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Abstract

The analysis of the spin Hamiltonian D[(Sﬁ—%sz)%-/l(s,z,—Si VN+gouS+H + S~ A1
with S=5/2 is made for an arbitrary direction of an applied constant magnetic field H. A
deviation of A from 1/3 and g.uS+ H are treated as a perturbation. Then S+ A4« is treated
as a perturbation to them. From these calculations, the effective g-factor, the transition
probability and the hyperfine splitting are evaluated. These results are useful for the analysis
of the ESR signal with g=4.29 observed in amorphous materials doped with transition metal
ions with S=5/2. The method of the extension of the present calculation to more general
values of S is also presented.

1. Introduction

The ESR signal with g=4.29 is observed in almost all amorphous materials doped with
transition metal ions with S=5/2."-® This signal is known to be explained by the spin
Hamiltonian

H=gouS+H+D(S:~1 89+ E(S52—-S3), (1)

for S=5/2, provided that E/D=1=1/3 and D is much larger than g.uS+ H. Here g,~2. For
A=1/3, Hamiltonian (1) without g,uS8+ H can be diagonalized analytically.

Dowsing™ made a computer analysis of the Hamiltonian (1) for various values of 1. There
is also a perturbation calculation of the Hamiltonian by Nicklin et al®® Both calculations
were carried out only for the case that a direction of an applied constant magnetic field
coincides with one of the principal axes of a crystal field.

In order to calculate a powder pattern, a line width and a concentration of the ESR center
for the ESR spectrum in amorphous materials, we must consider a transition probability and
an influence of a deviation of A from 1/3 for the case of an arbitrary direction of a constant
magnetic field. The analysis of the spin Hamiltonian (1) including a hyperfine interaction term
should be necessary to obtain a hyperfine constant from the observed hyperfine structure in
the signal with g=4.29. To our knowledge, there has not been such a calculation.
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In the present article, we made an analysis of the spin Hamiltonian (1) with a hyperfine
interaction term for an arbitrary direction of a constant magnetic field. For an arbitrary
direction of a constant magnetic field, it is difficult to obtain exact eigenvalues of the spin
Hamiltonian (1) analytically. Assuming that D is much larger than g,uS+H, a deviation of a
fine structure term from A=1/3 and a Zeeman term g.,«S+ H are treated as perturbations to

Ho=DUS: — 87 +5(S2—SH). (2)

Further a hyperfine interaction term is taken as a perturbation to a deviation term from
A=1/3 and guS-+H.

2. Eigenvalues and Eigenfunctions of Nonﬁerturbed Hamiltonian -

Any value of A(=E/D) in (1) can be transformed into values between 0 and 1/3 by a
suitable transformation of coordinate axes. So we assume A to lie between 0 and 1/3.
A deviation of 3 fine structure term from 1=1/3 is given by the following form.

V=(A—1/3)D(S}—S31=8D(S;—S?)=6D(S; +52)/2  (—1/3<5=0). (3)

The eigenvalues E: and the eigenfunctions of #, for S=5/2 can be shown to be as
follows :

| 4a>=Cr, | 5/25> +Cy. | 1/25+Css | —3/2>

| 485> =Cr, | =5/25> +Cas | —1/2> +Cs. | 3/2>

,, | 0a>=Cho | 5/25 + Cao | 1/2> +Cao | —3/2>

Ee=0 108> =Cho | =5/2> +Cao | —1/25> +Cio | 3/2> (4)
| —a>=Cr_|5/2>+Cs. | 1/25>+Cs_ | —3/2>

| —>=C,_| =5/2>+C,_ | =1/2>+C,_|3/2>

E;=+%/7D

E: =_4?/71)

where Cli/CZt:i‘\/ﬁ (2/7—.'*_'5)/6, Cat/CZ:t:iy/? (2\/7?1)/18, CIO/C20=_1/\/1—0,
Cao/czo =3/1/.—, Czo =«/§ /Zﬁy C21:=(4'\/1_4 17«/7 )/28

In the present article, we express the eigenfunctions of S. for S$S=5/2 as| m,>
(my==+5/2,£3/2,+1/2) and the eigenfunctions of Eq. (2) as | le>, [{8>. |+e> and| +5>
are two degenerate eigenfunctions (Kramers doublet) of the eigenvalue Ei, | 0o> and | 05>
are those of EE, and | —o> and | —g> are those of EZ. In the later calculation, 7 and #»
are also used instead of /. The matrix elements for S;, S_, S, and V by | /o> and | /3> are
given in Appendix A.
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The coefficients satisfy the following relations :

| CLu I+ 1 Clp 7= | Clo |41 €l =1, €, C13+CL,CY5=0, (the orthonormal
condition)
(] Cla|?= | Cte|D=—(]| Cla| *~ | Ctp | )=<la| &= | la>*/ AE sur

and  2C,Cl=—2C,Ct%=<Ip| %, | la>"/AE]], ()

In order to derive the perturbation energies (6), we need only these relations (12).

