell culture, treatment, retrovirus-mediated gene
transduction, and transfection

Cells (HepG2, Huh7, 293T, and LMH) and subsequent

transfectants were grown and maintained in Dulbecco’s modified

Eagle medium (DMEM; Sigma) containing 10% fetal bovine

serum, 100 U/mL penicillin, and 100 mg/mL streptomycin. IFNc
(recombinant IFNc-1a) was purchased from Shionogi. Tamoxifen

(Wako) was dissolved in ethanol (EtOH). A stable line of HBV-

expressing HepG2 cells was established using a standard method

[11]. In brief, HepG2 cells were transfected with linearized pPB,

and G418-drug selection with limiting dilution was performed. Of

the resulting transfectants, a cell line with a high level of HBV NC-

DNA was chosen among G418-resistant clones. Retrovirus-

mediated gene transduction was performed as described previously

[38,67]. In brief, retroviral vectors were transfected into packaging

platA cells (Cell Biolabs), and virus-containing culture superna-

tants were used for infection of HepG2 cells. Two days after

infection, 1 mg/mL puromycin (Wako) was added to eliminate

uninfected cells. Plasmid transfection was performed using Fugene

6 (Roche) according to the manufacturers’ instructions. The total

DNA amount (6 mg for 60-mm dish) for each transfection was kept

constant by adding GFP vector.

UNG assay
The UNG assay was performed as described previously, with

minor modification [39]. Cells were resuspended in HE buffer

[25 mM Hepes-KOH (pH 7.8), 1 mM EDTA, 1 mM DTT, 10%

glycerol] and fractured by freezing in liquid nitrogen and thawing.

A fluorescein isothiocyanate (FITC)-labeled 31-mer oligonucleo-

tide containing a central dU residue (59-AGCTTGGCTGCAGG-

TUGACGGATCCCCGGGA-39) was synthesized as a substrate.

An FITC-labeled 15-mer oligonucleotide (59-AGCTTGGCTG-

CAGGT-39) was also synthesized for use as a molecular size

marker. Approximately 10 pmol of substrate was incubated with

cell extracts for 2 h, and the resulting abasic sites were cleaved

with alkali and heat treatment. The reaction products were

separated by 6 M urea/20% polyacrylamide gel electrophoresis.

An FITC signal was visualized in an LAS imager system (FujiFilm)

and quantified by densitometry using ImageJ software.

Purification of HBV and DHBV DNA
Cytoplasmic HBV NC-DNA was purified as reported by

Gunther et al., with minor modifications [68]. In brief, the cells

were lysed with buffer [10 mM Tris-HCl (pH 8.0), 1 mM EDTA,

1% NP-40, 8% sucrose, proteinase inhibitor cocktail (Roche)].

After centrifugation, cytoplasmic supernatants were collected and

further treated with DNase I and RNase A. NCs were PEG-

precipitated and digested with proteinase K and sodium dodecyl

sulfate (SDS). Secreted DHBV particles were also precipitated

with PEG8000, followed by DNase I treatment and digestion with

proteinase K and SDS to extract viral DNA. For purification of

DHBV DNAs, LMH cells were lysed in 0.5% NP40 lysis buffer,

and the nuclei were collected by centrifugation to separate

cytoplasmic and nuclear fractions. The cccDNA extraction from

the nuclear fraction was performed using a modified Hirt

extraction procedure [69]. The nuclear pellet was lysed in

50 mM Tris–HCl (pH 7.5), 10 mM EDTA, and 2% SDS. After

20 min incubation at room temperature, 0.5 M KCl was added to

the lysate and incubated at 4uC overnight. From the supernatant

after centrifugation, DNA was purified by phenol:chloroform

extraction and ethanol precipitation. All purified DNA solutions

were treated with DpnI restriction enzyme to digest any

contaminating plasmid DNA.

