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Abstract—A noninvasive and unconstrained real-time method
to detect the respiration rhythm and pulse rate during sleep is
presented. By employing the & trous algorithm of the wavelet
transformation (WT), the respiration rhythm and pulse rate
can be monitored in real-time from a pressure signal acquired
with a pressure sensor placed under a pillow. The waveform
for respiration rhythm detection is derived from the 2° scale
approximation, while that for pulse rate detection is synthesized
by combining the 2* and 2° scale details. To minimize the latency
in data processing and realize the highest real-time performance,
the respiration rhythm and pulse rate are estimated by using
waveforms directly derived from the WT approximation and
detail components without the reconstruction procedure. This
method is evaluated with data collected from 13 healthy subjects.
By comparing with detections from finger photoelectric plethys-
mograms used for pulse rate detection, the sensitivity and positive
predictivity were 99.17% and 98.53%, respectively. Similarly,
for respiration rhythm, compared with detections from nasal
thermistor signals, results were 95.63% and 95.42%, respectively.
This study suggests that the proposed method is promising to be
used in a respiration rhythm and pulse rate monitor for real-time
monitoring of sleep-related diseases during sleep.

Index Terms—a trous algorithm, pulse rate, real-time monitor,
respiration rhythm, sleep monitor, wavelet transformation.

I. INTRODUCTION

ANY cardiovascular diseases, such as hypertension,
atherosclerosis, stroke, heart failure, cardiac arrhyth-
mias, and sudden death are related to sleep disturbances [1].
Real-time monitoring of respiration rhythm as well as heart
rate during sleep plays an important role in the diagnosis and
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treatment of disorders like sleep apnea, sudden death syndrome
[21, and heart diseases [3]-[5]. In the daily life, the monitoring
of respiration rhythm and heart rate during sleep may be tools
for the prevention and early diagnosis of adult diseases like obe-
sity, arrhythmias, and coronary artery diseases. They are also
used in the home healthcare for the monitoring of patients and
seniors’ healthy status [6]. There are numerous conventional
methods for respiration measurement, such as spirometry, nasal
thermocouples, body volume changes, inductance pneumog-
raphy, impedance plethysmography, strain gauge measurements
of thoracic circumference, pneumatic respiration transducers,
whole-body plethysmography [6], the fiber-optic sensor method
[7], photoplethysmography [8], the Doppler radar [9], and elec-
trocardiogram (ECG)-based derived respiration measurements
[101-[12]. However, all these methods may bring discomfort
and inconvenience to the subject and physician because the
sensor must be placed on the body or the sensor is expensive
for practical use and hard to manipulate. Heart rate monitoring
based on vital signs, such as the ECG, heart sounds, and finger
photoelectric plethysmography (FPP), also requires appropriate
sensors to be installed on the subject. Recently, Nakajima ez al.
[13] developed a low-cost pillow-shaped respiratory monitor
to meet the noninvasive and unconstrained requirements of
respiration measurement. Watanabe et al. [14] have devised
a new instrument to measure pressure changes within two
water-filled vinyl tubes under a pillow. Because the main signal
components in the respiration rhythm (about 10-20 min~?Y)
and pulse rate (about 50-80 min~?) are in different frequency
bands, Watanabe et al. applied a low-pass filter with a pass
band of 0.1-0.8 Hz, to obtain the respiration rhythm; and
estimated the pulse rate directly from the raw signal using the
peak detection method. Uchida et al. [15] employed the inde-
pendent component analysis (ICA) method to separate useful
signals from noise by using two channels of pressure signals.
Kanemitsu et al. [16] used power spectral density (PSD) to
estimate respiration rhythm and heart rate from the frequency
domain.

The wavelet transformation (WT) has found many applica-
tions in the biomedical signal processing field [17]. WT mul-
tiresolution analysis can be applied to detect ECG character-
istic points [18], to perform data compression [19], to extract
the fetal ECG [20], and to delineate ECG [21]. Chen et al. [22]
have successfully developed a batch method based on Mallat’s
algorithm [23] to extract waveforms for detecting the respiration
rhythm and pulse rate from a pressure signal measured with an
under-pillow sensor. However, real-time estimation of the res-
piration rhythm and pulse rate remained unresolved.
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Fig. 1. Schematic of the measurement setup. Two pressure signals are recorded
with two under-pillow sensors. FPP and nasal thermistor signals are recorded
simultaneously as the reference data.

This paper proposes an a trous algorithm-based [24] real-time
implementation of the respiration rhythm and pulse rate detec-
tion from a pressure signal acquired using an air-free water-
filled vinyl tube under a pillow during sleep. The measured
pressure signal is decomposed into detail and approximation
components at multiple scales with the a trous algorithm-based
method neglecting the re-sampling procedures (down-sampling
and up-sampling) and keeping a consistent temporal resolution.
Therefore, all of the detail and approximation components are
at the same sampling rate. After suppressing random noise with
the soft-threshold method [25], respiration- and pulse-related
waveforms are obtained from the detail and approximation com-
ponents in their respective characteristic scales without or with
reconstruction procedures. Both respiration rhythm and pulse
rate are determined by an algorithm called adaptive character-
istic point pursuit by modifying the method described in [28].
The detection accuracy performance was examined with the ref-
erence data. Detections without reconstruction procedures were
also investigated and compared with those with reconstruction
procedures. The results show that the detection accuracies of
both methods are very close, but the method without reconstruc-
tion procedures requires a shorter processing time and is suitable
for real-time applications.

