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c-PTIO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide; 

dbcGMP, dibutyryl cGMP;  

ETPI, S-ethyl-N-[4-(trifluoromethyl) phenyl] isothiourea;  

FBS, fetal bovine serum;  

GCL, ganglion cell layer;  

IBMX, 3-isobutyl-1-methyl-xanthine;  
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L-NAME, N-nitro-L-arginine methyl ester;  

MTT, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide;  
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sGC, soluble guanylate cyclase;  

siRNA, small interfering RNA;  
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Abstract 

Nitric oxide (NO) signaling results in both neurotoxic and neuroprotective effects in CNS and 

PNS neurons, respectively, after nerve lesioning. We investigated the role of NO signaling on 

optic nerve regeneration in the goldfish (Carassius auratus). NADPH diaphorase staining 

revealed that nitric oxide synthase (NOS) activity was upregulated primarily in the retinal 

ganglion cells (RGCs) 5-40 days after axotomy. Levels of neuronal NOS (nNOS) mRNA and 

protein also increased in the RGCs alone during this period. This period (5-40 days) 

overlapped with the process of axonal elongation during regeneration of the goldfish optic 

nerve. Therefore, we evaluated the effect of NO signaling molecules upon neurite outgrowth 

from adult goldfish axotomized RGCs in culture. NO donors and dibutyryl cGMP increased 

neurite outgrowth dose-dependently. In contrast, a nNOS inhibitor and siRNA, specific for the 

nNOS gene, suppressed neurite outgrowth from the injured RGCs. Intraocular dibutyryl 

cGMP promoted the axonal regeneration from injured RGCs in vivo. None of these molecules 

had an effect on cell death/survival in this culture system. This is the first report showing that 

NO-cGMP signaling pathway through nNOS activation is involved in neuroregeneration in 

fish CNS neurons after nerve lesioning.  
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Introduction 

Nitric oxide (NO) is a free radical gas that acts as an intracellular and intercellular messenger 

in the nervous system (Garthwaite et al. 1999).  It is involved in a variety of biological 

phenomena, including axonal targeting, synaptogenesis, neuronal plasticity, and cell survival 

(Estévez et al. 1998; Posada and Clarke 1999; Cogen and Cohen-Cory, 2000).  There are 

three classes of nitric oxide synthase (NOS) in the nervous system, the constitutive neuronal 

and endothelial isoforms and the inducible isoform (nNOS, eNOS and iNOS, Alderton et al. 

2001).  NO signaling appears to have an adverse effect upon neuronal survival after axotomy 

in the visual system.  Normally, axotomized mammalian retinal ganglion cells (RGCs) die 

rapidly in large numbers (Grafstein and Ingoglia 1982; Villegas-Pérez et al. 1993).  

Axotomized rat RGCs increase nNOS expression and degenerate via NO-mediated 

excitotoxicity (Lee et al. 2003).  On the other hand, in the PNS, sensory neurons of the 

dorsal root ganglia and motor neurons of facial and hypoglossal nuclei increase nNOS 

expression and can survive for a significant period (6 weeks) following nerve transection 

(Verge et al. 1992; Yu 1994).  Such a line of evidence suggests that the response of NOS 

activity after axotomy is different in these nervous tissues in CNS and PNS and therefore the 

role of NOS induction in the nervous system after axotomy is not yet understood. 

In contrast to mammals, fish RGCs can survive and regrow their axons, even after 

optic nerve transection (Sperry 1948; Grafstein1975; Kato et al. 1999; Koriyama et al. 2007; 

Homma et al. 2007).  Thus, the fish visual system is an ideal model for CNS regeneration 

(Kato et al. 2007).  The regrowing optic axons begin to sprout 5-6 days, reinnervate the 

tectum within 5-6 weeks, and complete visual function is recovered within 5-6 months after 

axotomy (Kato et al. 2007).  Our objective is to evaluate the role of NOS-NO system upon 

nerve regeneration, because NO appears to have a variety of interesting local actions 

following nerve injury.  NO also activates soluble guanylate cyclase (sGC), which leads to 

the formation of cGMP and thus the activation of cGMP-dependent protein kinase (PKG, 
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Garthwait et al. 1999).  We evaluated the role of NO-cGMP in goldfish RGCs following 

optic nerve lesion using specific genetic and pharmacological procedures.  We also 

investigated the pathways for NO-cGMP signaling during nerve regeneration.  Our data 

show that NO-cGMP signaling, as a result of nNOS activation, plays a key role for optic 

nerve regeneration in the goldfish retina.  
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Material and methods 

Animals 

We used common goldfish (Carassius auratus, 7-8 cm body length). Goldfish was 

anesthetized with ice-cold water. The tissue surrounding the eye was removed to provide 

access to the optic nerve. We cut the optic nerve 1 mm away from the posterior of the eyeball 

using scissors. Following this, the fish were held at 22°C until they were euthanized for in 

vitro or in vivo sampling. 

