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ABSTRACT 

FENIB (familial encephalopathy with neuroserpin inclusion bodies) is caused by 

intracellular accumulation/polymerization of mutant neuroserpins in the endoplasmic 

reticulum (ER).  Transgenic rats overexpressing megsin (Tg meg), a newly identified 

serine protease inhibitor (serpin), demonstrated intraneuronal periodic-acid Schiff 

(PAS)-positive inclusions distributed throughout deeper layers of cerebral cortex, CA1 

of the hippocampus, and substantia nigra.  Hippocampal extracts from Tg meg rats 

showed increased expression of ER stress proteins, and activation of caspases-12 & -3, 

associated with decreased neuronal density.  Enhanced ER stress was also observed in 

dopaminergic neurons in the substantia nigra, in parallel with decreased neuronal 

viability and motor coordination.  In each case, PAS-positive inclusions were also 

positive for megsin.  These data suggest that overexpression of megsin results in ER 

stress, eventuating in the formation of PAS-positive inclusions.  Tg meg rats provide a 

novel model of FENIB, where accumulation of serpins in the ER induces selective 

dysfunction/loss of specific neuronal populations. 

 

 

Key words: neuroserpin, protein malfolding, neuronal cell death, oxygen/glucose 

regulated protein (ORP/GRP), oxidant stress.. 
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INTRODUCTION 

Serpinopathy is a newly identified class of disorders characterized by abnormal 

accumulation of serine protease inhibitors or serpins [1].  Serpins comprise a broad 

superfamily of proteins found in a range of species, and include α1-antitrypsin, C1 

esterase inhibitor, antithrombin III and plasminogen activator inhibitor-1.  Consistent 

with their diverse functions, mutations in alleles encoding serpins have systemic effects, 

as demonstrated by the clinical syndrome accompanying α1-antitrypsin deficiency [2].  

Mutant serpins have a tendency to aggregate, forming intracellular inclusions in the 

endoplasmic reticulum (ER), and are associated with cellular degeneration.  For 

example, Collins bodies, due to aggregation of neuroserpin (a brain-specific serpin 

synthesized and secreted by neurons), are closely associated with mutations 

homologous to those which cause aggregation of α1–antitrypsin in hepatocyes [3, 4].  

The accumulation of neuroserpin results in formation of PAS-positive inclusions in the 

brain and is associated with a neurodegenerative disorder termed familial 

encephalopathy with neuroserpin inclusion bodies (FENIB) [5]. 

We have previously cloned from cultured human mesangial cells and 

characterized a novel member of the serpin superfamily, megsin [6, 7].  To better 

define its characteristics, a rat model was developed with genetic overexpression of 

megsin in multiple cell types (Tg meg rats).  Quite unexpectedly, this experimental 

model has characteristics of a serpinopathy [8].  In homozygous Tg meg rats, 

PAS-positive, diastase-resistant intracellular droplets developed in the kidneys and 

pancreas, and were accompanied by marked up-regulation of ER stress chaperones, 

suggesting the association of ER stress with this new type of serpinopathy [9]. 
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 While homozygous Tg meg rats displayed early and progressive organ damage, 

hetrozygotes failed to show abnormalities in either renal or endocrine function.  

However, although heterozygotes had a similar life span to nontransgenic (nonTg) 

littermates, they demonstrated PAS-positive intracellular inclusion in neurons and 

slowly progressive neurodegeneration, accompanied by upregulation of an ER resident 

stress protein, ORP150/HSP12A (150 kDa oxygen-regulated protein) [10], and 

activation of caspase-12, a cell death enzyme activated by ER dysfunction [11].  These 

findings lead us to propose that ER stress may have a pathogenic role in the 

development of serpinopathy, ultimately leading to neurodegeneration [4]. 
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MATERIALS AND METHODS  

Megsin transgenic rats (Tg meg) were established as described [8].  Offspring that 

carried the transgene were identified by Southern blotting of genomic DNA extracted 

from tails, as described, or Western blot analysis [7].  Animals were monitored for 

pancreatic and renal function by measuring blood urea nitrogen and glucose levels [8] 

up to 12 months after birth.  Animals with signs of either pancreatic or renal 

dysfunction were excluded from this study.  Heterozygotes were maintained by 

crossing animals with wild-type Wistar rats.  Homozygous Tg meg rats failed to 

survive up to reproductive age. 

