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Summary 

Endocannabinoids function as retrograde messengers and modulate synaptic transmission 

through presynaptic cannabinoid CB1 receptors. The magnitude and time-course of 

endocannabinoid signaling are thought to depend on the balance between the production and 

degradation of endocannabinoids. The major endocannabinoid 2-arachidonoylglycerol (2-AG) 

is hydrolized by monoacylglycerol lipase (MGL), which is shown to be localized at axon 

terminals. In the present study, we investigated how MGL regulates endocannabinoid 

signaling and influences synaptic transmission in the hippocampus. We found that MGL 

inhibitors, methyl arachidonoyl fluorophosphonate (MAFP) and arachidonoyl 

trifluoromethylketone (ATFMK), caused a gradual suppression of cannabinoid-sensitive 

IPSCs in cultured hippocampal neurons. This suppression was reversed by blocking CB1 

receptors and was attenuated by inhibiting 2-AG synthesis, indicating that MGL scavenges 

constitutively released 2-AG. We also found that the MGL inhibitors significantly prolonged 

the suppression of both IPSCs and EPSCs induced by exogenous 2-AG and 

depolarization-induced suppression of inhibition/excitation (DSI/DSE), a phenomenon known 

to be mediated by retrograde endocannabinoid signaling. In contrast, inhibitors of other 

endocannabinoid hydrolyzing enzymes, fatty acid amide hydrolase and cyclooxygenase-2, 

had no effect on the 2-AG-induced IPSC suppression. These results strongly suggest that 

presynaptic MGL not only hydrolyzes 2-AG released from activated postsynaptic neurons but 

also contributes to degradation of constitutively produced 2-AG and prevention of its 

accumulation around presynaptic terminals. Thus, the MGL activity determines basal 

endocannabinoid tone and terminates retrograde endocannabinoid signaling in the 

hippocampus. 
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Introduction 

Endocannabinoids are released from neurons in activity-dependent manners, act retrogradely 

on presynaptic CB1 cannabinoid receptors and modulate transmitter release (Alger, 2002; 

Freund et al., 2003; Diana and Marty, 2004; Ohno-Shosaku et al., 2005). This retrograde 

signaling is involved in short-term and long-term forms of synaptic plasticity (Chevaleyre et 

al., 2006) and contributes to certain forms of learning and memory (Marsicano et al., 2002; 

Kishimoto and Kano, 2006). Endocannabinoid release can be triggered either by strong 

depolarization of neurons (Kreitzer and Regehr, 2001; Ohno-Shosaku et al., 2001; Wilson and 

Nicoll, 2001) or by activation of Gq-coupled receptors such as group I metabotropic glutamate 

receptors (I-mGluRs) and M1/M3 muscarinic acetylcholine receptors (Maejima et al., 2001; 

Fukudome et al., 2004) through activating phopholipase Cβ (PLCβ) (Hashimotodani et al., 

2005; Maejima et al., 2005). 

The magnitude and time-course of intercellular signaling by diffusible molecules 

are generally determined by the balance between the generation and clearance of the 

molecules. Therefore, to understand endocannabinoid signaling, mechanisms of 

endocannabinoid degradation have to be elucidated. Biochemical studies have identified the 

enzymes that metabolize 2-arachidonoylglycerol (2-AG) and anandamide, the two major 

endocannabinoids. Fatty acid amide hydrolase (FAAH) and cyclooxygenase-2 (COX-2) 

metabolize both 2-AG and anandamide (Cravatt et al., 1996; Yu et al., 1997; Goparaju et al., 

1998; Kozak et al., 2000), whereas monoacylglycerol lipase (MGL) hydrolyzes 2-AG but not 

anandamide (Dinh et al., 2002). Previous studies have suggested that 2-AG, rather than 

anandamide, is responsible for several forms of endocannabinoid-mediated retrograde 

signaling (Chevaleyre and Castillo, 2003; Kim and Alger, 2004; Melis et al., 2004; 