  

Chemicals 

We used the following chemicals, obtained from Sigma-Aldrich: dibutyryl cGMP (dbcGMP), 

3-isobutyl-1-methyl-xanthine (IBMX), N-nitro-L-arginine methyl ester (L-NAME), 

1H-[1,2,4] oxadiazole[4,3-α]quinoxaline-1-one (ODQ),  

Rp-β-Phenyl-1,N2-etheno-8-bromoguanosine 3’,5’-cyclic monophosphorothioate 

(Rp-cGMPS), S-nitroso-N-acetyl-penicillamine (SNAP). The nNOS inhibitor, 

S-ethyl-N-[4-(trifluoromethyl) phenyl] isothiourea (ETPI), was purchased from Alexis Co. 

(San Diego, CA, USA), and (+/-)-(E)-4-methyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide 

(NOR2) was purchased from Dojin Chemical Co., Ltd. (Kumamoto, Japan). 

2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) was gently a 

gift from Dr. K. Chiba and Dr. M. Yamazaki.  

 

NADPH diaphorase staining 

NADPH diaphorase (NADPHd) staining was performed following the method of Williams et 

al. (1994). Tissue fixation and cryosection were performed as described previously (Barthel 

and Raymond 1993). Briefly, the eyes were enucleated and fixed in 4% paraformaldehyde 

solution containing 0.1 M phosphate buffer (pH 7.4) and 5% sucrose for 2 h at 4°C. The 

sucrose concentration was gradually increased from 5 to 20%. The eyes were then embedded 
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in optimal cutting temperature (OCT®) compound (Tissue Tek; Miles, Eikhart, IN) and 

cryosectioned at 12 µm thickness. The frozen sections were mounted onto silane-coated glass 

slides and air-dried. The slides were then brought to room temperature and incubated 

overnight in 0.1 M Tris-HCl (pH 8.0) containing 0.3% Triton-X 100. Each sample was stained 

in buffer containing NADPH and 4-nitroblue tetrazolium chloride (Roche) for 2-3 h at 37°C. 

 

Measurement of nitrite production 

We measured the concentration of nitrite in the retina using Griess method (as an indicator of 

NO production) (Green et al. 1982). After homogenization with hypotonic (10 times diluted) 

PBS including 1 mM EGTA and centrifugation (12,000 x g, 10 min), the retinal supernatant 

was mixed with Griess reagent (1% sulfanilamide solution and 0.1% 

N-(1-naphthyl)-ethylenediamine dihydrochloride) and allowed to sit at room temperature for 

10 min. We then measured the absorbance at 550 nm using a microplate reader (Model 680, 

Bio Rad). We used sodium nitrite to construct a standard curve. 

 

goldfish nNOS cDNA cloning 

Forward and reverse primers for goldfish nNOS cDNA were constructed based on zebrafish 

cDNA sequences (data base No. AY211528, Gen Bank). We sequenced the resulting cDNA 

fragment and compared it to the zebrafish nNOS cDNA sequence using the FASTA program. 

 

In situ hybridization 

At various times after optic nerve transection, we performed in situ hybridization on the 

goldfish retina using digoxigenin-labeled RNA probes (Roche Diagnostics FmbH, Germany), 

following the method of Komminoth (1992).  nNOS cRNA probes from the 490 bp nNOS 

cDNA fragment were generated with SP6 and T7 RNA polymerases (Roche Diagnostics 

FmbH, Germany). 
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Immunohistochemistry 

We studied the expression of nNOS protein in the goldfish retina using immunohistochemistry. 

The retinal tissues were fixed and cryosectioned as described above. After washing and 

blocking with Blocking One (Nakalai Tesque, Kyoto, Japan), the retinal sections were 

incubated with the primary anti-nNOS antibody (Sigma,1:100) at 4°C overnight. The sections 

were then incubated with anti-IgG (Santa Cruz, 1:200) for 1 h at room temperature. The signal 

was detected using horseradish peroxidase-conjugated streptavidin and 

3-amino-9-ethylcarbazole (Dako, Denmark). In the GAP-43 immunohistochemical study, 

retinal explants were fixed by 0.1% glutaraldehyde (Wako, Osaka, Japan) for 30 min at room 

temperature. Neurites from retinal explants were stained using anti-GAP-43 antibody (Santa 

Cruz, 1:500).  

 

Western blotting analysis 

The retinas were immersed in Tris-HCl buffer (pH 7.4) containing a protease inhibitor 

cocktail (Sigma-Aldrich), and were then sonicated and centrifuged as described previously 

(Koriyama et al. 2008). Following SDS-PAGE, the proteins were transferred onto a 

nitrocellulose membrane (Amersham International, U.K.). The membrane was incubated in a 

blocking buffer for 1 h at room temperature, then probed with primary anti-nNOS antibody 

(Sigma-Aldrich, 1:100) in blocking buffer at 4°C overnight. Western blot analysis of β-actin 

was also performed with anti-β-actin antibody (GeneTex, Inc., San Antonio, TX, 1:250). As 

the Following this, the membrane was washed, probed with a secondary anti-IgG antibody 

(Santa Cruz, 1:100) in blocking buffer for 1 h at room temperature, then re-washed. The 

signal (160 kDa of nNOS protein) was detected using 3,3’-diaminobenzidine 

tetrahydrochloride. The proteins on the acrylamide gel were stained using a rapid stain 

Coomassie Brilliant Blue kit (Nacalai Tesque, Kyoto). The nNOS protein band was 

densitometrically analyzed using Scion Image software (Scion Corp., Frederick, MD). All 
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experiments were repeated at least 3 times. 