3.2 g-factor
If we concider a resonant condition of the ESR for a Kramers doublet whose eigenvalue
for . is E;, an effective g—factor g, is defined by the following relation.

hy=(E})+E®)—(EV+E?)=guH=(g +Ag)+H. (13)
Here v is a microwave frequency.

<mat V| la> AE 2im
MMIM\,_Q = D@:ﬁ - H_\,Rm A Hhv
f m

147

S 8w=8,+Ag,=AE": +4 X
m==|

The first term gives a g—factor for the case A=1/3, and the second term gives a g-shift caused
by the deviation of A from 1/3.
By using Tables Al, A2 and A3, Eq.(14) can be calculated to be

gw=4g,+86( P! cos?6+ P} cos? ¢sin’*6+ P, sin’¢sin®6)/ &, (15)
and g° =(g?cos?g+g2 sin?f)"* and g |, =(g7% cos’p+4&, sin*4)"", (16)
where  gn=4]| <la|S:|la> |, 8x=2| <IB| S:|la>+<IB| S-|la> |,

gu=2|<Ip| Si| la>—<Ip| S-| la> |, (17)

Pi=4<la| S.| la>al, P'=(<IB] S| la>+<Ip| S- | va?is

PL=(<IB| Sy | le>—<IB| S-| la>) (ot —a?), (18)

. <ma| V| la><ma|S:| la> _ <ma| V|le><mpB| S| la>
= and += > .
TRl o BEY A o BEy

(19)

ga (i=x%2), P:(j=xy2), and g% (k=2, +,—) are shown in Table 1,2 and 3, respectively.

From Table 1, gJ is seen to be independent of 4 ¢ and 30/7=4.29. From Eq.(15) and
Table 2, a solid angle average of Ag, can be shown to be 0. Accordingly, the g-factor of the
middle Kramers doublet averaged over a solid angle varies little and is 4.29, even if A deviates
slightly from 1/3. The linear deviation of A gives only the line width of the signal with
g =4.29. The signal with g, or g, varies largely with § ¢ and the detection of those signal
appears to be difficult for amorphous materials. Those results are useful for the analysis of
the ESR spectrum for amorphous materials.

&, has the similar form as g, by the following transformations
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sing sing=cos§’, singdcosg=sinf’cosy, cosf=sinf’sing’ and —§=¢". (20)
An illustration of Eq.(20) is shown in Fig.2. Those transformations will be used in the next
section.
Z Z
tyaH ' H
\\‘
\ g p

[y O .
’ Y
] .
v ! X
s \?
¢ 1 !
1) 1
X ¢ X R(t) Y
. ] Fig.3. The relation between H and h{t). x’-y
Fig2. The relations between (44) plane is the same plane as xy plane. A
and (6,¢"). new coordinate axis ¥’ coincides with

a direction of a projection of H to x-y
plane. y is an angle between a new
coordinate axis x” and h{t).

4. Transition Probabilities within Kramers Doublet

Denote a perturbation by an oscillating magnetic field h(t), which is perpendicular to a
constant magnetic field H, as #”. We express a projection of 8 to k(t) as S.. From Fig.3,
F” is given by

K =goth(t) - S=guh(t)S1, (21)
where S1=KS,+K*S_—-K,S,, (22)
K=§—e“'¢ (sinycosg+icosy) and K,=sinysing. (23)

is shown in Fig.3. The similar relations as Eq.(10) hold also for x.
We calculate the transition probabilities between two states belonging to a same Kramers
doublet. The matrix element of #” is

| <IB1F: | le> | 2<la| g | le>—<la| .| la>ReZ,—iAEY2, ImZ,

0 ” ] —
a2 > = ABT, [ <IR I e ) la> | 2

where Z=<IB| Fs | la>* <IB| F" | la>. ‘
The transition probability is determined essentially by the matrix element of S1 in Eq.(24), and
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we denote | <yx?_ | S+ 3 > |*%as P(g ¢ 9:

P(6g, ) =g &2, sin*y+ {g2, (g%, sin*¢+g2% cos’d) cos’f+&;, &2 sin’6} cos’y
+%gjl (g2,~g2) sin2y sin2 gcos6)/16(g! ). (25)

P,(6¢,) is independent of 4¢and y and is (g; 12 /16=(15/14)2. We make an average of Eq.(25)
over 3 and denote this average as P.(44). Then

P(6H=1g% (g%, +8%) cos’o+(g%, &%, +8&%, &}) sin*6) /32(g; ). (26)

This result can be used to calculate a powder pattern of the ESR spectrum for amorphous
materials.