. METHODOLOGY

A. Measurement Setup

A schematic illustration of the measurement system is shown
in Fig. 1. Two incompressible vinyl tubes, 30 cm in length and
2 cm in diameter, are filled with air-free water in a preloaded
internal pressure of 3 kPa and sandwiched between two acrylite
boards, both 3 mm thick, in parallel at a distance of 13 cm from
each other. One end of each tube is connected to an arterial
catheter. This sensor unit is placed under a pillow during
sleep to detect pressure changes beneath the near-neck and
far-neck occiput regions. Both static and dynamic components
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Fig. 2. Four directly measured signals: (a) far-neck occiput pressure, (b) near-
neck occiput pressure, (c) FPP, and (d) nasal thermistor signals. Each signal in
the figure is 4096 data points in length, or 40.96 s long.

of pressure within tubes are conditioned by bridge amplifiers
(KEYENCE Co. Ltd., Japan, Model AP-13, measurement
range: 0—1 MPa, repeatability accuracy: below +0.5% of the
full scale) connected to embedded catheters. The static pressure
component responds to the weight of a head, and the dynamic
component reflects the weight fluctuation of a head due to
breathing movements and pulsatile blood flow from the ex-
ternal carotid arteries around the head. After being filtered by an
analog filter with a pass band of 0.16-5 Hz, pressure signals are
digitized using a 16-bit analog-to-digital (A/D) card in a laptop
computer and stored on a digital tape recorder (Sony Corp.,
PC204A). The pillow is stuffed with numerous fragments of
soft comfortable material made of synthetic resins. Signals
were collected with this unconstrained noninvasive method
during sleep in either a supine or a recumbent position. FPP and
nasal thermistor measurements were recorded simultaneously
as reference data for evaluating the detection accuracy. The
sampling rate was 100 Hz for all four signals.

Fig. 2 shows 4096 samples of typical measured data, or
40.96 s in time. The upper two rows display pressure wave-
forms measured under the far-neck [Fig. 2(a)] and near-neck
[Fig. 2(b)] occiput regions. Inner pressure in each tube changes
in accordance with respiratory motion and cardiac beating. The
lower two rows are FPP [Fig. 2(c)] and nasal thermistor wave-
forms [Fig. 2(d)], respectively. It can be seen that spike-like
pulses appeared in the far-neck and near-neck occiput pressures
and the variations are beat-by-beat quite synchronous with
the heartbeats in the FPP signal. However, heart pulses in the
near-neck signal are much more distinguishable than those in
the far-neck signal. In contrast, the respiration rhythm in both
pressure signals [Fig. 2(a) and (b)] can be identified clearly
breath-by-breath, corresponding to the nasal thermistor signal,
although slight misalignments in phase exist between different
signals. Based upon these observations, the near-neck pressure
signal was used in the detection for the respiration rhythm and
pulse rate.
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B. Subjects

The near-neck and far-neck occiput pressure signals were
collected from 13 healthy subjects (5 female and 8 male
fourth-year college students, 21-22 years of age) at the School
of Health Sciences, Kanazawa University, Japan. Approxi-
mately 2 hr. data were recorded from each subject during sleep.
Finger photoelectric plethysmography and nasal thermistor
signals were also collected as references for the pulse rate and
respiration rhythm, respectively.

C. a Trous-Based Wavelet Transformation

The WT can separate a signal into different components with
wavelet functions derived by dilating and translating a single
prototype wavelet function ¢ [23]. The WT of a signal f is
defined as

+oo —a '
st(a)=\/i§ [ rew (ts )dt 1

where s and a are the scale and translation factors of the proto-
type wavelet 19, respectively. The translation factor a is a param-
eter to observe the whole signal through shifting the compact
supported wavelet function at a specific time. When the scale
factor s is altered from small to large, the basis wavelet func-
tion is dilated in the time domain and the corresponding WT
coefficients give rougher representation of a signal in the lower
frequency range, and vice versa.

When a discrete signal f, sampled at a regular interval T, is
taken into consideration, the scale factor s and the translation
factor a can be discretized on a dyadic grid plane: s = 27,
a = 2k, where j, k € Z and Z is the integral set. This kind
of the WT is called a dyadic WT (DWT). Its basis functions are
expressed as

Yix () = 27929279t — k), j, k € Z. @

To realize multiple decomposition of a discrete signal at dif-
ferent scales, a recursive Mallat’s algorithm can be applied as a
cascade of a highpass FIR filter go and a lowpass FIR filter hg
in each scale [23), as illustrated in Fig. 3(a). go is the high-pass
filter to obtain the detail component; and h is the low-pass filter
to obtain the approximation component. Ho(2) and Gp(z) are
the Z transformation of hg and go. The raw signal is decom-
posed into the approximation (a;) and detail (d;) components.
However, Mallat’s algorithm includes the subsampling proce-
dure after each filtering step; and this manipulation leads to the
signal phase variant (time shifting) and reduces the temporal res-
olution of wavelet coefficients as the scale increases [23], [26].
Real-time application requires an efficient implementation that
does not lead to deterioration of detection accuracy. One idea
was to decompose the signal into the approximation (a}) and
detail (d;-) components at the same sampling rate in all scales
by neglecting the decimation processing. This can be achieved
by using the a trous algorithm [24] as shown in Fig. 3(b). The
a trous algorithm is one of the possible alternatives to maintain
the consistency in the signal phase and the temporal resolution at
different scales. It has almost the same structure as the Mallat’s
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Fig. 3. The DWT cascade structures of (a) Mallat’s algorithm and (b) & trous
algorithm. See the text for details.

algorithm except for the subsampling procedure. However, un-
like Mallat’s algorithm, the & trous algorithm is time-invariant
and has the same temporal resolution in every scale [26]. The
a trous algorithm neglects the down-sampling and up-sampling
procedures and its equivalent low- and highpass filters in the
s = 27 scale are replaced by Ho(2*) and Go(2°) [24].