Hashimotodani et al., 2005; Maejima et al., 2005; Safo and Regehr, 2005). Biochemical, 

pharmacological and genetic studies have suggested that 2-AG is degraded in the brain 
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primarily by MGL (Freund et al., 2003; Sugiura et al., 2006). Anatomical studies have clearly 

demonstrated that MGL is densely distributed on CB1-expressing presynaptic terminals (Dinh 

et al., 2002; Gulyas et al., 2004). All these findings strongly suggest that presynaptic MGL 

activity is crucial for terminating the endocannabinoid signal. This possibility was supported 

by the study showing that the newly reported MGL inhibitors 

6-methyl-2-[(4-methylphenyl)amino]-4H-3,1-benzoxazin-4-one (URB754) and 

[1,1’-biphenyl]-3-yl-carbamic acid, cyclohexyl ester (URB602) prolonged the hippocampal 

depolarization-induced suppression of inhibition (DSI) (Makara et al., 2005). However, a 

recent study has shown that both URB754 and URB602 fail to inhibit 2-AG hydrolysis in rat 

brain preparations (Saario et al., 2006). Therefore, roles of MGL in regulating 

endocannabinoid signaling remain unclear. In the present study, we addressed this issue by 

using URB754 and two other classical MGL inhibitors, MAFP and ATFMK. With cultured 

hippocampal neurons, we found that MAFP and ATFMK, but not URB754, markedly 

influenced the CB1-dependent presynaptic modulation of synaptic transmission. The data to 

be presented clearly show that MGL activity plays an important role not only in termination 

of endocannabinid signaling but also in degradation of constitutively released 

endocannabinoids. 
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Materials and Methods 

Preparation of neurons. All experiments were performed according to the guidelines laid 

down by the animal welfare committees of Kanazawa University and Osaka University. 

Cultured hippocampal neurons were prepared from newborn Sprague-Dawley rats for most 

experiments, and C57BL/6 mice for the experiments shown in Fig. 6D, as described 

previously (Ohno-Shosaku et al., 2001). Briefly, cells were mechanically dissociated from the 

hippocampi and plated onto culture dishes (35 mm) pretreated with poly L-ornithine (0.01 %). 

The cultures were kept at 36 °C in 5 % CO2 for 12-15 days before use. 

 

Electrophysiology. Each neuron of a pair was whole-cell voltage clamped at –80 mV using a 

patch pipette (3 –5 MΩ) filled with the internal solution containing (in mM) 130 K-gluconate, 

15 KCl, 10 HEPES, 0.2 EGTA, 6 MgCl2, 5 Na2ATP and 0.2 Na2GTP (pH 7.3, adjusted with 

KOH). The presynaptic neuron was stimulated by applying positive voltage pulses (to 0 mV, 2 

ms) at 0.5 Hz, and inhibitory or excitatory postsynaptic currents (IPSCs or EPSCs) were 

measured from the postsynaptic neuron, with a patch-clamp amplifier (EPC9/3 or EPC10/2, 

HEKA Electronics, Lambrecht/Pfalz, Germany). The external solution contained (in mM) 140 

NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10 glucose and 1 kynurenic acid (pH 7.3, 

adjusted with NaOH). The recording chamber was perfused with the external solution with or 

without drugs at a flow rate of 1-3 ml/min. For recording of EPSCs, the concentration of 

kynurenic acid was decreased to 0.5 mM. The cannabinoid sensitivity of IPSCs was checked 

by 2-AG application. The solution containing 2-AG was locally applied through a capillary 

tube (250 μm ID) located near the neurons using a perfusion valve controller (VC-6M, 

Warner Instruments, Hamden, CT). The applied 2-AG was rapidly washed out by continuous 

bath perfusion. DSI was induced by postsynaptic depolarization from –80 mV to 0 mV. For 
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each neuron pair, the duration of depolarization was adjusted to induce DSI more than 50 % 

within a range of 1-5 sec. Magnitudes of DSI were measured as the percentage of the mean 

amplitude of IPSCs acquired between 4 and 14 sec after the end of depolarization relative to 

that acquired for 30 sec before the depolarization. For experiments to monitor 

depolarization-induced suppression of excitation (DSE), neurons prepared from mouse 

hippocampi were used. Because DSE is less prominent than DSI (Ohno-Shosaku et al., 2002), 

longer duration of depolarization (5 or 10 sec) was required for inducing DSE and neuron 

pairs exhibiting more than 20 % of DSE magnitude were selected (4 of 7 neuron pairs). In Fig. 

3A, the postsynaptic neuron was dialyzed with an internal solution containing (mM) 120 

K-gluconate, 15 KCl, 10 HEPES, 5 EGTA, 6 MgCl2, 5 Na2ATP and 0.2 Na2GTP (pH 7.3, 

adjusted with KOH). Magnitudes of suppression caused by the muscarinic agonist 

oxotremorine-M (oxo-M) were calculated as the percentage of the mean amplitudes of 10 

consecutive IPSCs during oxo-M application relative to that before application. All data are 

expressed as mean ± SEM. All experiments were performed at room temperature. 

 

Chemicals. Methyl arachidonoyl fluorophosphonate (MAFP), arachidonoyl 

trifluoromethylketone (ATFMK), tetrahydrolipstatin (THL) and meloxicam were purchased 

from Sigma-Aldrich (St. Louis, MO). AM281 and oxo-M were from Tocris (Bristol, UK). 