P_ (49 can be transformed to the similar form as P.(6¢) using Eq.(20), that is,
P_(49=P.(6",§), so an average of P_(6¢) over a solid angle is equal to that of P.(44). First
we make an average of P64 over ¢, and then over § graphically. We have P,=P_==(.38
and P./P,~1/3.

Using P,, a concentration of the ESR center which contributes to the signal with g=4.29
can be evaluated.

5. Hyperfine Interaction

51 General form

We consider a new coordinate system (x’,y",2") as
shown in Fig.4, and denote components of nuclear spin
operator I in a new coordinate system as (I'.,l’,,1'2).
Using these components (I’,,I’,,I’;), an anisotropic
hyperfine interaction % is

Fn=A L Sx+AL,S,+ALS,=(A.N.+
A_N)S,+(A_N,+A,N)S_+A.N.S,(27) X

where A,=(A,£A,)/2, N.=2e" {I' sinox
—;—[Iﬂ.(l?cos@+I'_(1iCOS@]$, X
N.= [I’zcosﬁ+—2i— (I’.—TI)sing)

Fig.4. The relation between the
and I'. =TI, +il’,. (28) coordinate system (x, 3 z,)
and the new coordinate
system (x’, ¥’, 2’). The
relations : coordinate axis 2z’ coincides
with a direction of H. A
projection of the coordinate

, _HTT 172 axis »’ to x-y plane coin-
and I'y |y >= = mI)Uimﬂ_ 2 lm{i1>' (29) cides with a direction of a
projection of H to x-y plane.

Nuclear spin operators I’; and I'. satisfy the following

I | my>=mg| my>
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+(conjugate complex)] | m;>=mI(ARL +R}), (36)

where

<Ko | Fon) Xiz><toz | K| mr><mr |F | Xi.>
(BY —E3 \E{—E%)

mARE=<m;| = [
m=¥l
r=af

+(conjugate complex)] | me;>, (37)

<X | Jon ) mr><mr | F' | xis>
(E}—E%)

and m,Ri‘=<m,] E E

r— a,,B

A resonant condition of the ESR for a Kramers doublet (/) in the presence of a hyperfine
interaction is:

+(conjugate complex)] | m;>. (38)

hv=guonHy (B~ Bt )=gnHh 1+ (Bl B, ), (39)

L+,mI - mI—l

where E ’i‘tffml—s‘}l m I+e‘f; oyt W m ; and Hy is the applied constant magnetic field satisfying
the resonant condition with a nuclear quantum number #; From Eq.(39), the hyperfine
splitting AH}, ; is obtained as follows:

AHG =Hy o —Hy = (B m~Et 5 ) —(Etm - — ET2 ))/ 8w (40)

l—smp-1

From Eqgs.(30),(31),(32),(37) and (38), AH%, is

1 : : ! ! : 4(m1—%) L2 L2 L2
AH'"I= {Aeff+[(R+_R_)+(AR+—AR_)]——g——[I 12 gt 12— | nh | 2} /gwe (41)

SuH}
where Al,=[A%gicos? 0+ (AjgLcos’ g+ Alg fisin®Psin® 6112 /287, (42)
(R:—R1)=456(A Picos*s+ A PLcos?gsin’g+A ,Pisin*gsin® 6/ g}, (43)

(AR! —ARY)=45((Q4cos* ¢+ Qisin’@) F (G @sinbcoss—(g?)? C.f. (Bhsin’ sin24]/ (g7,

(44)
(L7t 134 | 75 12— | 9] )= {gk ((A.g},sin’6+ A g% cos’gcos’f+ A ,&35 sin’p cos?§)*
+(A g2, —A,g%)%sin? gcos?pcos® ) +(g9)2 g 4.8 5(Asin? g+ A jcos?d)
— g%, (380 f 6 +28% F6) )} /32(80) 83, (45)

Qi=(Pigh—Pigz) (=xY),
C,=(<IB] S_ | la>ot —<IB| Si | la>a)(KIB] Si | la>*—<1p| S_|1e>?)/4 (46)

Fd=UA.—A)glcos’p+(A.—A,)glsin’glsin26/2g2 , (47)
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and S8 =(A x—A,)singsin2g« 2(<Ig| S, | la>?—<Ig]| S_ | le>%)/gd, (48)

Numerical values for C, are given in Table 4.

F(6# and f(64# vanish when A,=A,=A, or a direction of a constant magnetic field
coincides with a principal axis of a crystal field.