Western blotting.  Levels of ER stress proteins in cell or tissue extracts were 

determined by immunoblotting, as described [10], using either anti-human ORP150 

antibody (1 µg/ml) or anti-KDEL monoclonal antibody (Stressgen Biotecnologies Co., 

Canada ; 0.2 µg/ml), the latter to assess levels of GRP78 [12].  Immunoblotting also 

employed either anti-activated caspase-12 antibody [11], anti-activated caspase-3 

antibody [13], or anti-CHOP antibody [14].  Blots were reacted with antibody to 

β-actin as an internal control (1000x dilution, Sigma, St. Louis., MI). 

Behavioral analysis.  Motor coordinate ability was determined using the pole test, as 

described [15].  In brief, animals were placed head upward near the top of a 

rough-surfaced wood pole (5 cm in diameter and 100 cm in height), and the time 

required for animals to turn completely downward and climb down the floor was 

recorded.  Triplicate pole tests, with a four hour inter-trial interval, were carried out 

and average values were calculated. 

Histochemistry and evaluation of cell death in vivo.  Animals were perfused under 

deep anesthesia with chloral hydrate (400 mg/kg body weight, i.p.) through the 
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ascending aorta with saline, followed by fixative (4 % paraformaldehyde in 0.1 M 

phosphate-buffered saline [PBS; pH 7.4]).  Brains were removed, and after 

postfixation overnight at 4ºC and cryoprotection in 30% sucrose in PBS, serial coronal 

sections (14 µm) were cut on a cryostat and mounted in a series of ten silanized slides.  

This approach produced ten sets of 140 µm interval serial sections covering the whole 

extent of any brain nuclei.  Each set of slide-mounted sections underwent histological 

processing for either PAS staining, cresyl violet staining or immunohistochemistry.  

Where indicated, sections were treated with diastase (0.1%, Wako, Tokyo, Japan) at 

37ºC for 1 hour followed by the PAS staining [8].  Immunohistochemical analysis was 

performed as described [16].  In brief, sections were preincubated with 1 % bovine 

serum albumin and 0.1 % Triton X-100 in PBS, and then incubated with primary 

antibodies overnight at 4ºC.  After washing, sections were treated with the appropriate 

Cy3 or FITC-conjugated secondary antibody (Jackson Immunoresearch, West Grove, 

PA) for1 hour at room temperature, or with EnVision Kit (DAKO) for 

diaminobenzidine staining.  To evaluate neuronal death in the hippocampus, sections 

were immunostained with anti-activated caspase-3 antibody [13].  Nissl-positive 

neurons were counted in hippocampal lesions, CA1 (0.5 and 2.0 from midline) and 

CA2/3 in slices obtained at the depth of -3.30 mm from the Bregma, using a 0.4 mm 

span of the microscopic scale located parallel to the pyramidal layer.  Sections were 

also double-stained with anti-Neu-N antibody (1:100 dilution; Chemicon, Temecula, 

CA, USA) [17] and anti-activated caspase-12 antibody.  Neuronal death was assessed 

based on an overlapping distribution of activated caspase-12-positive and 

Neu-N-positive cells.  Cell death in neurons of the substantia nigra pars compacta 

(SNpc) was evaluated by double-staining with anti-tyrosine hydroxylase (TH) antibody 
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(Sigma-Aldrich, Inc., St. Louis, Missouri, USA; 1:1,000 dilution) [18] and 

anti-activated caspase-12 antibody.  TH-positive neurons were counted in each coronal 

slice obtained at four different depths (-4.8, -5.2, -5.6, -6.0) mm from the Bregma) using 

Photoshop software (Adobe, Tokyo, Japan).  The percent volume of TH-positive area 

was compared with control animals.  In each case, two observers without knowledge 

of the experimental protocol evaluated sections and experiments were repeated at least 

three times. 