 

Retinal explant culture 

The retinal explant culture was performed as described previously (Matsukawa et al. 2004). 

Briefly, the goldfish retinas were isolated under sterile conditions 5 days after optic nerve 

injury. Retinal explants were cultured at 28°C in L-15 medium containing 10% fetal bovine 

serum (FBS) in a poly-D-lysine coated, 35 mm dish. Inhibitors and NO donors were added to 

the culture medium. After 5 days we observed neurite outgrowth using phase contrast 

microscopy. Positive neurite outgrowth was defined on the basis of the length (>150 µm) and 

density (more than 5 neurites per explant) of the neurites, following the description in our 

previous study (Sugitani 2006). The percentage of explants with long neurites was compared 

with the control culture (no treatment). 

 

RNA interference (RNAi) 

We used small interfering RNA (siRNA) for the target region to goldfish nNOS mRNA, 

5’-GACAGCUCUCGAUACAACA-3’ (Sigma Aldrich Japan) and randomly shuffled 

sequence (5’-GAGCCAAUACCCGAUAAUC-3’). Transfection of siRNA into the retinal 

explants was carried out using Lipofectamine 2000 (Invitrogen). To suppress the nNOS 

expression in transcription levels, the goldfish optic nerve was cut 2 days before eye 

nucleation. Goldfish retinas were isolated and sectioned in to 0.5 mm squares, and 

resuspended in L-15 medium without serum or antibiotics. For each transfection sample, 2 µl 

Lipofectamine 2000 diluted in 98 µl L-15 medium, was mixed with 100 pmol siRNA, diluted 

in 100 µl of L-15 medium, then incubated for 20 min at room temperature to allow complex 

formation. The mixture was then added to 0.8 ml of the resuspended retinal culture. Retinal 

explants were gently mixed in the culture media for 3 h, then divided into two 35 mm culture 

dishes and incubated overnight at 28°C. Following this, we added FBS to each dish and 
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cultured. 

MTT assay 

To determine the cell viability in the retinal explants treated with various kinds of reagents, 

we performed 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenylatetrazolium bromide (MTT) assay. 

Briefly, 40 µl of solution of 2.75 mg/ml MTT (Dojin, Japan) in PBS was added to each 400 µl 

medium as described previously (Koriyama et al. 2003). The plates were incubated at 37 ˚C 

for 6 h before HCl/isopropanol was added into the medium to solubilize the reaction product 

formazan. Absorption at 550 nm of each sample was measured with a microplate reader. Data 

were expressed relative to the control. 

 

Anterograde labeling of regenerating optic axons with cholera toxin B 

The goldfish had optic nerve crush and were divided to two groups, in which one was injected 

with intraocular 2 µl of dbcGMP (20 mM in PBS) and the other was injected with PBS alone 

at the day of nerve crush (0 day). The both groups of goldfish were intraocularly labeled with 

5 µl of cholera toxin B (2.5 µg/µl in PBS, CTB, Sigma-Aldrich) at 8 days after nerve crush. 

Then, the optic nerves of both groups were isolated, fixed and cryosectioned longitudinally in 

16 µm thickness at 10 days after nerve injury. The sections were incubated with primary 

anti-CTB antibody (Acris, Antibodies, Hiddenhausen, Germany, 1:100). The signal was 

detected using Alexa Fluor IgG (Molecular Probes). 

 

         

Retrograde labeling of regenerating RGCs 

The regenerating RGCs were retrogradely labeled using 1 µl of 2% FluoroGold (Biotium, 

Hayward, CA). The label was administered to three groups of goldfish: 1) control goldfish, 2) 

goldfish with crushed nerves and an intraocular injection of 2 µl of PBS, and 3) goldfish with 

crushed nerves and an intraocular injection of 2 µl of 20 mM dbcGMP, by slowly injecting 
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into the central part of the tectum. Both optic nerves were crushed using forceps, as 

previously described (Koriyama et al. 2007). The number of regenerating RGCs was 

calculated by counting the positive cells in the central part of the whole-mounted retina, 

which had been treated with FluoroGold 5 days before sacrifice, 3 weeks after nerve injury. 

We counted the number of positive RGCs at 25 visual fields per retina using a microscopic 

and ImageJ analyzing software. 

 

Statistics 

We report the mean ± S.E.M. for 3-5 experiments. Differences between groups were analyzed 

using ANOVA followed with Dunnett’s multicomparison test. P values < 0.05 were 

considered to be statistically significant. 
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Results                                                           < ----- Fig. 1 

Increase in NOS activity in goldfish RGCs following nerve injury        

NOS activity is associated with NADPH diaphorase (NADPHd) activity (Dawson et al. 1991). 

