黒部川•昭和27年7月1日洪水の水理学的実態解析について

高 瀬 信 忠＊布 本 博＊＊

On Analysis of the Hydraulic Actual Condition of the flood
 in the Kurobe River in July 1， 1952

$b y$
Nobutada Takase and Hiroshi Nunomoto
The design flood discharge of the Kurobe River was determined $4200 \mathrm{~m}^{3} / \mathrm{sec}$ in 1937 ， when the improvement of the river was planned．At that time，there were few data for hydraulics and hydrology，and there were only 41 data obtained by observation of the discharge from April to July，1935．From these data，the stage－discharge curve was calcu－ lated and the discharge was decided as $4200 \mathrm{~m}^{3} / \mathrm{sec}$ in consideration of the factor of safety． Accidentally in July 1 1952，the biggest flood in past occurred at Aimoto Weir，and although the max．flood discharge was estimated as about $4870 \mathrm{~m}^{9} / \mathrm{sec}$ ，there were a few data for hydraulics and hydrology．

In this paper，with these a few data，we studied the actual condition of this flood concerning hydraulic side，and estimated the max．flood discharge．Moreover，in company with inspecting on the propriety in big flood of the stage－discharge curve that we usually use to estimate the hydrograph，we wish to obtain the basic data for the sake of the rational river planning．

1．はじめに

計西高水流量は，河川の改修工事を仹独するそ当って最初に定められ，加つその規模を決定する最も重要なものであるといわなければならない。わが国河川の計画高水流量は時代の経過とともに過去より増加しているが，その原図としては，流域の変ぼらあるいは河川の改修により最大洪水流量が増大したととのほか，その工事を施工するととのできる社会的，経済的背景に大きく支配され てきたととも重要な一因であちうと思われる。
黒部川の計画高水流量は，昭和12年改修計画当時に決められたが，当時は水理水文資料かほとえ どなく，炤和 10 年 4 月から 7 月までの間に流量観測を実施した 41 個の資料から水位～流量井線を算出し，これそ观往最大水位（昭和 9 年 7 月 1 日）痕跡より $3,400 \mathrm{~m}^{3} / \mathrm{sec}$ を得て，さらに安全率をみて愛本坆堤地点において $4,200 \mathrm{~m}^{3} / \mathrm{sec}$ と決定されたものである。たあたま昭和 27 年 7 月 1 日と昭和 44 年 8 月11日に既往最大の 2 大洪水があり，愛本堰堤では計画高水流量をはるかに突破したと推定され，計画高水流量の再検討が必要となったが，後者の洪水については観測体制も整っていたので非常に貴重な水理水文資料が得られたけれども，前者の洪水については同資料がほとんど得られていなか

[^0]った。そとで当時の最大流量を求める水理模型夷験を行なった絬果 ${ }^{11}$ ，受本堰堤地点で約 $3,000 \mathrm{~m}^{3} /$ sec と僅小な最大流量となって推定された。しかしとの値は，愛本堰堤付近において射流か，もしく はそれた近いと思われる流水の状態における本洪水の最大流量を模型実験で推定しょうとするとこ るに大きな問題点があるようである。したがって本解析により，既往最大洪水の1つである昭和 27年7月1日洪水の実態を水理学的潅明し，ハイドログラフの推定に用いている水位～流量曲線の大洪水時における妥当性を検証するとともに，合理的な河川計画の基碟資料を得ようとするもので ある。

2．流 域 の概況

黒部川は第 1 図に示すとおよで，その源を中部山岳の富山県上新川郡大山町篤羽岳（標高2，924m） そ発し，飛驒山脈とその前山たる立山連峰との間を一大峡谷をなして北流し，途中の大小180余りの溪谷をあわせて，約 71 km ばかりで愛本に達して平野部に出る。そして平野部で河道を拡大しなから北西に流れ，約 14 km にて日本海に注ぐ流域面積約 $682 \mathrm{~km}^{2}$ ，流路延長約 85 km で，山地率約 97.1% ，平地率約 0.8% ，水路面積約 2.1% という本邦有数の急流河川の 1 つである。なお，河川は山岳地带 を貫流している関係上，地勢が急峻にして両岸は巨岩が吃立して雄大な峡谷をなしており，とく に，山間部は年雨量 $4,000 \mathrm{~mm}$ 以上の地域に属しているため，水量が豊富である。さらに河床勾配が急であるため，水力発電の好適地にもなっており，下流平野部（愛本から河口までの14km区域）は自己の形成した扇状地で，その河床勾配は約 $1 / 80 \sim 1 / 120$ を呈し，平均粒径も $15 \sim 20 \mathrm{~cm}$ 位に及ぶ砂爍群で構成されている。