In vitro studies.  Astrocytes were prepared from cerebral cortices of rodents as 

described previously [10].  When astrocyte cultures, prepared from rats of the 

indicated genotype, achieved confluence, they were exposed to hypoxia using an 

incubator attached to a hypoxia chamber (Coy Laboratory Products, Ann Arbor MI), 

which maintained a humidified atmosphere with low oxygen tension (8-10 Torr) for up 

to 48 hrs [21].  Cell viability at the indicated time point was assessed by dye exclusion 

in astrocytes.  Levels of ER stress proteins in astrocytes were determined by 

immunoblotting, as described above.  Subcellular fractionation of astrocytes was 

performed using to OptiPrep (Life Technologies), as described [21].  In brief, 

astrocytes (~5x106 cells) were either exposed to hypoxia or maintained in normoxia for 

24 hours, and homogenates were subjected to subcellular fractionation using a 

self-generated gradient.  Fractions were then subjected to dot blot analysis using 

anti-megsin antibody.  Samples were also used for dot blot analysis with anti-mouse 

calnexin antibody (Transduction Laboratories) and anti-mouse TGN38 antibody [23] 

(Transduction Laboratories) as markers for endoplasmic reticulum and Golgi apparatus, 

respectively. 
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Statistical analysis was performed, unless indicated otherwise, by two-factor ANOVA 

followed by Scheffe’s F test as post-hoc analysis.  Where indicated, analysis was also 

performed by repeated measure ANOVA. 
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RESULTS 

Expression of megsin in the central nervous system is associated with the presence of 

PAS-positive inclusion bodies.  Previously, we reported that homozygous Tg meg rats 

displayed severe pancreatic and renal dysfunction [8].  In ~80% of heterozygous Tg 

meg rats, blood glucose and blood urea nitrogen levels remain within the normal range 

for the first 12 months of life (not shown).  Whereas nonTg littermates displayed 

virtually undetectable levels of megsin in the brain, consistent with our previous report 

[8], Tg meg heterozygotes showed, at 4 months of age, the expression of antigen 

throughout the brain, including cerebral cortex, cerebellum, midbrain, and hippocampus 

(Fig. 1A), and was accompanied by marked upregulation of an ER-stress marker, 

ORP150 [10].  Though no major brain developmental abnormalities were observed in 

heterozygous Tg meg rats, PAS-positive inclusions were observed in specific subgroups 

of neurons, including CA1 of the hippocampus, deeper layers (III - V) of the cerebral 

cortex, and the substantia nigra (Fig. 1B-D).  No such inclusions were observed in 

either the cerebellar cortex, red nucleus, or brainstem reticular formation.  Inclusions 

were not observed in white matter (topologic distribution is shown in Fig 1F).  

PAS-positive inclusions in CA1 (Fig. 1G, indicated by open arrowheads) were further 

analyzed immunohistochemically.  ORP150 was markedly upregulated in CA1 (Fig. 

1H) compared with nonTg controls (not shown).  PAS-positive inclusions were also 

positive for megsin (Fig. 1I), and ORP150 was detected in these neurons, though the 

intensity of staining was somewhat less (Fig. 1J).  PAS signals in Tg meg rats were 

resistant to diastase treatment (not shown) and no such inclusions were detected in 

wild-type littermates (Fig. 1K). 
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Accelerated death of hippocampal neurons in Tg meg rats.  Consistent with the 

evidence that presence of PAS-positive intracellular inclusions in FENIB is associated 

with neuronal degeneration [5], apparent neuronal loss was observed in the 

hippocampus CA1 region of 4-12 month old Tg meg rats, when compared with nonTg 

littermates (Fig. 2A-F, G).  Immunoblotting revealed enhanced expression of GRP78 

and ORP150 in the hippocampus, both of which are associated with stress responses 

originating from the ER [19, 20] (Fig. 3A & B).  ORP150 expression peaked at ~2-4 

months after birth, while GRP78 levels remained elevated at all times in Tg meg rats, 

compared with nonTg controls (Fig. 3A).  In the cerebellar cortex, levels of ORP150 

were somewhat higher in Tg meg animals, versus controls, though GRP78 expression 

was similar in both groups (Fig. 3B).  In the hippocampus of Tg meg rats, activated 

caspase-12 antigen was detected at 2-6 months of age; i.e., after initiation of ER stress, 

based on ORP150 and GRP78 levels (Fig. 3A).  Activation of caspase-3 was also 

detected 2-6 months after birth.  No immunoreactive activated caspase-12 was detected 

in the hippocampus of nonTg littermates (Fig. 3A).  Furthermore, ER stress appeared 

to be concentrated in the hippocampus, as neither cerebellar cortex of Tg meg rats nor 

nonTg littermates displayed activated caspase-12 antigen (Fig. 3B).  Similarly, no peak 

of ORP150 or activated caspase-12 antigen was seen in cerebellar cortex of either Tg 

meg or nonTg controls (Fig. 3B).  