When % is a symmetric function, the discrete Fourier trans-

form (DFT) of the DWT is [23]
DFT(Ws: () |
=DFT(f(n))DFT(¢si(n)) = F (w) ¥ (2w)
Go () F (w) @ (w) j=1
={Go (2w) Ho (w) F (w) @ (w) j=2
Go (27 'w)Ho(2%w) ... Ho(w)F ()P (w) j>2
©))

where & (w) is the DFT of a smoothing function ¢, Go(w)
and H(w) are the Fourier transformation of the highpass filter
go and lowpass filter ho in the filter bank, respectively, and
F (w) @ (w) is the discrete Fourier transformation of the pres-
sure signal z[n).

From (3), the WT of z[n] at scale 27 is equivalent to filtering
z([n] through G and Hp. The frequency responses Q;(w) and
P;(w) of the equivalent filter for the detail and approximation
components at scale 27 are

_ [ Go(w) . j=1
Qi W)= {Go (271) [E2 Ho (2w) j>1 @
_ Ho (w) ji=1
and P (W) =\ =1, (20) j>1° ©)

Here, the a trous algorithm is used to extract the respira-
tion- and pulse-related waveforms from the occiput pressure
signals only through the decomposition procedure. The CDF
(Cohen-Daubechies-Fauraue) (9,7) biorthogonal wavelet is se-
lected as the prototype wavelet to design the decomposition and
reconstruction filters [27]; it has compact support and four van-
ishing moments. The coefficients of the decomposition filters
are shown in Table I. As the filters are symmetrical with a linear
phase shift [27], the time delay in outputs of the equivalent fil-
ters can be easily estimated and adjusted with respect to the raw
signal in the real-time processing.
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COEFFICIENTS OF DECOMPOSITION FILTERS USED IN DWT

TABLE I

n _8dn] ho[n]

0 0 0

1 -0.04563588155695 | 0.02674875741100
2 0.02877176311397 | -0.01686411844300
3 0.29563588155670 | -0.07822326652900
4 -0.55754352622844 | 0.26686411844300
5 0.29563588155670 | 0.60294901823600
6 0.02877176311397 | 0.26686411844300
7 -0.04563588155695 | -0.07822326652900
8 0 -0.01686411844300
9 0 0.02674875741100

D. Real-Time Solution

Real time implementation for detection of respiration rhythm
and pulse rate during sleep is shown in Fig. 4. Pressure signals
were acquired through a 16-bit A/D card at 100 Hz sampling rate
and buffered into a ring memory. In order to maintain continuity
of the digital filtering procedure, once every 10 s (adjustable)
the data frame was buffered, the newly formed 10-s data frame
was decomposed into details and approximations by multireso-
lution WT based-upon the & trous algorithm. Therefore, the 2%
scale components will become 10+ m, s, where my, is the extra
part introduced by digital filtering. The whole 2* scale compo-
nents can be catenated together with the overlap-add method.
After removing noise in the detail components in the 24 and 2°
scales by a soft-threshold method, they are combined to form a
pulse-related waveform. The approximation component in the
26 scale is used as a respiration-related waveform. Because all
the filters are symmetrical with a linear phase shift, the latency
for each component is my /2. The detail components of the 24
and 2° scales can be summed by setting m4/2 and ms /2 as the
respective start times. Respiration rhythm and pulse rate read-
ings are updated every 10 s following the recommendation of
ANSI/AAMI EC13 [30]. In fact, the updating interval can be
set to any feasible value in practical application.

The two main procedures in the real-time implementation are
the a trous algorithm-based WT for waveform extraction of rel-
evant components, and an adaptive characteristic point pursuit
for characteristic point determination. The following describes
more details on the real-time implementation of relevant wave-
form extraction and characteristic point detection.

E. Determination of the Characteristic Scales for Estimating
Respiration and Pulse Waveforms

To determine the proper scales, by which respiration- and
pulse-related waveforms can be estimated, we have to under-
stand the properties of the respiration- and pulse-related sig-
nals as well as the characteristics of the equivalent digital filters
Q;(w) and P;(w) of the selected DWT.

Corresponding to a sampling rate of 100 Hz, the 3-dB band-
widths of the equivalent filters Q;(w) and P;(w) in the dif-
ferent scales are tabulated in Table II. Although portions of
the passbands among the different scales overlap, there is a
distinct central frequency in each scale. The central frequency
ranges, within which the most energy of the respiration and
pulse-related waveforms are concentrated, were examined using
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Fig. 4. Flowchart showing the real-time processing steps.