Thus we measured the changes in NADPHd using histochemistry after nerve lesioning. The 

distribution of NADPHd positive cells in the control retina was similar to previous 

observations in fish (Weiler and Kewitz 1993; Liepe et al. 1994; Devadas et al. 2001). We 

observed intense staining in the photoreceptor cells and horizontal cells. Conversely, the 

staining was much weaker in the inner nuclear layer (INL) and the ganglion cell layer (GCL) 

(Fig. 1A). The number of NADPHd positive cells increased significantly in the GCL 5 days 

after axotomy, and peaked 20 days (Fig. 1B) after axotomy. NADPHd staining returned to 

control levels by day 40 (Fig. 1C). We did not observe any change in the NADPHd signal in 

other neuronal components during this period.  

The amount of nitrite produced in the retina increased within 5 days after lesioning, 

peaked at day 20, and decreased gradually thereafter (Fig. 1D). The concentration of nitrite 

was reduced by 23.5% of control in the presence of intraocular L-NAME, a NOS inhibitor 

(data not shown). 

                                                                 < ----- Fig. 2 

Distribution of nNOS mRNA in the goldfish retina during optic nerve regeneration  

To evaluate changes in nNOS mRNA expression during optic nerve regeneration, we 

constructed primers for goldfish nNOS cDNA using the zebrafish cDNA sequence (Gen Bank 

No. AY 211528). We obtained a single band consisting of a 490 bp goldfish cDNA fragment 

using RT-PCR. The cDNA fragment isolated from goldfish retinal RNA exhibited a high 

degree of homology (90.8%) with the zebrafish oxygenase domain sequence (1427 -1916 bp) 

for nNOS cDNA (data not shown), suggesting that the fragment was goldfish nNOS cDNA. 

Using the nNOS cRNA probe, we studied the change in nNOS mRNA in the goldfish retina 

after optic nerve injury with in situ hybridization. The pattern of nNOS mRNA expression in 
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the control retina was similar to that observed in NADPHd staining. The signal was strongest 

in the photoreceptors and weaker in the INL and the GCL (Fig. 2A). The levels increased 

significantly only in the GCL, 20 days after axotomy (Fig. 2B). Levels decreased gradually 

thereafter and were similar to the control retina 40 days after nerve lesioning (Fig. 2C). 

                                                                 < ----- Fig. 3 

Upregulation of nNOS protein in the goldfish retina after axotomy 

We also measured levels of nNOS protein in the goldfish retina after optic nerve injury using 

Western blotting analysis. The levels of nNOS protein increased at 5 days, peaked at 20 days, 

and returned to the control level 40 days after axotomy (Fig. 3A). Levels of β-actin were 

unchanged during this period. To determine where the upregulation of nNOS protein was 

localized, we performed immunohistochemistry. We observed strong immunoreactivity in the 

photoreceptor cells and INL, and weak immunoreactivity in the GCL of the control retina (Fig. 

3B).  nNOS immunoreactivity significantly increased only in the GCL at 5 days and peaked 

at 20 days after nerve lesioning. Conversely, there was no change in immunoreactivity in the 

other neurons (Fig. 3C). The increase in nNOS reactivity in the GCL was localized to the 

RGCs by simultaneous staining of TUJ1, a specific ganglion cell marker (data not shown). 

The level of immunoreactivity in the RGCs decreased to that of the control retina 40 days 

after axotomy (Fig. 3D).  

< ----- Fig. 4 

Neurite outgrowth from adult goldfish retina controlled by NO generation 

We tested the effect of NO generator or NOS inhibitor upon neurite outgrowth in retinal 

explant culture. The percentage of retinal explants with outgrowing neurites was compared to 

that of the control retinal explant, in which the optic nerve had 5 days post conditioning lesion 

(Landreth and Agranoff 1976). Spontaneous neurite outgrowth in the primed control retina 

during 5 days of culture was designated as 100% (Fig. 4A and B, control). We observed a 

significant number of explants with long neurites in the control culture (Fig. 4C).  NOR2, a 
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NO generator at doses of 50-100 µM increased neurite outgrowth 150% of the control. 

However, we saw no effect at doses less than 50 µM of NOR2 (Fig.4A). In the presence of 

100 µM of NOR2, a large number of explants with long neurites (> 200 µm in length) could 

be seen (Fig. 4D). SNAP, an another NO generator at 500 µM also induced long neurite 

outgrowth (Fig.4E). The majority of neurites induced from explants was positively stained 

with anti-GAP43 immunohistochemistry (Fig. 4F). In contrast, neurite outgrowth was 

dose-dependently inhibited by L-NAME, a universal NOS inhibitor (Fig. 4B). Neurite 

outgrowth was significantly inhibited (40-60%) at doses of 200-400 µM L-NAME relative to 

the control (Fig. 4B and G). Next, we tested the effect of combined L-NAME plus NOR2 on 

neurite outgrowth. NOR2 (50-100 µM) significantly reversed the inhibition of neurite 

outgrowth by 400 µM L-NAME (Fig. 4B). The combination of L-NAME plus NOR2 restored 

levels to 80-90% of the control (Fig. 4H, L-NAME plus NOR2).  