2-AG was from Cayman Chemical (Ann Arbor, MI). 

(3’-(Aminocarbonyl)[1,1’-biphenyl]-3-yl)-cyclohexylcarbamate (URB597) was purchased 

from Calbiochem (Darmstadt, Germany) and Cayman Chemical. URB754 was purchased 

from BIOMOL (Plymouth Meeting, PA) and Cayman Chemical. We obtained the same results 

by using the chemicals from different companies, and therefore we pooled the data. All these 

chemicals except for oxo-M were dissolved in DMSO as stock solutions, and added to the 

external solution just before use. The concentration of DMSO did not exceed 0.1 %. 
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Results 

Neither DSI nor 2-AG-induced suppression is affected by URB754 

We began by examining effects of the newly-reported MGL inhibitor URB754 (Makara et al., 

2005) on hippocampal DSI. We recorded cannabinoid-sensitive IPSCs and induced DSI by 

postsynaptic depolarization. We also monitored transient suppression of IPSCs induced by 

exogenous 2-AG applied locally around the postsynaptic neuron. When 2-AG (0.1 μM) was 

applied for 10 sec, the IPSC amplitude rapidly declined and recovered to the original level 

(Fig. 1A). The time course of 2-AG-induced suppression, especially the recovering phase, was 

dependent on the concentration of applied 2-AG, but also exhibited a small variation among 

neuron pairs. However, in the same neuron pair, the time course of 2-AG-induced suppression 

was stable over repeated trials, thus can be used as an indicator of 2-AG degradation. If 

presynaptic 2-AG degradation is suppressed, the recovery phase is expected to be prolonged. 

As exemplified in Figure 1B, we induced DSI (open arrows) and 2-AG-dependent 

suppression (closed arrows) in individual neuron pairs. The amplitude of IPSCs slightly 

increased to 118.8 ± 5.3 % (n= 4) of control after bath application of URB754 (5 μM) (Fig. 

1B). This result was unexpected, because Makara et al. (2005) previously reported a decrease 

in IPSC amplitude by 3 μM URB754 in hippocampal slices. Furthermore, contrary to the 

previous study, we could not observe any changes in time course of DSI after URB754 

treatment (Fig. 1C). We also tested three other concentrations of URB754 (0.5, 10 and 50 μM), 

but observed no prolongation of DSI (data not shown). Furthermore, we observed no 

prolongation of the 2-AG-induced suppression of IPSCs by URB754 (Fig. 1D). If URB754 

does inhibit 2-AG hydrolysis by MGL, as shown by Makara et al. (2005), the present results 

indicate that MGL has little contribution to endocannabinoid signaling in our preparation. 
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Alternatively, if URB754 does not inhibit MGL, as demonstrated recently by Saario et al. 

(2006), the results in Figure 1 are inconclusive and a possibility remains that MGL contributes 

to DSI termination. To test this possibility, we examined effects of classical MGL inhibitors, 

MAFP (Goparaju et al., 1999; Dinh et al., 2002; Savinainen et al., 2003; Dinh et al., 2004; 

Saario et al., 2004; Walter et al., 2004) and ATFMK (Dinh et al., 2002; Walter et al., 2004) on 

DSI and 2AG-induced suppression of IPSCs.  

 

Accumulation of endocannabinoids by MGL inhibitors 

We found that bath application of MAFP (0.1 μM) caused a gradual decrease in the amplitude 

of cannabinoid-sensitive IPSCs (Fig. 2A, B, E). The time course of this suppression varied 

from cell to cell (Fig. 2A, 2B), but in most cases the IPSC amplitude reached to a stable level 

within 5 min. Importantly, the MAFP-induced suppression was reversed by the CB1 

antagonist AM281 (Fig. 2A, B, E). The same MAFP treatment induced no effects on 

cannabinoid-insensitive IPSCs (Fig. 2C, E), and only a slight suppression of EPSCs (Fig. 2D, 

E) that are less sensitive to cannabinoids than cannabinoid-sensitive IPSCs (Ohno-Shosaku et 

al., 2002). The small suppression of EPSC was also reversed by AM281 (Fig. 2E). Similar 

results were obtained in experiments with another MGL inhibitor, ATFMK. Application of 