power spectra density (PSD) analysis with the Welch’s method.
A 4096-point segment of raw signal, 40.96 s in length, free
of artifacts, was selected to evaluate the reasonable frequency
ranges for the respiration and pulse-related waveforms. A Han-
ning window of 512-point width and 1024-point fast Fourier
transform was used. Fig. 5 shows the frequency spectrum of the
raw signal segment illustrated in Fig. 2(b). The PSD peak at
0.293 Hz corresponds to the respiration rhythm, which is equiv-
alent to 17.6 breaths/min, the result estimated from the reference
signal, as shown in Fig. 2(d). The PSD peak at 1.270 Hz is rele-
vant to the pulse rate, which is equivalent to 77.6 beats/min, the
result estimated from the reference signal, as shown in Fig. 2(c).
Other PSD peaks at 2.637, 3.906, 5.176, and 6.445 Hz indicate
the harmonic components of the pulse-related waveform in the
raw pressure signal. Similar results can be found in the data from
other subjects. From Fig. 5 and a general understanding of res-
piration and the heartbeat, it can be concluded that the proper
frequency range for the respiration-related waveform is within
0.1-0.5 Hz, and 0.6-6.0 Hz for the pulse-related waveform. It
was observed that most of the spectral energies in the respira-
tion-related signal are included in the approximation component
of the 2 scale; and the spectral range in the pulse-related signal
appears to extend across more than one scale, and may contain
a significant portion of the detail components of the 2¢ and 2°
scales. Although the 28 scale detail component occupies the fre-
quency range 0.8-1.7 Hz, in this frequency range the pulse wave
appears to be the sinus wave not the pulse peak. Therefore, we
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Fig. 5. The PSD of the near-neck occiput pressure signal. The leftmost peak
is corresponding to the respiration rhythm. Its next peak is a fundamental fre-
quency of heartbeats. Other peaks are the harmonics of the heartbeats.

TABLE II
THREE-DECIBEL BANDWIDTHS OF EQUIVALENT DIGITAL FILTERS Q ;(w)
AND Pj(w) IN THE 2'-26 SCALES WITH RESPECT TO THE
SAMPLING RATE OF 100 Hz

Scale, 2 QO{w) Pw)
3 dB Bandwidth (Hz) | 3 dB Bandwidth (Hz)
2! 26.7-50.0 0-273
22 13.6-27.8 0-133
2 6.7-13.9 0-6.5
24 34-69 0-3.3
25 1.7-3.3 0-1.7
2¢ 0.8-1.7 0-0.8

do not use the 2° scale detail to synthesize the pulse-related
waveform.

FE. Determination of the Characteristic Scales for Estimating
Respiration and Pulse Waveforms

Fig. 6 shows the raw signal of the pulsatile pressure mea-
sured in the near-neck occiput [Fig. 6(a)], and its DWT decom-
posed waveforms [Fig. 6(b)—(h)]. The time delay after convo-
lution with each WT filter is removed from the decomposed
component in every scale for illustration. The raw signal shown
in Fig. 6(a) is the same as in Fig. 2(b). The detail components
in the 2!-2% scales are shown in Fig. 6(b)—(g). Fig. 6(h) shows
the approximation component in the 28 scale. It was found that
the approximation component in the 26 scale corresponds well
with the respiration reference, i.e., the nasal thermistor signal in
Fig. 2(d). The waveform reconstructed from the detail compo-
nents in the 2% and 2° scales contains the most similar pulse-like
peaks corresponding to the reference waveform measured by
the FPP shown in Fig. 2(c). These results confirmed our ob-
servation and analysis that the approximation component in the
26 scale can be used to estimate the respiration-related wave-
form, and the detail components in the 24 and 2° scales can be
used to estimate the pulse-related waveform after applying the
soft-threshold method to remove noise [25].

In order to realize real-time application, both the respiration
and pulse-related waveforms are obtained while neglecting the
reconstruction procedure in the a trous algorithm. That is, the
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Fig. 6. The DWT decompositions of pressure signal detected with the sensor
in near-neck occiput region. (a) the raw signal; (b)—(g) the waveforms of the
detail components at the 2126 scales, respectively; (h) the waveform of the
approximation component at the 26 scale.

approximation in the 26 scale is used to represent the respira-
tion-related waveform straightly, and summing the detail com-
ponents of the 2% and 25 scales after denoising gives the pulse-
related waveform. However, when the details in the 2¢ and 2°
scales are added together directly, special attention should be
paid to the difference in time shift between the two waveforms
after the convolution operation. We should take away the extra
time-shift in the detail component of the 2° scale before adding
it to the detail component of the 24 scale. In addition, for the
method without the reconstruction procedure, the 2¢ and 2°
scales are multiplied with —1 to get the pulse-related waveform
in this paper because upward peaks in the raw signal will be in-
verted by the high pass filter go in Table I.

G. Detection of Pulse Rate and Respiration Rhythm

The algorithm for detecting the pulse rate from either the FPP
or the estimated pulse-related waveform is an adaptive pulse
peak pursuit method refined from the ECG R-wave detection
algorithm in Pan et al. [28]. The adaptive pulse peak pursuit
algorithm is described below.

The input signal is first processed through a first-derivative
operator, and then points corresponding to the pulse peaks are
determined by the characteristic point search algorithm with a
locally adaptive threshold. The initial pulse detection threshold
is set to be 70% of the average value of the five largest first-
derivatives in the first 5 s data segment. When a point with a
value over the threshold is found in the differential data, the
peak point with a local maximum value around it in the input
signal is set to be the pulse characteristic (peak) point. When
a period without finding a pulse peak point is over 1.8 times
the previous characteristic point interval, the threshold will be
reduced 50% and the search procedure restarts. After each pulse
peak is detected, the threshold will be updated to the previous
threshold multiplied by 0.7 + the current largest first derivative
multiplied by 0.3 % 0.7. A refractory time of 180 ms is set to
avoid analyzing the data after the pulse characteristic point.
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The characteristic points for detecting respiration rhythm
from the nasal thermistor signal and estimated respiration-re-
lated waveform are defined as the upward zero-cross points in
the input waveforms. The zero line is locally adapted to track
the wandering baseline. The initial zero-line value is selected
as the average value of the first 5 s data; and updated to be the
previous zero-line value multiplied by 0.7 + the average of the
preceding 5 s data multiplied by 0.3 when a new zero-cross
point is found. Only the upward zero-cross points with pre-
ceding valleys lower than the valley threshold are recognized
as qualified characteristic points. The initial valley threshold is
set to be the 0.2 time of the standard deviation of the first 5 s
data, and is updated to the previous valley threshold multiplied
by 0.7 + the standard deviation of the preceding 5 s data multi-
plied by 0.3 * 0.2 when a new qualified characteristic point is
found. A refractory time of 500 ms is set to avoid analyzing the
data behind the qualified zero-cross characteristic point. The
coefficients for the detection of respiration rhythm and pulse
rate are determined empirically.