Based on these observations, it seemed likely that neurons might express 

markers of ER stress, as well as activated caspase-12 antigen, in hippocampii of Tg meg 

rats.  Immunohistochemical analysis of 4 month old Tg meg rats demonstrated high 

levels of ORP150 in CA1 of the hippocampus (Fig. 3E).  Immunostaining revealed 

increased activated caspase-3 antigen (Fig. 3F).  Furthermore, double-staining with 
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anti-Neu-N antibody (which specifically recognizes neuronal cell bodies) and 

anti-activated caspase-12 antibody revealed a partially overlapping distribution of these 

signals (Fig. 3G-I).  Increase of activated caspase-12 immunoreactivity in the CA1 

area of Tg meg rats appeared to peak at 4 months after birth (Fig. 3C).  These data 

suggested the possibility that an ER-mediated cell death pathway was operative in 

neuronal cells in Tg meg rats. 

 

Neuronal cell death in the SNpc of Tg meg rats.  Evaluation of other brain subregions 

demonstrated a distribution of PAS-positive inclusions in another population of neurons 

in the midbrain, especially in the substantia nigra pars compacta (SNpc; Fig. 1D, Fig. 

4A).  Four months after birth, inclusions were observed in neurons in SNpc (indicated 

by arrow), surrounded by normal neurons (indicated by arrowhead).  No such 

inclusions were observed in nonTg animals (Fig. 4B).  Immunohistochemical analysis 

was performed with either anti-megsin antibody or antibody against tyrosine 

hydroxylase (TH) [18], a marker of dopaminergic neurons.  Consistent with our 

observations in CA1 (see above), intracellular inclusions were strongly positive for 

megsin (indicated by arrows in Fig. 4A, C & E).  In contrast, neurons which were 

negative for PAS-positive inclusions could be divided in two categories; i) those 

positive for megsin and TH (indicated by diamonds in Fig. 4A, C, D, & E), and, ii) 

another population displaying weaker staining for megsin and high intensity staining for 

TH (indicated by arrowheads in Fig. 4A, D, & E).  These three populations were 

simultaneously distributed in the SNpc of 4 month old Tg meg rats, suggesting that 

chronic neurodegeneration might result from repetitions of acute episodes of cell stress 

and neuronal death.  Neuronal cell death was confirmed by TH immunostaining at 
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variable periods after birth in Tg meg rats.  TH immunostaining in Tg meg rats 

revealed a distribution of TH-positive neurons comparable to nonTg littermates at 2 

months after birth.  However, there was a dramatic decrease in TH-positive neurons at 

6 months after birth (Fig. 4F-M).  Semi-quantitative analysis showed dramatic loss of 

SNpc volume; 98.2 + 3.4, 51.4 + 6.7, 28.2 + 4.5, 20.2 + 3.8 (n=6, mean + S.D.), at 2, 4, 

8, and 12 months after birth, respectively.  Statistical analysis indicates significant 

volume loss at 4, 6, and 12 months after birth (p<0.01 by Sheffe’s analysis followed by 

ANOVA).  The loss of TH immunointensity was accompanied by loss of motor 

coordination in Tg meg rats (Fig. 4U & V). 

 To further analyze neuronal death in the SNpc, we performed immunostaining 

with anti-ORP150 antibody, which showed marked upregulation at 4 months after birth, 

compared with nonTg littermates (Fig. 5B & F).  Immunostaining with anti-TH 

antibody demonstrated a decrease in TH-positive neurons in the SNpc (Fig. 5C & G), 

accompanied by a partially overlapping pattern with activated caspase-12 

immunoreactivity (Fig. 5D).  Quantitative analysis revealed activation of caspase-12 in 

TH-positive neurons reaching maximal levels by 4 months after birth in Tg meg rats 

(Fig. 5I).  Thus, TH-positive neurons display activated caspase-12 antigen, and appear 

to die over time in Tg meg rats, correlating with loss of SNpc function. 