ATFMK (10 μM) induced a gradual suppression of cannabinoid-sensitive IPSCs, which was 

reversed by AM281 (Fig. 2E). The most likely explanation for these results is that the 

inhibition of MGL caused accumulation of 2-AG around presynaptic terminals and activation 

of CB1 receptors. Alternatively, these drugs might activate CB1 receptors directly. This 

possibility, however, was excluded by the following experiments, where effects of MGL 

inhibitors were examined under suppression of 2-AG synthesis. 2-AG is produced from 

membrane lipids mainly through two enzymatic steps by phospholipase C (PLC) and 

diacylglycerol (DAG) lipase (Stella et al., 1997; Freund et al., 2003; Sugiura et al., 2006). 
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THL inhibits DAG lipase and suppresses 2-AG production under certain conditions (Bisogno 

et al., 2003; Melis et al., 2004; Maejima et al., 2005; Safo and Regehr, 2005). We confirmed 

that THL treatment blocked DSI almost completely (Fig. 3A, B, left). We also confirmed that 

THL blocked the endocannabinoid release induced by application of the muscarinic agonist 

oxo-M (Fukudome et al., 2004) (Fig. 3B, right). When neurons were pretreated with 5 μM 

THL for 5-7 min, the MAFP-induced suppression was significantly reduced (Fig. 3C). The 

effect of ATFMK was also reduced after the THL-treatment (Fig. 3C). These data suggest that 

2-AG is constitutively produced at basal conditions, at least partly through a THL-sensitive 

pathway. 

 

MGL inhibitors prolong recovery from 2-AG-induced suppression 

We next examined effects of MGL inhibitors on 2-AG-induced suppression of IPSCs. To 

minimize the endogenous 2-AG accumulation, the neurons were treated with THL before 

application of MGL inhibitors (Fig. 4A). We applied 2-AG (0.1 μM) three times, before and 

after THL-pretreatment, and during further application of MAFP (Fig. 4A, B) or ATFMK (Fig, 

4C). The time course of 2-AG-induced suppression was not influenced by THL, but markedly 

changed by the two MGL inhibitors (Fig. 4B, C). Whereas the time course of initial falling 

phase and the peak level of suppression were unchanged, the recovery from suppression was 

markedly prolonged. 

 A prolongation of 2-AG-induced suppression by MAFP was also observed at 

excitatory synapses. In this series of experiments, THL-pretreatment was omitted and a high 

dose of 2-AG (25 μM) was used, because of the low cannabinoid sensitivity of EPSCs 

(Ohno-Shosaku et al., 2002). The EPSC amplitude was decreased after 2-AG application, and 

slowly recovered after washout of 2-AG. The difference in recovery time course between 

IPSCs and EPSCs (Fig. 4B, E) can be attributable to the difference in the concentrations of 
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applied 2-AG. The treatment with MAFP did not affect the falling phase and the peak value of 

suppression, but almost completely suppressed the recovery of EPSCs from suppression (Fig. 

4D, E). In these conditions, the EPSC suppression lasted for at least more than 5 min (4 of 5 

cells), and was reversed by AM281 (Fig. 4D). Taken together, these results indicate that the 

MGL activity is required for decreasing the 2-AG level around presynaptic CB1 receptors 

when 2-AG is applied exogenously.  

 

FAAH and COX-2 do not contribute to 2-AG degradation at presynaptic sites 

We next examined whether other endocanabinoid hydrolyzing enzymes, FAAH and COX-2, 

are involved in degradation of exogenously applied 2-AG. In contrast to MGL inhibitors, the 

selective FAAH inhibitor URB597 and the selective COX-2 inhibitor meloxicam failed to 

affect the 2-AG-induced suppression of IPSCs. Treatment with 1 μM URB597 for 5 min 

caused no significant changes in basal IPSC amplitude (92.5 ± 4.1 % of control, n = 8) and 

peak value and time course of 2-AG-induced IPSC suppression (Fig. 5A). Treatment with 30 

μM meloxicam for 5 min reduced the basal IPSC amplitude to 75.2 ± 5.0 % of control (n = 

12), but did not influence the time course of 2-AG-induced suppression (Fig. 5B). In contrast, 

meloxicam (30 μM) significantly prolonged DSI (Fig. 5C), as has been reported in 

hippocampal slices (Kim and Alger, 2004). These results are consistent with the hypothesis 

that COX-2 is distributed postsynaptically and inactivates 2-AG before it is released (Kim and 

Alger, 2004). Taken together, our data strongly suggest that FAAH and COX-2 are not 

involved in degradation of 2-AG at presynaptic terminals. 

 

Prolongation of DSI by MGL inhibitors 

Finally, we determined whether MGL activity is required for the termination of phasic 

endocannabinoid signal generated by postsynaptic activity. We induced DSI by postsynaptic 
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depolarization and examined effects of MGL inhibitors on DSI. Because THL blocks DSI (Fig. 