Before detection of the characteristic points, artifacts in the
pressure signal caused by body movements are detected using
a threshold method. When an extremely large value, whose ab-
solute value is 4 times larger than the standard deviation of the
preceding detected artifact-free raw signal, is found in the raw
pressure signal, the preceding and succeeding 2.5-s raw pressure
signals are neglected and not used for the estimation of respi-
ration rhythm and pulse rate. In summary, real-time detections
of the respiration rhythm and pulse rate are realized by the fol-
lowing steps:

1) Processing a definite n s duration (e.g., 10 s) signal seg-

ment sequentially with an a trous algorithm-based DWT.

2) Each estimated waveform segment is catenated to the pre-
vious one with an overlap-add method to create a complete
waveform.

3) The detail components in the 24 and 25 scales are realigned
in the signal phase and summed in amplitude as an estima-
tion of the pulse-related waveform.

4) The approximation component in the 26 scale serves as the
estimation of the respiration-related waveform.

5) When artifacts due to exorbitant movements are detected,
the preceding and succeeding 2.5 s signal segment will be
neglected in analysis.

6) The complete waveform is used to detect the characteristic
points for the respiration rhythm and the pulse rate by the
adaptive characteristic point pursuit method.

To compare the performance between the methods with and
without reconstruction, the DWT with reconstruction procedure
is also evaluated. The reconstruction filters H; and G; can be
derived from the decomposition filters, i.e., H1(2) = —Go(—2)
and G1(2) = Ho(—2z) [27]. It is clear that all of the filters are
symmetrical or anti-symmetrical and have a linear phase prop-
erty. Therefore, the time delay can be accurately estimated and
handled properly in the real-time processing. The detail of the
reconstruction procedure of DWT can be found in [27].

Fig. 7 demonstrates, from top to bottom, the raw pressure
signal measured under the near-neck occiput [Fig. 7(a)]; the FPP
signal [Fig. 7(b)]; the estimated pulse-related waveform with
[Fig. 7(c)] and without [Fig. 7(d)] reconstruction; the nasal ther-
mistor signal [Fig. 7(e)]; and the estimated respiration-related
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Fig.7. Estimated signals and detected characteristic points (indicated by “s”).
(a) the raw signal; (b) FPP; (c) the estimated pulse-related waveform with re-
construction procedures; (d) the estimated pulse-related waveform without re-
construction procedures; (€) the nasal thermistor signal; (f) the estimated respi-
ration-related waveform with reconstruction procedures; and (g) the estimated
respiration-related waveform without reconstruction procedures.

waveform with [Fig. 7(f)] and without [Fig. 7(g)] reconstruc-
tion. The detected characteristic points are marked by a black
dot “e.” It can be seen from Fig. 7 that the pulse and respira-
tion-related waveforms estimated with and without reconstruc-
tion procedures are very similar in morphology. This fact im-
plies that the detail and approximation components can be used
directly as the pulse and respiration-related waveforms.

H. Performance Evaluation of Detection

From Fig. 7, it is clearly identified that the character-
istic points in the pulse rate detection, from either reference
[Fig. 7(b)] or estimated waveforms [Fig. 7(c) and (d)], syn-
chronize beat-by-beat. Similar results in respiration rhythm
detection can be seen in Fig. 7(e)-(g) based on breath-by-breath.

To evaluate the detection performance of the pulse rate and
the respiration rhythm, a method is proposed and described as
follows.

1) Counting the number of detected peaks in the FPP and
the estimated pulse-related waveform within each minute
free of artifacts as the real pulse beat number (RPBN) and
the estimated pulse beat number (EPBN), respectively. It
should be noticed that the RPBN is not always equal to the
EPBN because of misdetection.

2) For each minute, when the EPBN is bigger than the RPBN,
the false positive number (FPN) is EPBN-RPBN. Sum-
mation of all FPNs gives the total false positive number
(TFPN). Similarly, for each minute when the EPBN is
smaller than the RPBN, the false negative number (FNN)
is RPBN-EPBN. Summation of all FNNs gives the total
false negative number (TFNN).