3．昭和27年7月1日洪水の水理学的解析

第 2 図は不等流計算に打ける断面，すなわち，横断測量位置図を示したあのであるが，少ない当時の水理資料をもとに，いろいろの角度から本洪水の実態を水理学的に究明解析してみよう。
（1）愛本橋付近が射流か，または，それに近い流れとなっていると思われるが，当時の写真に よる判定
必ずしも最大流量㭙のものとは限らないが，北劽電力㛜津電力前によって撮影され保存されてい る当時の記録を調べてみると，写真 1 は愛本堰堤下流からみたものであり，堰堤越流部下流は構造上射流となっているととは明らかである。写真 2 ， 3 は堰堤上流より，写真 4 は愛本橋付近のもの で，写真 1 から写真 $2 \sim 4$ を類推して，射流か，まれはそれそ近い流れとなっているように思われ る。
（2）第2図のNo． 2 地点における痕跡水位からの推定
淇水当時の確かな痕跡水位は愛本橋（No．0）上流は非常飞少なく，ほとんどないような現状であ るが，No． 2 の左岸に沏いては道路面高さとの関係などから痕跡水位が認められ，調査の結果，EL． 139.00 m となった。したがって，No． 0 とNo． 2 の 100 m 間で 0.48 m （No． 0 愛本憍左岸侧橋台自記量水䧣位置の痕跡水位EL． 138.52 m$) ~$ の差があるととそなるが，No． 0 が狭穿部になっているととなど から考えて，との間が常流で流れたとすると水理学的にあても不合理なととになり，どうして射流，またはそれそ近い流速の早い流れでないと説明できないととになる。
（3）第2図のNo． 4 地点における調査された痕跡水位からの推定
No． 4 の左岗側における関西電力愛本発電所の痕跡水位は明確なものではないか，当㭙この付近の洪水位を観察した人の話によって測量してみると，約EL． 139.20 m 程度となっている。しかし，これ は最高水位時であるかどうかは不明で，恐らく最高の水位ではないものと思われる。なね，No． 4 に怙いては断面が非常に大きくなっており，したかって，死水域の関係などもあるが，この部分では ほぼ常流になっているものとも考古られる。同じようなととが河幅が広くなっているNo． 2 より上流 そついてもいえることである。そとで，$Q=4,870 \mathrm{~m}^{3} / \mathrm{sec}$（ハイドログラフの推定に用いている水位～流量曲線を延長して，痕跡水位より愛本堰堤地点での最大流量を計算してみると，$Q_{m a x}=4,870 \mathrm{~m}^{3}$ $/ \mathrm{sec}$ となる）として，No． 2 の痕跡水位 139.00 m より出発して常流として不等流計算を行なった結果 が第 3 図に示してあるか，不等流計算をは次式を用いた。

$$
\begin{equation*}
h_{0}-h_{1}=i_{1} l_{1}-\frac{Q^{2}}{2 g}\left(\frac{1}{A_{0}^{2}}-\frac{1}{A_{1}^{2}}\right)-\frac{n^{2} Q^{2} l_{1}}{2}\left(\frac{1}{R_{0}^{4 / 3} A_{0}^{2}}+\frac{1}{R_{1}^{3 / 4} A_{1}^{2}}\right) \tag{1}
\end{equation*}
$$

写真 1 愛本殹堤下流より望む（ 6 月 30 日， 18 時 30 分）
$\stackrel{8}{6}$
1

写真 2 愛本堰堤上流左岸より望む（6月30日，18時30分）

写真 3 愛本殹堤上流左岸より望む（7月1日， 10 時）

筇 3 図 不 等 流 計 算 図

ここで，$h:$ 水深，$i:$ 河末勾配，l ：断面間の距離，$Q:$ 流量，$A:$ 流䅡，$R:$ 径深，$n:$ 粗度係数 で，Suffix の 0 と 1 は，それぞれ下流側および上流側である。 なお，No． 0 の痕跡水位 138.52 m か ら出発して，同じく $Q=4,870 \mathrm{~m}^{8} / \mathrm{sec}$ の場合について常流とした㭙の不等流計算による水位も同じ く第3図に示してあるが，No． 0 とNo． 2 間において水位が異常に高くなっているととからみても， No． 0 とNo． 2 の間が常流で流れたと考えるのは明らかに不合理であるととがわかるであるうと思わ れる。

（4）限界水深と流量との関係

No． 0 付近の流れがほぼ射流状態とすればその水深，すなわち，限界水深（断面は矩形に近い）は次式で与えられる。

$$
\begin{equation*}
h_{c}=\sqrt[3]{\frac{Q^{2}}{g B^{2}}} \tag{2}
\end{equation*}
$$