3A), we could not use THL to prevent accumulation of 2-AG, which we adopted in the 

experiments shown in Figure 4. Therefore, we had to use MGL inhibitor at much lower 

concentrations to minimize 2-AG accumulation. We found that treatment with 7 nM MAFP 

caused relatively mild suppression of IPSC amplitude (64.9 ± 10.0 % of control, n = 6), but 

markedly prolonged the recovery phase of DSI (Fig. 6A, 6B). In the same neuron pairs, we 

confirmed that the recovery from 2-AG-induced suppression was similarly prolonged (Fig. 6A, 

6C). We also examined whether inhibition of MGL could prolong DSE. For this purpose, we 

used mouse hippocampal neurons, because DSE is larger in magnitude and can be induced 

more constantly in mice and than in rats (Ohno-Shosaku et al., 2002). As shown in Fig. 6D, 

DSE was significantly prolonged by treatment with 7 nM MAFP. These results indicate that 

MGL activity is crucial for termination of DSI/DSE as well as degradation of constitutively 

produced 2-AG. 

 

 

Discussion 

In the present study, we examined roles of MGL, which has been shown to be localized in 

presynaptic terminals, in termination of endocannabinoid signaling in cultured hippocampal 

neurons. Our data with URB754 are at variance from those in the previous study that URB754 

prolonged DSI and caused gradual suppression of spontaneous IPSCs. We found that URB754 

failed to prolong DSI, and rather increased the IPSC amplitude. The reasons for this 

discrepancy are unknown. One possibility is that URB754 used in this study was accidentally 

inactive or that the commercially available URB754 is structurally different from the 

substance that Makara et al. reported (Makara et al., 2005). This possibility is, however, 

unlikely, because we obtained the same results by using URB754 purchased from two 
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different companies (Cayman Chemical and BIOMOL). Importantly, Saario et al. confirmed 

that URB754 from Cayman Chemical is identical to that reported by Makara et al. (2005) by 

1H NMR spectroscopy (Saario et al., 2006). Another possibility is that the reported effects of 

URB754 (Makara et al., 2005) might be caused by a different molecular identity, as suggested 

in the recent report (Saario et al., 2006). 

Our results with MAFP and ATFMK demonstrated a crucial role of MGL in the 

regulation of endocannabinoid signaling. These MGL inhibitors caused a gradual suppression 

of IPSC/EPSC in a CB1-dependent manner, and prolonged the recovery phase of DSI/DSE. 

Furthermore, we found that the recovery of IPSC/EPSC from suppression after a brief 

application of 2-AG is highly sensitive to MGL inhibitors, but not to FAAH and COX-2 

inhibitors. Taken together, our data indicate that MGL activity plays an important role not 

only in terminating the phasic endocannabinoid signal generated by postsynaptic activity but 

also in scavenging the constitutively produced 2-AG and preventing its accumulation around 

CB1 receptors. 

 In this study, we used MAFP and ATFMK as MGL inhibitors (Goparaju et al., 1999; 

Dinh et al., 2002; Savinainen et al., 2003; Dinh et al., 2004; Saario et al., 2004; Walter et al., 

2004). However, the possibility remains that the effects of MAFP and ATFMK are caused by 

the actions on MAFP/ATFMK-sensitive cellular components other than MGL. One possible 

target is phospholipase A2. MAFP was first reported as an inhibitor of phospholipase A2. 

However, it has been revealed that MGL is more sensitive to MAFP than phospholipase A2 

(Goparaju et al., 1999). In the present study, we showed that MAFP caused marked effects on 

DSI/DSE even at 7 nM, which is comparable to the IC50 (2-3 nM) to MGL (Goparaju et al., 

1999; Saario et al., 2004). Therefore, it is most likely that the effects of MAFP were caused by 

inhibition of MGL not phospholipase A2. The second possible target is FAAH, because it is 

reported that MAFP inhibits FAAH (De Petrocellis et al., 1997; Deutsch et al., 1997). 
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However, this possibility can be excluded by the finding that the selective FAAH inhibitor 

URB597 failed to mimic the effects. The third possible target is the CB1 receptor. MAFP and 

ATFMK might depress IPSC/EPSC by acting directly on CB1 receptors. This possibility is, 

however, inconsistent with our finding that the effects of MAFP/ATFMK on basal IPSCs were 

largely suppressed by THL that inhibits 2-AG synthesis, and also with the biochemical study 

showing that MAFP has neither agonist nor antagonist activity at CB1 receptors (Savinainen 

et al., 2003). Thus, it is reasonable to conclude that the effects of MAFP and ATFMK 

presented here result mostly from the inhibition of MGL activity, although contribution of 

some unknown nonspecific effects of MAFP/ATFMK can not be excluded completely. 