Hypermutation analysis
The 3D-PCR procedure was performed as described previously,

with minor modifications [18,28]. Primers used for 3D-PCR are

shown in Table S2. For 3D-PCR of HBV, the first PCR was

performed as follows: 94uC for 5 min, 35 cycles of 94uC for 30 s,

50uC for 30 s, and 72uC for 30 s, and a final elongation step at

72uC for 3 min. The nested PCR was performed as follows: 94–

83uC for 5 min, 35 cycles of 94–83uC for 60 s, 45uC for 30 s, and

72uC for 30 s, and a final elongation step of 72uC for 3 min. For

DHBV NC-DNA, 1 round of 3D-PCR was performed using

primers indicated in Figure S3A [23]. Initial denaturation was for

5 min at 94–83uC, followed by 35 cycles of 30 s at 94–83uC, 30 s

at 55uC, and 2 min at 72uC, with a final elongation for 7 min at

72uC. For standard (94uC) PCR of cccDNA, a cccDNA-selective

primer set was used (Figure S3A and Table S2) [52,53]. Specific

amplification of cccDNA is shown in Figures S3C and S3D. To

determine the hypermutation frequency, PCR fragments from 3D-

PCR or standard PCR were cloned into T vectors (Promega), and

the indicated number of successful recombinant clones was

randomly selected and sequenced using ABI PRISM 3130

(Applied Biosystems).

Quantification of expression levels of transcripts and viral
DNAs

Total RNA was extracted using TRIsure (Bioline), treated by

amplification grade DNase I (Invitrogen), and reverse-transcribed

using an oligo-dT primer and the SuperScript III kit (Invitrogen).

For DHBV pre-C mRNA, a DHBV-specific primer was used in

the reverse transcription reaction. qPCR analysis was performed

using SYBR Premix Ex Taq (Takara) on an MX3000 thermo-

cycler (Stratagene) following the PCR protocol. Human AICDA,

A3B, A3C, A3DE, A3F, A3G, A3H, HPRT, DHBV pre-C, and

chicken HPRT expression levels were measured using PCR

conditions of 95uC for 1 min; 40 cycles of 95uC for 15 s, 55uC for

30 s, and 70uC for 30 s; and 1 cycle of 95uC for 1 min, 55uC for

30 s, and 95uC for 30 s. For A3A amplification, an annealing

temperature of 60uC was used.

For analysis of purified viral DNAs, qPCR was performed using

the following conditions: HBV, 40 cycles of 95uC for 15 s, 52uC
for 30 s, and 70uC for 30 s; DHBV, 40 cycles of 95uC for 5 s and

60uC for 20 s. HBV and DHBV DNA copy numbers were

determined using a pPB or pCSD3.5 plasmid standard curve,

respectively. Amplified fragments were designed to contain at least

2 DpnI sites to avoid amplification from contaminated plasmids.

Primer sequences are listed in Table S2.

Western blotting
Cells were lysed in SDS sample buffer, sonicated, boiled,

separated by 12% SDS-PAGE, and then transferred to a Hybond

ECL membrane (Amersham). The membrane was incubated in a

blocking buffer of 5% skim milk in phosphate-buffered saline

containing 0.1% Tween 20. Signals were detected using the

LAS1000 imager system. The antibodies used in this study were as

follows: rabbit anti-A3G (Sigma; raised against A3G peptide

[CQDLSGRLRAILQNQEN]), rabbit anti-GAPDH (G9545,

Sigma), mouse anti-FLAG (M2, Sigma), rabbit anti-ER (HC-20,

Santa Cruz Biotechnology), rabbit anti-UNG (ab23926, Abcam),

rabbit anti-HBc (B0586, Dako), anti-rabbit Igs-horseradish per-
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oxidase (HRP) (ALI3404, eBiosource), and rabbit and mouse IgG

Trueblot (eBioscience).