3) Summation of all RPBNs gives the total real pulse beat
number (TRBN). Summation of all EPBNs gives the total
estimated pulse beat number (TEBN). The total true posi-
tive number (TTPN) equals TEPN-TFPN.
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TABLE III
PULSE BEAT DETECTION RESULTS FROM FPP AND ESTIMATED PULSE-RELATED W AVEFORMS
Subject | Data length | Number of heart beats detected by | PFNR (%) | PFPR (%) PSe (%) PP* (%)
. FPP A B A (B A| B A B A B
ID. (min)
1 131.7 7409 7508 7423 1.82129313.16]3.12| 9821 | 97.15]96.94 | 96.97
2 1334 9268 9248 9254 10.5810.6610370.51| 99.42| 99.34]99.63 | 99.49
3 66.7 4719 4739 4737 102110471064 (0.85]| 99.79] 99.53199.36 | 99.16
4 483 2813 2862 2868 10.0410.00)1.78[1.96]| 99.96 | 100.00 | 98.25 | 98.08
5 66.7 3681 3701 3703 [0.16{022]0.71)0.82| 99.84| 99.78]99.30 | 99.19
6 1334 6843 6855 6817 [0.06]1.14]10.77]0.76 | 99.94 | 98.87199.24 | 99.25
7 100.0 4901 4958 4935 198 [2.14{3.14]2.84 | 98.06| 97.90]96.96 | 97.24
8 266.0 17484 17726 17723 10.50{0.59|1.88]1.96| 99.501 99.41]98.15| 98.08
9 1334 9046 9080 9090 0.93]1.06]131]1.55]| 99.08] 98.95]98.71 | 98.47
10 128.7 6031 6129 6144 10.35]0.38]199[2.26] 99.64] 99.62]98.05] 97.79
11 66.7 5158 4937 4908 |4.81]5.4910.52[/0.64| 95.41] 94.80 [ 99.48 | 99.36
12 333 1934 1970 1963  10.00]0.00|1.86]1.50{100.00 | 100.00 | 98.17 | 98.52
13 186.7 11529 11663 11646 10.16 [0.171133[1.19]| 99.84 | 99.83198.69 | 98.82
AVG — — — — 0.891.12{1.50)1.55]| 99.17( 98.91]98.53 | 98.47
STD — — — — 1.11]1.32[0.85]0.79 1.08 126 | 0.82] 0.77
Total 1495.0 90816 91376 92070 |— [— -] - — — — —

Weighted average, weighted by the number of pulse beats per case.
A: the pulse-related waveform estimated without the reconstruction procedure
B: the pulse-related waveform estimated with the reconstruction procedure

4) The pulse false positive rate (PFPR), pulse false negative
rate (PFNR), pulse sensitivity (PSe), and pulse positive
predictivity (PP) are calculated as

PFPR = % x 100(%) ®)
PFNR = g% x 100(%) )
PSe = (TTP’IT\I’IE'II‘\IFNN) x 100(%) ®
and
PPT = (TTP;TJ? gFPN) x 100(%)- ©

5) Similar principles are applied to the respiration rhythm de-
tection. They are

RFPR = gﬁﬁ % 100(%) (10)
RFNR = %T;Il: x 100(%) an
RSe = (TTR;T}EFNN) <100(%)  (12)
and
RP+ = (TTRT\ITfI;FPN) x100%)  (13)

where TRRN is the total real respiration number, TERN
is the total estimated respiration number, TTPN is the total
true positive number. RFPR is the respiration false positive
rate, RFNR is the respiration false negative rate, RSe is the
respiration sensitivity, and RP is the respiration positive
predictivity. It should be noticed that when artifacts are
found in the pressure signal, the pulse rate and respiration
rhythm will not be estimated at that moment.

III. RESULTS

The results of the evaluation of pulse beat detection from
the FPP and estimated signals are tabulated in Table III. The
analyzed data were collected from 13 subjects, and the total

time was about 24 hours. The total pulse beat number from the
FPP signals at the time when the pressure signals were free
of artifacts according to the artifact detection algorithm was
90816. Without the reconstruction procedure, PSe and PP+
were 99.17% + 1.08% and 98.53% =+ 0.82%, respectively. With
the reconstruction procedure, the corresponding outcomes were
98.91% =+ 1.26% and 98.47% =+ 0.77%, respectively.

Table IV summarizes the results of evaluation of respiration
detection from the nasal thermistor and estimated signals. The
analyzed data are the same as those in Table III. The total
number of breaths from the nasal thermistor signal at the time
when the pressure signals were free of artifacts was 23086.
Without the reconstruction procedure, RSe and RP+ were
95.63% + 2.71% and 95.42% + 3.77%, respectively. With
the reconstruction procedure, they were 94.76% + 3.38% and
96.92% =+ 2.95%, respectively.

Fig. 8 shows a 64 min profile of estimated results and relative
errors from the derived waveforms without reconstruction pro-
cedures. The real respiration rhythm (RRR, marked with “x)
from the nasal thermistor, and the respiration rhythms estimated
from the estimated respiration-related waveform (ERR, marked
with “o” for periods without artifacts, without “o” for periods
with artifacts) are shown in Fig. 8(a). The relative percentage of
estimation errors, derived as (ERR — RRR)/RRR x 100(%),
is shown in Fig. 8(b). Fig. 8(c) shows the real pulse rate (RPR,
marked with “x”) from the FPP, and the pulse rate estimated
from the estimated pulse-related waveform (EPR, marked with
“o”for periods without artifacts, and without “o” for periods
with artifacts). Fig. 8(d) shows the relative percentage of esti-
mation errors, derived as (EPR — RPR)/RPR x 100(%). 1t
can be seen that most of the errors for the pulse rate and respi-
ration rhythm are within a range of +10%.

IV. DISCUSSIONS

Watanabe et al. proposed a digital filtering method to extract
desired waveforms from measured near-neck occiput pressure
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TABLE IV
RESPIRATION DETECTION RESULTS FROM THE NASAL THERMISTOR AND THE RESPIRATION-RELATED W AVEFORMS

Subject | Data length | Number of breaths detected by | RFNR (%) | RFPR (%) RSe(%) | RP (%)

. Thermistor A B A |B A B A B A B
ID. (min)