 Our experimental data are consistent with the anatomical studies showing the 

distributions of endocannabinoid degradation enzymes. FAAH and COX-2 are expressed at 

the postsynaptic sites (Kaufmann et al., 1996; Egertova et al., 2003), whereas MGL is 

distributed at presynaptic sites (Dinh et al., 2002; Gulyas et al., 2004). We found that the 

recovery from 2-AG-induced suppression was affected by MGL inhibitors but not by FAAH 

and COX-2 inhibitors, suggesting a dominant role of MGL in inactivating 2-AG at 

presynaptic terminals. In line with this notion, we found that the recovery phase of DSI/DSE 

was markedly prolonged by MAFP. In hippocampal slices, it has been reported that the DSI 

recovery is not affected by the FAAH inhibitor URB597, but prolonged by the COX-2 

inhibitor meloxicam (Kim and Alger, 2004). We also confirmed that DSI was prolonged by 

meloxicam in cultured hippocampal neurons. These results suggest that COX-2 regulates 

2-AG production at postsynaptic site, whereas MGL degrades 2-AG at presynaptic site. 

 Anandamide is degraded in the brain primarily by FAAH, which is densely 

distributed at postsynaptic sites, but not presynaptic terminals. Therefore, it is expected that 

anandamide-mediated presynaptic effects are long-lasting when compared to those mediated 

by 2-AG. In fact, it has been reported that exogenously applied anandamide induced a 
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long-lasting depression of excitatory transmission in cultured hippocampal neurons (Straiker 

and Mackie, 2005). In our culture system, we also observed that anandamide application 

induced a long-lasting depression of IPSCs (data not shown), making a striking contrast to the 

transient suppression by 2-AG. It is therefore possible that 2-AG and anandamide might 

function as short-lived and long-lived retrograde messengers, respectively, in the brain. 

There are several reports suggesting that endocannabinoids are tonically released in 

the nervous tissues and their constitutive synthesis is balanced by their degradation. In 

hippocampal slices, application of the endocananbinoid uptake inhibitor AM404 depressed 

IPSCs and occluded DSI (Wilson and Nicoll, 2001), and the COX-2 inhibitor meloxicam 

induced a gradual depression of field EPSPs (Slanina and Schweitzer, 2005). In the 

hypothalamic arcuate nucleus, application of AM251 increased the amplitude of IPSCs in 

proopiomelanocortin neurons (Hentges et al., 2005). These authors reasoned their results as 

the presence of constitutive endocananbinoid tone, in agreement with the present study. 

 Our data suggest that presynaptic MGL activity plays an important role in 

scavenging the constitutively produced and accumulated 2-AG around CB1 receptors, which 

is consistent with the biochemical studies showing that inhibition of MGL increased basal 

2-AG levels in mouse brain (Quistad et al., 2006) or mouse cultured astrocytes (Walter et al., 

2004). Then, where is 2-AG produced and released? As illustrated in Figure 7, we assume that 

the most likely candidate is the postsynaptic sites facing presynaptic terminals, because one of 

the major 2-AG synthetic enzymes, DAG lipase α, is densely distributed at postsynaptic sites 

(Katona et al., 2006; Yoshida et al., 2006). Additionally, astrocytes might also contribute to 

2-AG production as shown previously (Walter et al., 2004). The third possibility remains that 

2-AG is produced within presynaptic terminals. Nevertheless, 2-AG appears to be produced 

constitutively and released tonically at basal conditions in the nervous tissue. The released 

2-AG then diffuses into presynaptic terminals, and is inactivated by MGL. The concentration 
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of 2-AG around presynaptic CB1 receptors should be determined by the balance between 

production and degradation of 2-AG. When presynaptic MGL is functional, the 2-AG level 

appears to be kept so low that CB1 receptors are not activated (Fig. 7A). When presynaptic 

MGL is blocked, 2-AG will be accumulated at presynaptic terminals, resulting in tonic 

activation of CB1 receptors (Fig. 7B). When a large amount of 2-AG is produced transiently 

depending on postsynaptic activity, the released 2-AG can activate CB1 receptors and cause 

transient suppression of transmitter release, which will then be terminated after 2-AG 

degradation by presynaptic MGL activity (Fig. 7C).  