 

Accumulation of megsin protein by ER-stress.  Our findings, thus far, suggested the 

possibility that in Tg meg rats neuronal degeneration occurs (at an accelerated pace 

compared with nonTg controls) in the hippocampus and SNpc, and that this is preceded 

by the presence of megsin-containing inclusion bodies.  To gain further insight into the 

relationship between overexpression of megsin and ER dysfunction, we utilized 
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astrocytes (because of their ease of cultivation) from Tg meg rats.  When cultured 

astrocytes from Tg meg rats were exposed to hypoxia, a stimulus associated with ER 

stress [24], cell survival was diminished compared with cultures from nonTg controls 

(Fig. 6A).  Expression of ORP150 in cultured astrocytes from Tg meg animals was 

slightly higher under normoxic conditions than in nonTg controls, and reached peak 

levels earlier than controls on exposure to hypoxia.  A similar pattern was observed 

with respect to expression of GRP78 in astrocytes.  Mediators related to ER-dependent 

cell death, such as activated caspase-12 and CHOP antigens, were only detected in 

hypoxic astrocytes from Tg meg rats (Fig 6B).  Cellular fractionation assays showed 

an apparent accumulation of megsin inside the ER in response to prolonged ER stress 

(Fig. 6C).  The enhanced accumulation of megsin under ER-stress may potentially 

contributing to accelerated cell death of astocytes from Tg meg rats, when further stress 

is superimposed on this organelle. 
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DISCUSSION 

Megsin is a new member of the serpin superfamily cloned from a human 

mesangial cDNA library [6].  A role for ER stress in cellular dysfunction observed in 

homozygous Tg meg animals is suggested by induction of ER stress proteins in 

glomerular podocytes, including GRP78, GRP94 and ORP150/HSP12A [8, 9].  

Presumably, the critical factor initiating widespread cellular perturbation in these 

animals is polymerization of megsin within the ER because of aberrant intermolecular 

linkage of megsin molecules (between the reactive site loop on one megsin molecule 

and the β-sheet of another) occurring at high local concentrations.  Thus, this is a 

situation in which overexpression of a wild-type serpin, megsin, may result in a 

polymerizing species causing intracellular (ER) accumulation and cellular stress. 

Familial encephalopathy with neuroserpin inclusion bodies (FENIB) typically 

manifests itself in the fifth decade of life and is characterized by the insidious onset of 

cognitive decline.  Learning and memory are also affected [5].  The principal 

neuropathologic finding is the presence of PAS-positive inclusion bodies distributed 

throughout the brain, especially deeper layers of the cerebral cortex, hippocampus, and 

SNpc.  Neurodegeneration in humans is the result of intracellular accumulation of 

mutant neuroserpin, a neuron specific serpin. 

 In the current report, we have examined the phenotype of heterozygous Tg meg 

rats.  The findings are considerably more subtle than in homozygous animals, and, thus 

far, are limited to the central nervous system.  In homozygous Tg meg rats, 

PAS-positive inclusions were mainly observed in the kidney, liver, and pancreas [9].  

Neurodegenerarion in homozygotes was much rapid than in heterozygotes; MAP II 

staining, for example, displayed almost total loss of CA1 neurons at 2 months after birth 
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(not shown).  Since renal and pancreatic function are also seriously impaired in 

homozygotes, it is difficult to assign a particular phenotype to one cause, as systemic 

organ failure is accompanied by a range of abnormalities (fluctuations in blood glucose, 

blood urea nitrogen, etc) [9]. 

Whereas endogenous expression of megsin in the brain is quite low/virtually 

undetectable, increased levels of megsin in brains of transgenic animals appears to 

result in progressive formation of PAS-positive inclusions, especially in deeper layers 

of cerebral cortex, hippocampus, and SNpc, similar to what is observed in patients with 

FENIB.  Since animals with any renal, hepatic or pancreatic dysfunction (~20% of 

heterozygotes) were excluded in this study, the abnormalities observed in our studies 

are most likely to have resulted from elevated expression of megsin in neurons.  In this 

context, we propose that heterozygous Tg meg rats provide an appropriate model of 

FENIB. 