ことに，h_{c} ：限界水深，g ：重力の加速度，B ：河幅，$Q:$ 流量である。 第 4 図 は（2）式の限界水深と流量との関係を描 いたものであるが，No． 0 における平均河沫高は 127.83 m で水深は 10.69 m とな り，図より限界状態の流量は約5， $100 \mathrm{~m}^{3}$ $/ \mathrm{sec}$ となるととからみても， $4,870 \mathrm{~m}^{3} /$ \sec の洪水流量が流れたというととは十分に推定できる あのと思われる。

第4図 限界水深と流量との関倸

（5）越流量公式による検討

堰堤からの越流量公式は次式で与えられる。

$$
\begin{equation*}
Q=C B H^{3 / 2} \tag{3}
\end{equation*}
$$

ただし，Q ：越流量，C ：越流係数，B ：越流堰堤幅，$H:$ 越流水深である。（3）式によって完全越流 として接近流速を考慮し，F_{r}（フルード数）と Q との関係を示したのが第5図である。

第5図 堰堤越流式によるFr～Q 関係図

越流係数を2．0とすれば流量 $4,870 \mathrm{~m}^{8} / \mathrm{seck}$ 対する F_{r} は，第5図より堰堤上において0．82である。 また各断面の F_{r} はつぎのとおりである。
（1）No． 0

$$
\text { 流速 } V=4,870 / 540=9.02 \mathrm{~m} / \mathrm{sec} \quad F_{r}=9.02 / \sqrt{9.8 \times 10.69}=0.88
$$

（2）No． 1

$$
V=4,870 / 653=7.46 \mathrm{~m} / \mathrm{sec} \quad F_{r}=7.46 / \sqrt{9.8 \times 9.84}=0.76
$$

（3）No． 2

$$
V=4,870 / 1,013=4.81 \mathrm{~m} / \mathrm{sec} \quad F_{r}=4.81 / \sqrt{9.8 \times 9.85}=0.49
$$

（4）No． 3

$$
V=4,870 / 1,690=2.88 \mathrm{~m} / \mathrm{sec} \quad F_{r}=2.88 / \sqrt{9.8 \times 8.60}=0.31
$$

（5）No． 4

$$
V=4,870 / 1,814=2.68 \mathrm{~m} / \mathrm{sec} \quad F_{r}=2.68 / \sqrt{9.8 \times 8.20}=0.30
$$

（6）No． 5

$$
V=4,870 / 1,565=3.11 \mathrm{~m} / \mathrm{sec} \quad F_{r}=3.11 / \sqrt{9.8 \times 7.60}=0.36
$$

これらの結果は全断面が有効に流れたとした場合のあのであって，実際は死水域の問題などああ り，F_{r} が計算値よりある程度大きくなっているであろうと考えられる。これらのことより，No． 2 地点から下流は射流か，またはこれに近い流れであり，そして，No． 2 地点から上流は断面が急拡して いることからみて常流か，またはそれに近い流れであるように思われる。以上のことから総合的に考察すれば，昭和27年7月1日䜤水の最大流量を約4，870 $\mathrm{m}^{3} / \mathrm{sec}$ と推定することは，ほぼ妥当な値で あると判断すべきあのと思われる。

4．ハイトロクラフの推定に用いている水位～流量曲線（ $\boldsymbol{h} \sim \boldsymbol{Q}$ 曲線）の検証

愛本堰堤は崉和 6 年に建設され，水位（h）から流量（Q）の推定には第6図を用いて現在に至って いるかっとのh～Q出線の根拠については，との開線を作成するに当って堰堤からの越流公式により找流係数Cなどを仮定してQを求め，比較的に水位の低い幾つかの夹测値などによって検証している

第 6 図 $\mathrm{h} ~ \mathrm{Q}$ 而線および近似的な流量歓測値
あのと思われる。 しかし現在のところ，現地などで調べても何ら明確な資料はない頨状である。し たがって，われわれは次のようにして近似的にとの业線の妥当性を检証した。

（1）h に対する Q の対応

水標（愛本殹堤との残流域 $54 \mathrm{~km}^{2}$ ）があるが，そとでは流量観測により作られたh～Q明線があり，明和 40 年度以降 8 つの洪水ピーク付近が愛本坆堤水位と対応させて考察するととができるので，同殹堤地点で宇条厅量水標地点での流域比で流量を拡大して考えた。すなわち，愛本坆洗地点での流域面積 \div 宇奈月量水慓地点での流域面積 $=667.0 \div 613.0=1.09$ が流域比となるわけである。第 6 図に は以上のようにして推定された愛本堰堤の流量と，それに対応すると思われる同堰堤水位の関係を示してあるが，流量が大きい 4 つの資料は腒和44イ：8月11日淇水，流量の最も小さい資料は昭利 41年7月12日，他の残り 3 つは流量の大きい㮌に归和40年7月18日，同年9月18日枯よび同年7月13日淇水によるものである。