1 131.7 1601 1786 | 1729 | 544 ] 5.93|16.9913.93194.84 [ 94.40 | 85.48 | 87.77
1334 2456 2395 | 2394 [ 2.77| 2.81| 029 0.28]97.30]97.27}99.71 | 99.72
3 66.7 1014 911 915 |11.34|10.85| 1.18| 1.0889.82{90.21 | 98.83 | 98.93
4 48.3 919 781 735 |15.562035]| 0.54| 0.33(86.54.| 83.09 [ 99.46 | 99.67
5 66.7 906 923 917 121 143]| 3.09| 2.65]98.80|98.59|97.00 | 97.42
6 1334 1921 1913 | 1900 | 3.49| 396| 3.07| 2.86[96.63]96.19|97.02 | 97.22
7 100.0 1382 1349 | 1339 | 3.33]| 3.62| 094 0.51]96.78 | 96.51 | 99.07 | 99.49
8 266.0 3853 3874 | 3825 | 3.01| 3.22| 3.55| 2.49]97.08 | 96.88 | 96.57 | 97.57
9 1334 2157 2151 | 2046 | 6.72] 9.23| 644 | 4.0893.7091.55(93.95] 96.08
10 128.7 2244 2374 | 2284 | 1.20| 1.78( 7.00| 3.56|98.81]|98.25|93.46| 96.56
11 66.7 770 748 744 532| 532| 247| 1.95[94.95]|94.95]97.59 | 98.09
12 333 604 567 519 11093]116.56| 4.80| 2.48[90.15]85.79|95.42 | 97.58
13 186.7 3202 3337 | 3092 | 400| 6.65| 8.21 | 3.22]|96.15]93.76 | 92.41 | 96.88
AVG — — — — 460 | 572( 498 3.15]95.63]94.76 | 95.42 [ 96.92
STD — — — — 3.12| 402| 438 3.38| 2.71| 338 3.77| 295
Total 1495.0 23086 22461 | 23164 — — — — — — — —

Weighted average, weighted by the number of breaths per case.
A: the respiration-related waveform estimated without the reconstruction procedure
B: the respiration-related waveform estimated with the reconstruction procedure
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Fig. 8. Instantaneous profiles of (a) respiration rhythm and (c) pulse rate de-
tected from the estimated waveforms (o) and the reference data (x); and esti-
mation errors of (b) respiration rhythm and (d) pulse rate. “o” indicates that the
value was detected when there was no artifact in that minute.

signals [14]. The raw signal passed through a bandpass filter
(0.1-0.8 Hz) could be used to represent the respiration wave-
form, and the pulse rate was directly estimated from the peaks of
the near-neck occiput pressure signal. However, such a narrow
bandwidth filter in a low frequency band requires high order
implementation and is not suitable for real-time application. On
the other hand, when we use a bandpass filter to detect the pulse
rate, the bandpass filter should have a rather wider bandwidth
to cover the frequency range of the pulse wave about 0.67-5 Hz
for 40-300 bpm. Therefore, the respiration-related component
and random noise in the occiput pressure signal may mask the
pulse signal and affect the detection of the pulse rate. More-
over, spectral overlapping in the frequency domain makes it dif-
ficult to discriminate the measurement noise and pulse-related
signal using traditional filters. These would lead to false de-
tection in the characteristic points, and increase the false neg-

@ E
o §
© f
@ ?
L 15 25 35
(e)-’é_gﬂ\h M/\ ~J rf\mr/\ V\V
F 5 10 15 20 25 30 3‘5 4‘0
(o"’é“'[T'T/\/\'«\' T " 17
E _ N N N L h " L
500 5 10 15 20 25 30 35
S A VA A A
E .50[ \ . . . N—"" A ]
5 10 15 20 25 30 35

Time, s

Fig. 9. Estimation results, including estimated waveforms and detected char-
acteristic points in the case of poor signal quality. (a) the raw signal; (b) FPP;
(c) the estimated pulse-related waveform with reconstruction procedures;
(d) the estimated pulse-related waveform without reconstruction procedures;
(e) the nasal thermistor signal; (f) the estimated respiration-related waveform
with reconstruction procedures; and (g) the estimated respiration-related
waveform without reconstruction procedures.

ative or/and false positive rates. The PSD method cannot re-
alize beat-by-beat analysis and fails when the signal/noise ratio
is too low or the respiration rhythm and pulse rate is closer than
the highest frequency resolution of the PSD. According to [30],
the minimum data length for cardiac rate should be less than
10 s. For a N = 1000-point Hanning window and f; = 100 Hz
sampling rate, the highest frequency resolution of PSD is about
4f;/N = 4 x 100/1000 = 0.4 Hz. Increasing the point count
of the window function will reduce the temporal resolution of
the PSD although its frequency resolution can be raised. The
method proposed in this paper overcomes this issue to some
extent. Fig. 9 shows the detection results in a typical situa-
tion where artifact appears, illustrating the raw pressure signal
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[Fig. 9(a), the FPP [Fig. 9(b)], the estimated pulse-related wave-
forms with reconstruction procedure [Fig. 9(c)], without recon-
struction procedure [[Fig. 9(d)], the nasal thermistor [Fig. 9(e)],
the estimated respiration-related waveforms with reconstruc-
tion procedure [Fig. 9(f)], and without reconstruction procedure
[Fig. 9(g)]. It is clear that the pulse-related waveform can be
estimated by the method proposed in this paper. However, arti-
facts greatly worsen estimation of the respiration rthythm. Such
artifacts might be one reason why the detection accuracy of
the pulse rate is better than that of the respiration rhythm. This
means that the proposed method is much more robust for pulse
rate detection than for respiration rhythm detection.