< ----- Fig. 5 

Timing of NO stimulation on neurite outgrowth from adult goldfish retina. 

We tested the effect of c-PTIO, a NO specific scavenger on neurite outgrowth in culture. 

Carboxy-PTIO (100 µM) significantly suppressed the neurite outgrowth (40% of control, Fig. 

5A and 5C) as compared to the control (Fig. 5A and 5B). Therefore, we used this c-PTIO to 

determine the action time of NO with a NO generator, NOR2. Carboxy-PTIO was added to 

the culture medium at different time points after NOR2 stimulation. Carboxy-PTIO (100 µM) 

application blocked the neurite outgrowth at the same time (0 h) after NOR2 (100 µM) 

treatment (Fig. 5A). Carboxy-PTIO application at 3 h after NOR2 treatment moderately 

blocked the neurite outgrowth (Fig. 5A and 5D) but its application at 6 h after NOR2 

treatment did not block the neurite outgrowth like NOR2 alone (Fig. 5A and 5E).  

 

 

< ----- Fig. 6 
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Neurite outgrowth from adult goldfish retina controlled by nNOS-NO system 

To determine the effect of nNOS on neurite outgrowth, we used nNOS specific genetic and 

pharmacological approaches. First, the nNOS specific inhibitor ETPI (10, 20, 40 µM) 

suppressed neurite outgrowth by 40-60% relative to the control (Fig. 6A). The effective dose 

of ETPI (10-40 µM) was one order of magnitude lower than that of the nonspecific inhibitor, 

L-NAME (400 µM) (cf. Fig. 4B). We did not observe any significant neurite outgrowth in this 

culture (Fig. 6B). We then tested the effect of nNOS cDNA specific RNAi. The levels of 

nNOS protein were decreased by 60% following nNOS specific RNAi treatment, relative to 

the control (Fig. 6C). Conversely, the levels of nNOS protein did not change in cultures of 

RNAi for scramble sequences (Fig. 6C). The nNOS specific RNAi treatment significantly 

inhibited neurite outgrowth by 45% relative to the control or scrambled treatment (Fig. 6D). 

We observed only short neurites following treatment with nNOS specific RNAi (Fig. 6F) 

which was in contrast to the longer neurites in the scrambled treatment (Fig. 6E). Taken 

together, these data suggest that nNOS preferentially generates NO to promote neurite 

outgrowth in the goldfish retina after axotomy. 

< ----- Fig. 7 

Neurite outgrowth from the adult goldfish retina is controlled by cGMP 

We investigated the involvement of cGMP upon neurite outgrowth to elucidate the pathway 

for the nNOS-NO signaling cascade. A single treatment of IBMX (500 µM), a nonspecific 

inhibitor of cyclic nucleotide phosphodiesterase (PDE), which increase intracellular cyclic 

nucleotide had no effect on neurite outgrowth relative to the control (Fig. 7A). In contrast, 

SNAP, an NO donor (500 µM), significantly increased neurite outgrowth (Fig. 7A, cf. Fig. 

4E). There was no difference in neurite outgrowth between the explants treated with SNAP 

alone or a combination of IBMX and SNAP (Fig. 7A). Next, we investigated the effect of 

dbcGMP, a membrane permeable cGMP analog, on neurite outgrowth in the adult goldfish 

retina. Dibutyryl cGMP increased neurite outgrowth dose-dependently (Fig. 7B). We observed 
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a large number of explants with long neurites following treatment with 400 µM dbcGMP (Fig. 

7E) relative to the control (Fig. 7D). We saw no effect at the lowest dose of dbcGMP (100 

µM) (Fig. 7B).  

 To determine which NO or cGMP induces neurite outgrowth, we tested the effect of 

ODQ, a selective sGC inhibitor, on neurite outgrowth. ODQ (100 µM) clearly inhibited 

neurite outgrowth by 30% relative to the control (Fig. 7C). We did not observe any significant 

neurite outgrowth by ODQ in this culture (Fig. 7F). Interestingly, the combination of 100 µM 

ODQ and 200-400 µM dbcGMP reversed the effect of ODQ alone (Fig. 7C). We observed a 

large number of explants with long neurites in this culture of dbcGMP and ODQ (Fig. 7G).  

 Last, we tested the effect of Rp-cGMPS, a specific inhibitor of PKG on neurite 

outgrowth from goldfish retina. Rp-cGMPS dose-dependently inhibited the neurite outgrowth 

(Fig. 7H). Only a small number of explants with short neurites were observed in this culture 

(10 µM Rp-cGMPS) (Fig. 7I). Furthermore, the combination of 500 µM SNAP and 10 µM 

Rp-cGMPS did not restore neurite outgrowth (Fig. 7H). 

< ----- Fig. 8 

Cell viability in the retinal explants. 

To determine, whether or not the NO-cGMP related agents affect to cell viability, we 

quantified cell survival by MTT assay after treatment. Fig. 8 shows that NO generators, all 

inhibitors, NO scavenger and dbcGMP have not any effect on cell viability relative to the 

control. 