 Because of greater ease of cellular manipulation in vitro, we employed 

astrocytes cultured from heterozygous Tg meg rats to analyze the cellular response to 

environmental perturbation.  Exposure of astrocytes to hypoxia for 12 or 16 hrs 

resulted in more rapid upregulation of ER stress proteins (ORP150 and GRP78), as well 

as expression of CHOP and activated caspase-12, in cultures from Tg meg animals 

versus nonTg controls.  The latter findings were associated with diminished survival of 

astrocytes from Tg meg animals.  Cellular fractionation studies demonstrated 

intracellular accumulation of megsin, most likely within the ER, of cultured astrocytes 

from Tg meg animals exposed to hypoxia.  These data are consistent with previous 

observations in which hypoxia slowed protein transport from the ER, thereby leading to 

protein accumulation [25, 26].  Due to the relative abundance of lysine residues in 
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megsin [7], this protein is a likely target of degradation via ubiquitination.  Increase of 

intracellular accumulated megsin, possibly due to the overload in degradation, may 

require further response.  The ER stress response is not sufficient to overcome the 

challenge imposed by accumulation of megsin, and a cell death pathway involving the 

ER is triggered (involving activation of caspase-12) resulting in activation of the 

executioner capase-3.  Finally, cell viability is impaired. 

In conclusion, heterozygous transgenic rats overexpressing megsin provide a 

model of selective neuronal degeneration in which we propose that ER stress triggers a 

programmed cell death pathway.  Though a critical question, why cellular toxicity was 

so selective, is under investigation, analysis of underlying mechanisms, including 

reasons for selective targeting of hippocampal and nigro-striatal neurons, may provide 

insights into pathways mediating neuronal dysfunction and death in neurodegenerative 

disorders associated with intracellular protein accumulation including serpinopathies. 
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FIGURE LEGENDS 

Figure 1.  Expression of megsin antigen and PAS-positive inclusions in Tg meg rats.  

(A) Tissues were prepared from either Tg meg rats or nonTg littermates (4 months old).  

Protein extracts (~10 µg/lane) were subjected to Western blotting with either 

anti-megsin antibody (upper panel) or anti-ORP150 antibody (middle panel), along with 

internal controls using anti-β-actin antibody (lower panel).  (B-F) Tg meg rats (4 

months old) were perfusion fixed, and brain sections was subjected to PAS staining.  A 

representative section from the indicated brain region is shown.  Dots in panel F 

represent three PAS-positive inclusions in a high power field (200X, approximately 1 

mm2).  A summary of microscopic observations from five different Tg meg rats is 

shown.  (D-K) CA1 region brain slices prepared from either Tg meg rats (G-J) or 

nonTg littermates (K) were studied by PAS staining (G & K).  The same section (G) 

was double-stained with antibodies to ORP150 (H; red) and megsin (I; green).  The 

overlapped image is shown in panel J.  Arrowheads in panels G, I, & J indicate 

neuronal cells with inclusion.  Data shown are representative of five repeat 

experiments.  Abbreviations used in panels B-E, G, & K: CA1; hippocampus CA1, 

CCx; cerebral cortex, Mid ; midbrain substantia nigra, CbCx; cerebellar cortex.  Scale 

bar, 50 µm. 

 

Figure 2.  Neuronal cell death in hippocampi of Tg meg rats.  (A-F) Nissl staining 

was performed in rats of the indicated genotype at 4-12 months after birth.  

Representative micrographs of hippocampal areas (-3.30 mm from the Bregma) are 

shown (A-F); low power (A-C; D provides hippocampus of non Tg rat at 12 months 

after birth) and higher power image of either CA1 of Tg meg (E) or Non Tg (F) at 6 
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months after birth are shown.  Marker bar, 50 µm.  Quantitative analysis of 

undamaged neuronal density (judged by morphological criteria in Nissl staining) from 

CA1 is shown in panel J.  Mean ± SD is shown (n=8).  ** denotes p<0.01 by 

Scheffe’s F test following ANOVA compared with nonTg control rats. 

 

Figure 3.  Activation of an ER stress-mediated programmed cell death pathway in the 

hippocampus of Tg meg rats.   

(A & B) Brain tissue was removed from rats 1-12 months after birth, and protein 

extracts prepared from either hippocampus (A) or cerebellar cortex (B) were subjected 

to Western blotting using anti-ORP150, anti-GRP78, anti-activated capsase-3, 

anti-activated caspase-12, or anti-β-actin antibodies.  (C-I)  Activated 

caspase-12-positive cells in the population of Neu-N-positive neurons were measured in 

CA1 of the animals 2-6 months after birth.  Representative sections from 4 months 

after birth are shown in panels D-E.  Sections were subjected to Nissl staining (D).  