NAGE and Southern blotting for viral DNAs
NAGE analysis was performed as described previously

[21,22,48]. In brief, crude cytoplasmic extracts containing HBV

NC particles were loaded into a 1% agarose gel for electrophoresis

to separate intact capsid particles. After electrophoresis, the NC

particles were denatured with NaOH and transferred onto a nylon

membrane. HBV and DHBV DNAs were detected using a

double-stranded HBV and DHBV DNA probes spanning the

entire viral genome, respectively. Probe labeling and signal

development were performed using the AlkPhos direct labeling

system (Amersham), and the signals were detected using the

LAS1000 imager system.

RCA of DHBV cccDNA
Margeridon et al. previously demonstrated that the RCA

method specifically amplifies cccDNA with high fidelity but does

not amplify any other intermediate DNAs [57]. We followed their

method with minor modifications. In brief, DHBV cccDNA

purified by Hirt extraction (DpnI treated) was mixed with 8

DHBV-specific primers (Table S2); denatured at 95uC for 3 min;

cooled sequentially at 50uC for 15 s, 37uC for 15 s, and room

temperature; and reacted with the phi29 DNA polymerase and

buffers (New England Biolabs) at 37uC for 16 h. Note that the

DNA polymerase (phi-29 DNA pol) used in the RCA reaction can

polymerize DNA even with a uracil-containing DNA template

[70]. The RCA concatemerized product was converted to the

monomeric full-length DHBV genome by digestion with EcoRI,

where the DHBV sequence contains a single site, and was cloned

into the replicon vector backbone at the EcoRI site; thus, the full-

length DHBV genome in the original vector was replaced with the

corresponding fragment from the purified cccDNA. These

reconstructed plasmids were cloned, sequenced, and transfected

into LMH cells in order to analyze their replication activities (see

Figure S5 for experimental design).

RNAi analyses
Two UNG-specific siRNAs, two A3G-specific siRNAs and

control siRNA (Stealth Select grade) were purchased from

Invitrogen and were used to transfect using Lipofectamine 2000,

according to the manufacturer’s instructions. Cells and viruses

were analyzed 48 h after transfection.

Coimmunoprecipitation
Cells were lysed with IP lysis buffer [50 mM Tris-HCl (pH 7.1),

20 mM NaCl, 1% NP-40, 1 mM EDTA, 2% glycerol, a

proteinase inhibitor cocktail (Roche)]. After centrifugation, the

supernatants (cytoplasmic fraction) were incubated with anti-HBc

antibody (DAKO) and protein G sepharose (Amersham), and

passed through a micro BioSpin chromatography column

(BioRad). After the column was washed with the lysis buffer, the

coprecipitated proteins were used for Western blotting.

Statistical analysis
Statistical analyses were performed using GraphPad Prism

(GraphPad Software). ANOVA analysis was used for qPCR data.

The Kruskal–Wallis test with Dunn’s post test or Pearson’s chi-

square test were used for mutation analyses. P values less than 0.05

between experimental groups were considered statistically signif-

icant. For all graphs in this study, error bars indicate standard

error of the mean from triplicate samples.

Supporting Information

Figure S1 siRNA experiments of UNG and A3G. (A) Uracil

excision activity in the siRNA-transfected 293T cells. The 293T

cells were transfected with the indicated siRNAs, and after 48-h

incubation, uracil excision activities were determined. The signal

density for the 15-mer in the lane of 20 nM control siRNA was

defined as 100%. (B) Knockdown of UNG expression also

enhances hypermutation of HBV NC-DNA. The CMV-driven

HBV replicon plasmid (pPB), A3G vector, and the 20 nM siRNAs

were transfected into 293T cells. After 48 h, the cells were

harvested and the HBV NC-DNA was subjected to 3D-PCR

analysis. (C) Quantification of APOBEC3G expression in the

IFNc-stimulated cells. HepG2 cells were transfected with the

indicated A3G (or control) siRNAs and after 16 h, cells were

stimulated with 1000 U/mL IFNc for an additional 48 h. qRT-

PCR was performed to determine the expression level for A3G.