 In this model, any changes in presynaptic MGL activity are expected to influence 

both tonic and phasic endocannabinoid signaling. Therefore, it is important to elucidate how 

MGL activity is regulated under physiological conditions. In the hippocampal CA3 area, 

persistently active CB1 receptors is reported to mute subpopulation of interneurons (Losonczy 

et al., 2004). It is possible that low MGL activities at presynaptic terminals may underlie 

persistent activation of CB1 receptors. It is reported that induction of 

endocannabinoid-mediated long-term depression at hippocampal inhibitory synapses requires 

CB1 receptor activation lasting for 5-10 min (Chevaleyre and Castillo, 2003). How can short 

tetanic stimulation (for example, 100 Hz, 1 sec, twice) cause such a long-lasting activation of 

CB1 receptors? If presynaptic MGL is down-regulated by tetanic stimulation, activation of 

CB1 receptors can last for several minutes. Although regulatory factors of MGL activity in 

neurons are not yet identified, Ca2+ is reported to inhibit MGL activity in microglial cells 

(Witting et al., 2004). The same group, however, demonstrated that MGL activity in 

astrocytes is not affected by Ca2+ (Walter et al., 2004). In the neocortex, timing-dependent 

long-term depression is reported to require simultaneous activation of presynaptic NMDA and 

CB1 receptors (Sjostrom et al., 2003). If Ca2+ is a negative regulator of MGL, it is possible 

that presynaptic activation of NMDA receptors inactivates MGL and thereby enhances the 

 15



Hashimotodani et al.: Roles of MGL in endocannabinoid signaling 
 

endocannabinoid signaling. Despite such circumstantial evidence, our current knowledge 

about the regulation of MGL activity is rather limited. Further studies are needed to elucidate 

mechanisms of regulation of MGL activity and its physiological relevance. 
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Figure legends 

 

Figure 1.   URB754 has no effect on DSI and 2-AG-induced suppression of IPSCs. 

A. Schematic drawing showing local application of 2-AG to a pair of voltage-clamped 

neurons with cannabinoid-sensitive synapses (left). Right panel shows a representative 

experiment, in which locally applied 2-AG (0.1 μM for 10 sec) reversibly decreased the 

amplitudes of cannabinoid-sensitive IPSCs. B. Examples of IPSC traces (left) and the time 

course of IPSC amplitude (right) from a representative experiment on the effects of URB754. 

DSI and 2-AG-induced suppression were induced repeatedly by postsynaptic depolarization 

(0 mV, 5 sec, open arrows) and by local 2-AG application (0.1 μM, 10 sec, closed arrows), 

respectively, before and during application of URB754 (5 μM). Sample IPSC traces (left) 

were acquired at the time points indicated in the graph (a-l, right). C, D. Averaged time 

courses of DSI (C) and 2-AG-induced suppression (D) obtained before and 5-10 min after the 

initiation of URB754 application (5 μM, n = 4).  

 

 

Figure 2.   MGL inhibitors specifically suppress cannabinoid-sensitive synaptic 

transmissions in a CB1-dependent manner. A, B. Two representative experiments showing the 

effects of bath-applied MAFP (0.1 μM) on cannabinoid-sensitive IPSCs. The IPSC traces 

acquired at the indicated time points (a-c) (top) and the IPSC amplitudes plotted as a function 

of time (bottom) are shown. The IPSC amplitude declined slowly (A) or rapidly (B) after 

MAFP application, and recovered to the initial level after addition of the CB1 antagonist 

AM281 (0.3 μM). C. Effect of bath-applied MAFP (0.1 μM) on cannabinoid-insensitive 

IPSCs. Examples of IPSC traces before and 5 min after the initiation of MAFP application 
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(top) and averaged data for the time course of IPSC amplitude (bottom, n = 4) are shown. D. 

Effects of bath-applied MAFP (0.1 μM) on EPSCs. Examples of EPSC traces before and 5 

min after the initiation of MAFP application (top) and averaged data for the time course of 

EPSC amplitude (bottom, n = 9) are shown. E. (From left to right) Averaged data showing 

percent changes in the amplitudes of cannabinoid-sensitive IPSCs, cannabinoid-insensitive 

IPSCs and EPSCs by application of indicated drugs. Numbers of tested cells are indicated in 

parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001 by paired t-test. 

 

 

Figure 3.  The DAG lipase inhibitor THL eliminates endocannabinoid release and 

reduces IPSC suppression caused by MGL inhibitors. A. Blockade of DSI by THL. The graph 

shows averaged time course of DSI before and 5 min after bath application of 10 μM THL. B. 

Summary bar graphs showing the effects of THL on DSI (left) and endocannabinoid-mediated 

suppression of IPSCs by the muscarinic agonist oxo-M (3 μM). Oxo-M (3 μM) was 

bath-applied for 1 min before (Control) and after (THL) treatment with THL (5 μM) for 5 min. 