Adjacent sections were immunostained with antibodies to ORP150 (E) and activated 

caspase-3 (F).  Other sections were double stained with anti-Neu-N (G) and 

anti-activated caspase-12 antibodies (H), and merged images are shown in panels I.  

Orientation of sections (E-I, area of hippocampus) is indicated as an open box in panels 

D.  Marker bar, 50 µm.  Mean ± SD is shown (n= 8).  ** denotes p<0.01 by 

Scheffe’s F test following ANOVA compared with nonTg control rats.  N.D. denotes 

not determined due to insufficient signals (statistical analysis was not performed at this 

point). 
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Figure 4.  Neuronal loss in the SNpc of Tg meg rats.  (A-E)  Midbrain slices were 

prepared from either Tg meg (A, C-E,) or nonTg littermates (B) 4 months after birth.  

Sections were subjected to PAS staining (A & B).  The same section as in A was 

double-stained with antibodies to megsin (C; green) and tyrosine hydroxylase (TH; D, 

red), and merged images are shown in panel E.  Marker Bar; 80 µm.  Data shown are 

representative of five repeat experiments.  (F-M)  Coronal sections at the indicated 

depths from the Bregma were immunostained with anti-TH antibody (counterstained by 

cresyl violet) in Tg meg rats at 2 (F-I) and 6 (J-M) months after birth.  Marker bar, 50 

µm.  Data shown are representative of five repeat experiments.  (N & O)  Motor 

coordinate ability was determined by the pole test as described in text, and mean latency 

time to turning downward (N) and reaching the floor (O) is shown.  ANOVA for 

repeated measure revealed significant differences between Tg meg and nonTg 

littermates at each time point (p<0.01). 

 

Figure 5.  Activation of an ER stress-mediated programmed cell death pathway in the 

SNpc of Tg meg rats (A-H)  Midbrain sections (-5.0 mm from the Bregma) from either 

Tg meg rats (A-D) or nonTg littermates (E-H) at 4 months after birth were subjected to 

Nissl staining (A &E).  Adjacent sections were stained with anti-ORP150 antibody.  

Open boxes in panel A & E are magnified in panels B & F, respectively.  Adjacent 

sections were also double-stained with antibodies to TH (green) and activated 

caspase-12 (αcasp-12; red).  Merged and magnified images in the open box in panels 

C & G are shown in panels D & H, respectively.  Marker bar, 50 µm.  Data shown are 

representative of five repeat experiments.  (I) The same analysis was extended to 

animals 2 and 12 months after birth.  Animals were sacrificed and sections of SNpc 
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were analyzed at four different levels (-4.8, -5.2, -5.6, and -6.0 mm from the Bregma), 

and the percentage of cells staining positively for activated caspase-12 cells in the total 

population of TH-positive neurons was determined in the SNpc.  Mean ± SD is shown 

(n=6).  ** denotes p<0.01 by Scheffe’s F test followed by ANOVA compared with 2 

months old Tg meg rats.  N.D. denotes not determined due to insufficient signals 

(statistical analysis was not performed at this point). 

 

Figure 6.  ER stress and accumulation of megsin in cultured astrocytes from Tg meg 

rats.  Astrocyte cultures, prepared from rats of the indicated genotype were exposed to 

hypoxia.  Cell viability at the indicated time point was assessed by dye exclusion in 

astrocytes. Mean ± SD is shown (n=8).  ** denotes p<0.01 by Scheffe’s F test 

following ANOVA compared with astrocytes from nonTg control rats.  (B)  Levels of 

ER stress proteins in astrocytes were determined by immunoblotting, as described in 

text.  (C) Astrocytes (~5x106 cells) were either exposed to hypoxia or maintained in 

normoxia for 24 hours, and homogenates were subjected to subcellular fractionation 

using OptiPrep.  Fractions were then subjected to dot blot analysis using anti-megsin 

antibody.  Samples were also used for dot blot analysis with anti-mouse calnexin 

antibody and anti-mouse TGN38 antibody, as markers for endoplasmic reticulum and 

Golgi apparatus, respectively. 
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