< ----- Fig. 9 

CyclicGMP promotes optic nerve regeneration in vivo. 

As dbcGMP actually induced neurite outgrowth from adult goldfish retina in culture, we 

studied effect of dbcGMP on optic nerve regeneration in vivo. We measured number of 

regenerating fibres in the optic nerve and reinnervating RGCs to the tectum by using 

anterograde and retrograde labeling methods. Intraocular injection of CTB revealed that a 
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large number of nerve fibres in goldfish treated with dbcGMP were proceeding over the crush 

site (marked with an asterisk) at 10 days after nerve injury (Fig. 9B) as compared to those in 

goldfish treated with PBS alone (Fig. 9A). Tectal injection of FluoroGold revealed that a large 

number of retinal ganglion cells were retrogradely labeled in the intact fish (Fig. 9C). The 

quantitative data for the labeled RGCs are shown in Fig. 9F. In the goldfish with intraocular 

injection of 2 µl of PBS, the number of labeled RGCs was only 40% of the intact retina (Figs. 

9D and 9F). In the goldfish with intraocular injection of 2 µl of 20 mM dbcGMP (intraocular 

concentration ~400 µM), the number of labeled RGCs was increased 70% of the intact retina 

3 weeks after nerve crush (Figs. 9E and F). Together, our results suggest that dbcGMP 

promotes goldfish optic nerve regeneration in vivo. 
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Discussion 

nNOS activation in the goldfish RGCs after optic nerve injury. 

In the control goldfish retina, the expression of nNOS mRNA and protein could be seen 

positively in all nuclear layers (outer, inner nuclear and ganglion cell layers). Following the 

optic nerve transection, the nNOS expression increased primarily in the ganglion cell layer at 

5 days, peaked at 20 days and then returned to the control level by 40 days after axotomy (Fig. 

2 and 3). The positive cells in the ganglion cell layer were confirmed as RGCs by TUJI 

immunohistochemistry. NOS activity in NADPHd and NO production in nitrite product 

further supported this result. The goldfish RGCs can regrow their axons and reinnervate the 

tectum within this period of 5-40 days after injury (Kato et al. 2007). In rat retina, Lee et al. 

(2003) reported that nNOS protein levels increased 2.5 fold in the RGCs at 5-7 days, and then 

decreased 1.3 fold at 28 days after injury. Almost 90% of rat RGCs rapidly died within this 

period of 7-28 days after axotomy.  Accompaning to the nNOS activation in the RGCs after 

axotomy, there is high expression of iNOS in the Müller cells in rat (Koeberle and Ball 1999). 

The iNOS activation in the glial Müller cells after optic nerve injury is limited to the 

mammalian retina (Koistinaho and Sagar 1995). In our goldfish data, there is no increase of 

NADPHd staining in the Müller cells after axotomy (Fig. 1). The over production of NO in 

both the RGCs and the Müller glia in rat might result in the apoptosis of RGCs (Neufeld et al. 

1999), although the sensitivity of NO on the survival or cell death is different (Goureau et al. 

1999, Kawasaki et al. 2000). Dependending on intracellular concentration of NO, it can work 

as a neuromodulator or it can be toxic in the CNS (Cudeiro and Rivadulla 1999). In our 

previous papers, cell survival signals of phospho-Akt and phospho-Bad are rapidly 

upregulated in the goldfish RGCs 2-5 days, whereas the survival signals are rapidly 

downregulated in the rat RGCs 2-5 days after axotomy (Koriyama et al. 2006, Homma et al. 

2007). In coupled with these results, the expression balance in NOS isoforms, particularly in 

the nNOS and iNOS, might be an importance for determining the neuroprotective or 
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neurodegenerative fate of CNS neurons after nerve injury.  

The expression of nNOS is generally regulated by various pathological conditions such 

as nerve injury and hypoxia via transcriptional activation of c-Jun (Vizzard 1997, Prabhakar et 

al. 1996, Herdegen et al. 1993). The expression of nNOS can also be induced by many 

extracellular factors, such as nerve growth factor (Schonhoff et al. 2001), brain-derived 

neurotrophic factor, NT-3 and NT-4 (Huber et al. 1995), and retinoic acid (Ogura et al. 1996, 

Ghigo et al.1998) in neurons and basic fibroblast growth factor in both neurons (Wen et al. 

1995) and glial cells (Blanco et al. 2000). As for retinoic acid, we have recently showed that 

retinoic acid signaling was involved in the early stage of optic nerve regeneration (Nagashima 

et al. 2009). Levels of retinaldehyde dehydrogenase 2 (RALDH 2) mRNA rapidly increased 

and peaked in the goldfish RGCs at 7-10 days after optic nerve lesion. The induction peak of 

RALDH2 is a little bit earlier than that of nNOS (at 20 days after axotomy). Therefore 

retinoic acid may be a candidate molecule for regulation of nNOS induction. We need further 

experiments to elucidate it. 

                                                                               

NO-cGMP cascade on neurite outgrowth from adult goldfish injured retina. 