（2）ハイドログラフの推定に用いている $h \sim Q$ 曲線を延長して考えた場合の検証

近似的には愛本收堤地点での笑测値に相当すると落えられるとれら8つの資料で，従来からハイ ドログラフの推定に用いられている $h \sim Q$ 井線を延長して考えた場合に，同延長曲線の一番下の部分 における 4 つの資料と，そして，約 $3,800 \mathrm{~m}^{3} / \mathrm{sec}$ に近い 4 番目に流量の大きい資料をにらえで曲線を㫪くとすれば，現在用いているとの $h \sim Q$ 曲線にならざるを得ないものと考えられる。したがって，流量 $Q=4,000 \mathrm{~m}^{3} / \mathrm{sec}$ までのハイドログラフの推定には洪水時においても，やはり現地で使用してい る曲線を延長した第 6 図による $h \sim Q$ 曲線がよろしいものと思われる。それ以上の流量值に対して は，第 6 図にプロットされている 3 つの資料から考えてゐると，水位の上昇時と下除㭙に分けて考

えた同じく第6図に示した曲線がよろしいのではないかと思われる。なお，との曲線から昭和27年 7 月1日洪水痕跡水位による最大流量は約 $4,500 \mathrm{~m}^{3} / \mathrm{sec}$ となって算出される。

5．む す び

われわれは非常に少ない資料をあととして，本洪水の実態を幾つかの水理学的な两から検討し，愛本㙁堤地点はとくそ狭穿部になっているととなどから，この付近では射流か，または，それに近 い流れとなっていると思われること，そして，その侍の最大流量が約 $4,870 \mathrm{~m}^{3} / \mathrm{sec}$ 位が流れたのでは ないかということが十分に推定できることを示した。一力。当時を上廻る眧和44年8月11日湝水に よる観測値に近いと思われる2，3の流量資料からh～Q曲線を検討し，痕跡水位から調べてみると約 $4,500 \mathrm{~m}^{3} / \mathrm{sec}$ 位となって推算されたが，とれらの推定値に対して，われわれとしての見解を示した積りである。 昭和27年7月1日洪水は実際にどれ位の最大流量が流れたかの実態究明は非常に䕼し い問題であって，20年を経過した今曰まで水理㮸型実験を除いて，その究明はなされていなかった のであるが，同棲型実験では粗度係数nの変化による影響，接近流速などの影響も河床勾配を急にす ることによって配慮されているけれども，模型では上流側 280 m の範囲しかとられていないが，流量 の加速度による影響などを考えると短か過ぎるようでああり，さらに堰堤上流が常流か射流かの検䚯を光ず行なってから実験すべきあのと思われる。

黒部川の過去における比較的大きな淇水としては，弨和27年および44年以外に炤和 9 年，32年， 34年などが記録されているが，いずれも前線性の豪雨に基区しており，台風性豪雨による出水は少 ないのであるが，昭和27年7月1日洪水は痕跡水位からみると，当時までは異常な既往最大淇水と なって扣り，その時の最大流量を把握する水理学的な実態解析は，当時の水理水文資料がほとえど なかったととなどからあまり栄明されていなかったととは前述のとおりである。しかし，昭和44年 8 月11日洪水は愛本殹堤地点において，本淇水をはるかに上逈る約 $5,670 \mathrm{~m}^{3} / \mathrm{sec}$ と推定されている ${ }^{2}$ が，との封は観測体制もかなり整っていたので貴重な水理水文資料も得られ，その実態解析を比較的容易にしていたわけである。今後は，これら両淇水が計画高水流量の改訂など治水計画上の基礎的資料になるものと考えられるが，本砋筟は黒部川治水計西の合理化に笴与するところが大きいも のと思われる。

最後に本矿究は，建設省北陸地方建設局の委託研究顀および文部省試験呵労費による研究成果の一部であり，資料の収集に当って全面的な御援勖を受けた建設省北陸地方建設局，とくに黒部工事々務所の扣当者各位，ならびに計算などに当って御援明願った学胿学生の鈴木秀利（水資源閒発公団試験所）君に対して，深葚の謝恴を表する次第である。

参 考 文 献

1）建設省土木研究所：黒部川愛本堰足泬水流出量水理跁型実験報告，昭和40年2月
2）建設省黑部工事々務所：炤和44年8月豪雨による黒部川炎書概沉，昭和44年12月
（昭和48年5月17日受理）

[^0]: ＊土木工学科＊＊石川工業高等専門学校