It can be seen from Fig. 2(a) and (b) that there is a phase
difference in the respiration-related waveforms between the
near-neck and far-neck occiput pressures. Because pressure
variations due to the breathing movement and heartbeat pul-
sation reach two measurement sites—i.e., the far-neck and
near-neck—via two different transmission routes, this implies
that a simple additive model is not accurate enough to de-
scribe the relation between the far-neck and near-neck pressure
variations. This phenomenon leads to dissatisfaction with the
instant mixing requirement in the linear ICA model [29] and,
therefore, to incomplete separation of the pulse and respiration
waveforms [15].

Because the DWT performs as a bank of bandpass filters [23],
this feature is successfully used to separate signals into different
frequency components. It is well known that the fundamental
frequencies of the respiration rhythm and pulse rate are located
in different frequency bands. Through the DWT decomposition,
the respiration- and pulse-related waveforms can be both esti-
mated from the measured pressure signal.

In contrast to the ICA method, [29] the DWT approach can
estimate the respiration and pulse-related waveforms from only
one pressure signal channel. In addition, unlike the time-con-
suming recursive optimization calculation used in the ICA
method, the computational complexity of the proposed method
can be greatly reduced because only the characteristic scales
need to be decomposed. From Tables ITI-1V, it is found that
the detection performances for the pulse and respiration-related
waveforms, estimated with and without reconstruction, are
very close. From one-way analysis of variance, the significance
levels P between the performance indexes for reconstruc-
tion and nonreconstruction are much larger than 0. It can be
concluded that there is little deterioration in the detection
performance even when the pulse and respiration-related
waveforms are estimated without the DWT reconstruction pro-
cedure. This leads to improved real-time processing efficiency.
Moreover, the avoidance of subsampling procedure by using
the a trous algorithm [24] also assures phase shift invariance,
which means that the algorithm can be easily implemented
using any digital signal processor in real world applications.

It should be noticed that the evaluation results depend on the
selection of the coefficients of the threshold for the detection of
characteristic points. The coefficients used in this paper were de-
cided empirically to obtain a proper combination of Se and P+.
From Table III, it can be observed that the PFNR is lower than
the PFPR for the pulse rates of most subjects with or without
the reconstruction procedure. This implies that most of the esti-
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mates tend to be larger in value than the reference data, and that
few estimates have lower readings of pulse rate than the refer-
ence data when these coefficients are selected. From Table IV,
it is found that the method with reconstruction procedure tends
to detect more respiration than that without reconstruction pro-
cedure does. The reconstruction procedure may raise the posi-
tive predictivity while reducing the sensitivity of detection when
these coefficients are selected.

Differences in detected timing of characteristic points be-
tween the reference and estimated signals can be identified in
Fig. 7, especially between the nasal thermistor and the estimated
respiration-related waveforms in Fig. 7(e)~(g). Because only the
beat-by-beat or breath-by-breath readings are concerned, offset
in the detected timing of characteristic points is not an exigent
issue.

Three main sources of degraded detection performance are
considered. One is the artifact induced by body movement.
When a subject turns over in bed frequently during sleep, the
measured pressure pattern distorts and the characteristic points
for the respiration rhythm and pulse rate cannot be properly
detected from the estimated waveforms. This fact can be found
in Fig. 8, where the detection error increases when there were
artifacts in the preceding or succeeding pressure signal. Usually
the transition period lasts for about 2-3 s. It will especially in-
fluence the detection of respiration rhythms as shown in Fig. 9.
However, we found that although it was hard to obtain signal
satisfactory enough to analyze in the posture transition period,
measured signals were acceptable provided the near-neck
occipital region has good contact to the pillow for any sleep
gestures. Furthermore, the amplitude of the pressure signal is
not sensitive to the sleep gesture. In this paper, the artifacts due
to the body movement were detected with the threshold method
because the sensor usually detected a slow and large waveform
at that time. In the data used in this research, only 5% data were
found with artifacts due to body movement. If the artifact only
lasts for a short time, the respiration rhythm and heart rate may
be interpolated by using the preceding and succeeding values.

The second factor is the sensor signal drop-out. When the
sensor plate is not correctly positioned beneath the pillow, pres-
sure variations under the head cannot reach the sensor plate. It
will severely influence the detection of respiration rhythm and
pulse rate. This problem may be solved by binding the pillow
tightly to the sensor plate.

The last factor is that the head may have no good contact with
the pillow and the pressure variation cannot be transmitted to the
sensor through the pillow. This problem should be resolved by
improving the sensor mechanism and even system to achieve a
larger dynamic measurement range.

Because only one pressure signal channel is used to estimate
the respiration rhythm and pulse rate, the measurement instru-
ment configuration is greatly simplified. In order to further im-
prove detection performance, more robust algorithms, more reli-
able detection strategies, and structural fabrication for handling
sensor signal drop-out and movement artifacts will be impor-
tant. Furthermore, clinical data regarding various sleep disor-
ders should be collected and assessments made of the accuracy
and reliability of the proposed method in application as a sleep
disease monitor.
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V. CONCLUSION

A real-time processing method to estimate the respiration
rhythm and the pulse rate from the occiput pressure signal, with
noninvasive unconstrained measurements during sleep, was pro-
posed and verified. The pressure signal was decomposed into
detail and approximation components with the DWT multireso-
lution analysis method. The respiration rhythm can be detected
from the approximation component in the 26 scale, and the pulse
rate can be attained from the detail components in the 2* and 2°
scales after noise suppression with the soft threshold method.
The reconstruction procedure can even be neglected without de-
terioration of detection performance. This method provides an
accurate and a reliable means to monitor the respiration rhythm
and the pulse rate in real-time during sleep. After clinical eval-
uation and practical feasibility are studied, this method is ex-
pected to be applicable in the diagnosis of sleep apnea, sudden
death syndrome, and arrhythmias during sleep.
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