The expression level of control siRNA was defined as a 1-fold

change. (D) Alignment of hypermutated HBV sequences. PCR

fragments from the 87.2uC denaturation temperature reaction in

Figure 2D were excised from agarose gel and cloned into T

vectors, and subsequently four random selected clones were

sequenced from each sample. The reference sequence from the

pPB is shown above. Dots in the alignment represent identity with

the reference sequence.

(TIF)

Figure S2 Immunoprecipitation of NC and nuclear
localization of the UNG protein. (A). To detect any potential

physical binding between UNG and core proteins, immunopre-

cipitation was performed. pPB, FLAG-A3G (or FLAG-GFP), and

UNG2 expression vectors were transfected into 293T cells, as

indicated. At 48 h after transfection, the cells were harvested and

subjected to IP with anti-HBc antibody using cytoplasmic lysates.

The crude cytoplasmic extract was also blotted to verify UNG1,

UNG2 FLAG-A3G, FLAG-GFP, and core proteins. Nonspecific

binding of FLAG-A3G to protein G Sepharose beads was

observed (lane 6), but a much stronger signal was observed in

lane 8 than in lane 6. Signals for the core protein in the lanes 7 and

8 verified successful immunoprecipitation of the core protein to the

IP fraction. Although UNG2 was overexpressed, it was not

precipitated by the anti-HBc antibody. (B) Intracellular localiza-

tion of the UNG protein in HepG2 cells. pEGFP-UNG2 or

control pEGFP vector was transfected into HBV stably expressing

HepG2 cells. The nucleus was visualized with simultaneous

expression of the DsRed-NLS protein that mainly localized in

the nucleus. The EGFP protein was distributed in the nucleus and

cytoplasm, whereas UNG2 was localized only in the nucleus.

(TIF)

Figure S3 PCR amplification of DHBV DNAs. (A) Primer

positions to amplify DHBV NC-DNA, cccDNA, pre-C cDNA and

the replicon plasmid pCSD3.5 are shown. The viral genome in the

NC is a rcDNA form with gaps in both strands (left). (2) and (+)

represent minus- and plus-strand DNAs. Dotted line represents

region where plus-strand DNA may potentially not be synthesized.

In nucleus, the genome is converted into a cccDNA form (right).

Primers of pol-f and pol-r amplify both DNA forms. 3D-PCR of

NC-DNA in Figure 5C was performed with pol-f and pol-r

primers. ccc-f and ccc-r are cccDNA-selective primers that span

the gap region of rcDNA. DHBV genes are represented as gray

boxes. Primers to detect the cDNA of pre-C mRNA are same as

cccDNA-selective primers. Pre-C mRNA is not transcribed from

this plasmid but from cccDNA. Primers of neo-f and neo-r amplify

the partial sequence of the neomycin-resistant gene of the replicon
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plasmid. Numbers indicate nucleotide positions of the 3021-bp-

length DHBV genome starting at the unique EcoRI site. (B)

Mutation matrices of the NC-DNA for Figure 5D. The DHBV

NC-DNA fragments amplified with the standard PCR (94uC)

using pol-f and pol-r were cloned into a T vector. DNA sequences

from 10 clones were analyzed for each sample. Pie charts represent

the proportion of clones with G-to-A and C-to-T mutations for

left-side matrices. The total number of independent clones is

indicated in the center. The number of mutations is indicated on

the periphery of the pie segment. ***P,0.005. The statistical

significance for the frequency of G-to-A mutations was calculated

by chi-square test. (C) Selective PCR amplification for cccDNA.