In the retinal explant culture system, NO donors and dbcGMP dose-dependently enhanced 

neurite outgrowth for 5 days. Conversely, NOS inhibitor, sGC inhibitor and PKG inhibitor 

significantly suppressed neurite outgrowth about 40% of control. The neurite outgrowing cells 

in the retinal explant culture were found to be only RGCs (Johns et al. 1978). The outgrowth 

of neurites from RGCs was further confirmed by anti-GAP43 immunohistochemistry (Fig. 4E, 

Kaneda et al. 2008). A specific nNOS inhibitor, ETPI and a siRNA against nNOS gene 

significantly and effectively suppressed the neurite outgrowth. Although the NO donor 

replaced the suppression of neurite outgrowth by L-NAME, dbcGMP replaced the 

suppression of neurite outgrowth by ODQ, however, the NO donor did not replaced the 

suppression of neurite outgrowth by Rp-cGMPS. These results strongly support the 
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involvement of NO-cGMP signaling on neurite outgrowth in the injured goldfish RGCs. The 

data also support the stream of NO-cGMP signaling cascade from initial nNOS to final PKG 

activation (Fig. 10). By using a specific NO scavenger, c-PTIO in combination with NO 

generator, NOR2, we could determine the time of switching on this signal. The switching time 

is 3-6 hrs after NOR2 stimulation, because the addition of c-PTIO 3-6 h after NOR2 treatment 

did not block the neurite outgrowth (Fig.5).   

IBMX, a PDE inhibitor, did not evoke any neurite outgrowth in retinal explant culture 

and IBMX plus SNAP did not have any additive effect on neurite outgrowth as compared 

with that of SNAP alone (Fig.7). These results further suggest that the neurite outgrowth from 

the injured goldfish RGCs is due to cGMP but not to cAMP (Tsukada et al. 2002). Baldridge 

and Fischer (2001) reported that the IBMX and SNAP at the same concentration in our study 

induced positive immunoreactivity of cGMP in the goldfish RGCs, but IBMX alone did not 

induce any cGMP immunoreactivity in the retina. In the explant culture system, retina is 

certainly composed of neuronal and non-neuronal cells. The fact that NO-cGMP related 

agents used have no effect upon cell survival or cell death in this experimental condition as 

shown in Fig. 8 further supports the neuroregenerative action of NO generation after optic 

nerve injury. We have no data of NOS activation in the Müller glia in the goldfish retina after 

axotomy (Fig.1). Therefore, it can be concluded that NO generation in the fish retina after 

optic nerve injury is different in properties from that in rat (Koeberle and Ball, 1999, 

Kawasaki et al. 2000). Taken together, the data strongly indicate that nNOS activation works 

as promotion of neurite outgrowth from the injured RCGs through NO-cGMP-PKG signaling, 

but not protein S-nitrosylation (Stroissnigg et al. 2007) in the goldfish RGCs after optic nerve 

lesion. Intraocular dbcGMP also promoted optic nerve regeneration in vivo (Fig. 9). 

In summary, we report for the first time the nNOS induction leading to promotion of 

neurite outgrowth in the goldfish retina after optic nerve injury. The neurite outgrowth from 

the injured RGCs was significantly promoted by stimulation of NO-cGMP signaling 
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molecules. Therefore, we conclude that NO-cGMP signaling pathway plays a key role for 

optic nerve regeneration in goldfish. 
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Figure legends 

Fig. 1 

NADPHd staining and nitrite production in the goldfish retina after optic nerve lesioning. 

(A-C) NADPHd staining increased primarily in the GCL 20 days after lesioning (B) 

compared with the control retina (A), and returned to the control level 40 days (C) after 

lesioning. ONL: outer nuclear layer, INL: inner nuclear layer, GCL: ganglion cell layer.  

Scale bar = 100 µm. (D) Nitrite production was measured in the retinas at various time points 

after lesioning. The concentration of nitrite increased within 5 days, peaked at 20 days, and 

returned to baseline 40 days after injury. *P<0.05 vs. control (n=4).  

 

Fig. 2 

Upregulation of nNOS mRNA in the goldfish retina after optic nerve lesion. (A-C) In situ 

hybridization of nNOS mRNA in the goldfish retina during optic nerve regeneration. Levels 

of nNOS mRNA increased primarily in the GCL after 5 days and peaked at 20 days after 

lesioning (B) relative to the control (A). The levels of nNOS mRNA in the GCL gradually 

decreased thereafter up to 40 days (C) after lesioning. ONL: outer nuclear layer, INL: inner 

nuclear layer, GCL: ganglion cell layer.  Scale bar = 100 µm. 

 

Fig. 3 

Upregulation of nNOS protein in the goldfish retina after optic nerve lesioning. (A) Western 

blotting analysis of nNOS protein showing a specific band at 160 kDa. *P<0.05 vs. control. 

(n=4). (B-D) Immunoreactivity of nNOS protein increased primarily in the ganglion cell layer 

(GCL) at day 20 (C), relative to the control (B), and returned to basal levels by day 40 (D). 