C. Pretreatment with THL attenuates the suppression of IPSCs by MGL inhibitors. Effects of 

MAFP (0.1 μM) or ATFMK (10 μM) on cannabinoid-sensitive IPSCs were examined in the 

neuron pairs with (+THL) or without (-THL) pretreatment of THL (5 μM) for 5-7 min. 

Averaged data showing percent changes in the amplitudes of cannabinoid-sensitive IPSCs 5 

min after the initiation of MAFP or ATFMK application. Numbers of tested cells are indicated 

in parentheses. ** p < 0.01, *** p < 0.001 by paired (A, B) or unpaired t-test (C). 

 

 

Figure 4.  MGL inhibitors prolong the 2-AG-induced suppression. A. A 
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representative experiment showing effects of a sequential treatment with THL (5 μM) and 

MAFP (0.1 μM) on 2-AG-induced IPSC suppression. Downward arrows indicate the periods 

of 2-AG application. IPSC traces acquired at the indicated time points (a-i) are shown on the 

left. B. Average data for the time course of 2-AG-induced IPSC suppression before (Control) 

and after THL-treatment, and during further treatment with MAFP (0.1 μM, n = 10). C. 

Average data for the time course of 2-AG-induced IPSC suppression before and after 

THL-treatment, and during further treatment with ATFMK (10 μM, n = 6). D. E, An example 

(D) and the averaged data (E) showing effects of MAFP treatment on 2-AG-induced 

suppression of EPSCs. EPSC traces acquired at the indicated time points (a-f) are shown on 

the top. 2-AG (25 μM) was applied for 10 sec (vertical arrows in D, or a horizontal bar in E) 

before and after application of 0.1 μM MAFP. The 2-AG-induced persistent suppression of 

EPSC after MAFP application was reversed by addition of AM281 (0.3 μM). The averaged 

time courses of 2-AG-induced EPSC suppression (E) were obtained before and 5 min after 

the initiation of MAFP application (n = 5). 

 

 

Figure 5.  FAAH and COX-2 inhibitors have no effect on the time course of 

2-AG-induced IPSC suppression. A, B. Average data for the time course of 2-AG-induced 

IPSC suppression obtained before and 5 min after the initiation of application of the FAAH 

inhibitor URB597 (1 μM) (A, n = 8) or the COX-2 inhibitor meloxicam (30 μM) (B, n = 4). C. 

Meloxicam slightly but significantly prolongs DSI. Average data for the time course of DSI 

before and after treatment with meloxicam for 5 min (30 μM, n = 8). The normalized IPSC 

amplitudes from 10 sec to 28 sec following the depolarization were significantly smaller after 

the meloxicam treatment when compared to those before the treatment (p < 0.05 by paired 
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t-test). 

 

 

Figure 6.  The MGL inhibitor MAFP prolongs DSI, DSE and 2-AG-induced IPSC 

suppression. A. Examples of IPSC traces (top) and the time course (bottom) of IPSC 

amplitude from a representative experiment. DSI and 2-AG-induced suppression were 

induced repeatedly by postsynaptic depolarization (0 mV, 5 sec, open arrows) and by local 

2-AG application (0.1 μM, 10 sec, closed arrows), respectively, before and during application 

of MAFP (7 nM). IPSC traces were acquired at the indicated time points (a-l). B, C. Average 

data for the time course of DSI (B) and 2-AG-induced IPSC suppression (C) obtained before 

and 5-8 min after the initiation of 7 nM MAFP application (n = 6). D. Examples of EPSC 

traces (left) and the averaged time course of DSE (right, n = 4). Treatment with MAFP (7 nM) 

significantly prolonged DSE induced by 5 or 10 sec postsynaptic depolarization of mouse 

hippocampal neurons. Thin, bold and gray traces were acquired before, 2 sec after, and 40 sec 

after depolarization, respectively. 

 

 

Figure 7.  A model for the roles of presynaptic MGL in regulating basal 

endocannabinoid tone and terminating phasic endocannabinoid actions dependent on 

postsynaptic neuronal activity.  A. At a resting state, certain amount of 2-AG is constitutively 

produced and released from neurons or glial cells. The released 2-AG then diffuses into 

presynaptic terminal membranes, and rapidly inactivated by MGL so that CB1 receptors are 

not activated. B. When MGL is blocked at a resting state, 2-AG is accumulated around 

presynaptic terminals, and its local concentration is elevated high enough to tonically activate 

CB1 receptors. C. When a large amount of 2-AG is produced and released from activated 
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postsynaptic neurons, the released 2-AG activates CB1 receptors and the 2-AG signal is 

terminated by its degradation by presynaptic MGL. 
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