The template DNA samples were serially diluted 1/5 and 1/25

and amplified by pol-f/pol-r or ccc-f/ccc-r primer set. P: pCSD3.5

DHBV replicon plasmid starting at 1010 copies per reaction. N:

nuclear Hirt-extracted DNA from pCSD3.5 transfectant. S: NC-

DNA from culture supernatant of pCSD3.5 transfectants. The

nuclear Hirt-extracted DNA containing cccDNA shows efficient

amplification in both PCR reactions, whereas plasmid and NC-

DNAs do not show efficient amplification in cccDNA-selective

PCR. (D) The cccDNA-selective PCR for the transfectants of

replication-defective replicon plasmid. pCSD3.5DS or the repli-

cation-defective DHBV replicon plasmid (pCSD3.5DP) was

transfected into LMH cells. After 3 days incubation, nuclear Hirt

extract was prepared by the same procedure as in Figure 5. DNA

samples were subjected to the cccDNA-selective PCR. (E)

Mutation matrix of the neomycin-resistant gene of the replicon

plasmid. pCSD3.5DP, A3G and UGI expression vectors were

transfected into LMH cells. The Hirt-extracted DNA from

transfectants at day 6 was subjected to neo-f/neo-r PCR. PCR

products were cloned into a T vector. DNA sequences from 12

clones were analyzed.

(TIF)

Figure S4 Intracellular localization of the A3G protein
in LMH cells. Surface-deficient DHBV and EGFP-A3G or

control EGFP vectors were used to transfect LMH cells. The

nucleus was visualized with simultaneous expression of the DsRed-

NLS protein. The EGFP protein was distributed in the nucleus

and cytoplasm, whereas majority of GFP signals from the EGFP–

A3G fusion protein come from cytoplasm.

(TIF)

Figure S5 Experimental scheme for Figure 7. The

cccDNAs were purified from the cells 7 days after transfection

and then treated with DpnI to digest any contaminating plasmids.

The cccDNA was amplified by RCA and digested using EcoRI to

produce 1 full-length copy of viral genomic DNA (Figure 7A).

These EcoRI fragments were cloned into the replicon plasmid

backbone (using the CMV promoter) to reconstruct the DHBV

replicon plasmids. After transformation of reconstructed plasmids,

20 transformed and reconstructed E. coli clones were selected

randomly from each sample. Twenty minipreps for each sample

were prepared and DNA concentrations were estimated. From the

20 reconstructed replicon plasmids, 0.5 mg were taken, pooled,

and used to transfect LMH cells without A3G or UGI vectors.

Three days after transfection, NC-DNA was purified and

quantified by qPCR (Figure 7B). For sequence analysis of

reconstructed clones, 10 clones were randomly selected from the

20 reconstructed clones and result is shown in Figure 7C.

(TIF)

Figure S6 A proposed model to explain how UNG
reduces uracil load on cccDNA. Intracellular viral lifecycle

together with possible role of UNG. pgRNA is transcribed from

cccDNA and the replicon plasmid when transfected. NC is

assembled in the cytoplasm from core and P proteins together with

pgRNA. In human hepatocytes, interferon induces APOBEC

proteins such as A3G. A3G is encapsidated in a subset of NCs and

induces hypermutation predominantly on the minus strand of

rcDNA, resulting in G-to-A hypermutation. In addition, A3G

inhibits minus strand DNA synthesis. After transportation into

nucleus, additional hypermutation may be induced by A3G, and

UNG repairs them during or after cccDNA formation. When

UNG activity is inhibited by UGI, the extensive hypermutation

remains in cccDNA, disrupting the genetic information for viral

replication. Pre-C mRNA is transcribed from cccDNA but not

from the replicon plasmid. When hypermutation does not affect

any processes required for transcription, hypermutated transcripts

such as pgRNA and pre-C mRNA are transcribed from

hypermutated cccDNA. The hypermutated pgRNA may be

encapsidated to enter a second viral lifecycle.

(TIF)

Table S1 List of plasmids used in this study.
(PDF)

Table S2 List of primers used in this study.
(PDF)
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