ONL: outer nuclear layer, INL: inner nuclear layer. GCL: ganglion cell layer. Scale bar = 100 

µm.  
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Fig. 4 

Regulatory effect of NOS-NO related molecules upon neurite outgrowth in the goldfish 

retinal explant culture. (A and B) Quantitative data for NOS-NO related drugs on neurite 

outgrowth were obtained from axotomized goldfish retinal explant culture relative to the 

control (no treatment, 100%). (A) NO generator, NOR2 induced the neurite outgrowth. 

*P<0.05 vs. control. (n=4). (B) Universal NOS inhibitor, L-NAME inhibited the neurite 

outgrowth. *P<0.05 vs. control. (n=4). (C-H) Photomicrographs of neurite outgrowth under 

various conditions: (C) control. Scale bar = 100 µm, (D) 100 µM of NOR2, (E) 500 µM of 

SNAP, (F) immunohistochemistry of anti-GAP43 antibody in (E), (G) 400 µM of L-NAME, 

(H) L-NAME plus NOR2.  

 

Fig. 5  

Different application time of a NO scavenger on NO-induced neurite outgrowth.  

(A) Application of c-PTIO to the culture medium at different time points after NOR2 

treatment. c-PTIO application at the same time (0 h) after NOR2 treatment completely 

blocked the neurite outgrowth by NOR2.  c-PTIO application at 3 h after NOR2 treatment 

slightly blocked the neurite outgrowth, but c-PTIO application at 6 h after NOR2 treatment 

did not block any neurite outgrowth *P<0.05 vs. control. n = 4. (B-E) Photomicrographs of 

neurite outgrowth under various conditions. (B) Control, Scale bar = 100 µm, (C) c-PTIO at 0 

h after NOR2 treatment, (D) c-PTIO at 3 h after NOR2 treatment. (E) c-PTIO at 6 h after 

NOR2 treatment. 

 

Fig. 6 

Neuronal NOS specificity on neurite outgrowth in the goldfish retinal explant culture. (A) The 

nNOS specific inhibitor, ETPI, dose-dependently inhibited neurite outgrowth from 

axotomized retina. *P<0.05 vs. control. (n=4). (B) ETPI (40 µM). (C) Decrease in nNOS 
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protein level following treatment with nNOS-specific siRNA for 5 days relative to the control 

or scrambled siRNA. *P<0.05 vs. control. (n=3). (D) The nNOS specific siRNA significantly 

inhibited neurite outgrowth relative to the scrambled or control treatment. *P<0.05 vs. control. 

(n=4). (E) Scrambled siRNA, (F) nNOS-specific siRNA. Scale bar = 100 µm. 

 

Fig. 7 

Regulatory effect of cGMP related molecules upon neurite outgrowth in the retinal explant 

culture. (A) Effect of non-specific cyclic nucleotide phosphodiesterase inhibitor, IBMX 

and/or SNAP. *P<0.05 vs. control. (n=4). (B) Effect of dbcGMP, a membrane-permeable 

cGMP analog. *P<0.05 vs. control. (n=4). (C) Effect of dbcGMP (200-400 µM) and/or ODQ, 

a sGC inhibitor (100 µM). *P<0.05 vs. control. (n=4). (D-G) Photomicrographs of neurite 

outgrowth under various conditions: (D) control, (E) 400 µM of dbcGMP, (F) 100 µM of 

ODQ, (G) dbcGMP plus ODQ. (H) Effect of Rp-cGMPS, a PKG inhibitor and/or SNAP on 

neurite outgrowth. *P<0.05 vs. control. (n=4). (I) 10 µM of Rp-cGMPS. Scale bar = 100 µm. 

 

Fig. 8 

Lacking effect of NO-cGMP related agents upon cell survival. Retinal explants were treated 

with each agent for 5 days and then cell viability was quantified by MTT assay. (n=4). 

 

Fig. 9  

Cyclic GMP promotes optic nerve regeneration in vivo. (A, B) Regenerating nerve fibres in 

goldfish optic nerve at 10 days after crush under intraocular injection of 2 µl of PBS (A) or 

dbcGMP (20 mM, B). The nerve fibres were anterogradely labeled with cholera toxin B. The 

regenerating optic axons treated with intraocular dbcGMP more proceeded over the crush site 

(marked with an asterisk) than those treated with PBS alone. Scale bar = 100 µm. (C-F) 

Number of RGCs reinnervating the tectum at 3 weeks after crush under intraocular injection 
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of 2 µl of PBS (D) or dbcGMP (20 mM, E) relative to the intact control (C). Scale bar = 100 

µm. The RGCs were retrogradely labeled with FluoroGold. The number of RGCs in the 

flat-mounted retina treated with dbcGMP was larger than that of RGCs treated with PBS 

alone. *P<0.05 vs. PBS, F). 

 

Fig. 10  

Schematic diagram of NO-cGMP signaling pathway and its related agents used in this study. 

Optic nerve lesion initially induces nNOS expression followed by NO-cGMP signaling 

activation and finally leads to optic nerve regeneration through PKG activation.  
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