5.2 Special cases

Equation (41) has very complicated form, so we consider several special cases. We
express A, as g.uAH {a=x,73,2) in the followings.
a) When a direction of an applied constant magnetic field coincides with a direction of a
principal axis (e) of a crystal field,

1
(my~3) i (AH3(gz) +AH (2 ,)%)

Aan 43 =AHU— (ay ,yzx’y)z)( ,7#:0). (49)
" o 2ea)* § §
als
b) When g.=g,=£.=g3=30/7,
AHR, = {Aly + (R — R?) +(AR? — AR?)]
4(m1_%) 0 2 0 2 0 2

—grage CIPR A A= 2] 0 /e, (50)
where A2,=g3[AZcos?0+(Aicos’¢+ Alsin’gYsin?g1l12/2, (51)
(R} —R°)=45PY— A ,cos?9+ A ,sin?¢sin?g)/ g3, (52)
(AR?—AR?)= —45(Py(1 +sin’@ Fy(4Hsinfcoss+ Cofo(Hsin? §sin24)/ g3, (53)

(121241 221 2= 1 n2 | =(g8)*((A .sin?6+ A «cos? ¢ cos?H+ A ,sin®$ cos? §)?
+(A%sin® ¢+ Acos’d) +(A . — A ,)*sin’p cos? ¢ cos?6—(375(64)% +2Fo(6,87))/32, (54)
Fo(6)=[A .~ A xcos’¢— A ,sin?¢)sin26/2, (55)
and  fo(6h=(Ax—A,)singsin2¢/2. (56)
¢) When 4,=A,=A.=gwuAH, (an isotropic f{yperfine interaction),

1 2
L8 (m—)AHL  16P(g9)
AHmleHh(1+ AZ. )_ Ag: \ l. (gg)z . (57)
1+ 20 1+ 2 VH
1 i

Here t(84 =[G (64 —(£1)*]/(g1)?, where G (84 =[g%.cos?8+(gi.cos’s+ ghsin?gsin?§)'/2,

£.(6¢) vanishes when a direction of an applied constant magnetic field coincides with a principal
axis of a crystal field or g-factor is istropic (/=0). The appearance of a correction term
t(8¢) in Eq.(57) is caused by the anisotropy of g-tensor.

d} When A,=A,=A,=guAH, and g,=g,=g.=30/7, from Eq.(57),

AH =AH \—(m—p 6 Hi/ HY). =

—1563 —
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Here Ago/g} is neglected in Eq.(57), because a solid angle average of Ag, is 0. Equation (58)
agrees with the wellknown formula for a free ion. This result means that a slight deviation of
A from 1/3 has no influence on a hyperfine splitting. From Eq.(50), a slight anisotropy of
hyperfine structure constants is found to give a line width of the signal with g=4.29, even if
g-tensor is isotropic and A is 1/3.

6. Conclusion

Being used the eigenvalues and the eigenfunctions of the spin Hamiltonian
D{(S: — +89++(S2— SY) for S=5/2, A—-PD(Si —S3) and g,uS+H are treated as
perturbations to it for an arbitrary direction of an applied constant magnetic field. Further an
anisotropic hyperfine interaction is treated as a perturbation to (A ——%)D(Si - S2) and
gouS+ H.

From these calculations, the following results are obtained.

(1) The effective g-factor of the ESR signal due to a transition in the middle Kramers
doublet is 4.29 for A=1/3 and the angular average of it varies little with a small deviation
from A=1/3. The first order deviation from A=1/3 has an influence on only the line width for
amorphous materials.

(2) The transition probability in the middle Kramers doublet is calculated. Being used this, a
concentration of the ESR center can be evaluated.

(3) A hyperfine splitting of the signal with g=4.29 is given by the same formula as
wellknown formula for a free ion, if the hyperfine interaction is isotropic.

Finally we should notice that the results obtained in the present article for S=5/2, that is,
Eqgs.(6), (15) and (25), can be used for more general values, S= —% (N=2,45¢ + + ). A proof
of this generalization is given in Appendix B.
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Appendix A. Tables of the matrix elements of S.,S.: and V

« Table Al (The matrix elements of V/ 8§D =(52 +S52)/2)

| +a> | 0> | —a> The other matrix elements
<mpB|V|ng>and<mg|V|na>

<tal (/7 -10/7 %/5/1/2 18/7 can be obtained using Eq.(9).
<0q| 95 /1/2 20/7 95 /1/ 27
<—al 18/7 95 /1/2 —(7/7 +10)/7
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+ Table A2 (The matrix elements of S,) The other matrix elements
| +a [ 0a> [ —a> <m,9]Sz]n,9>and<m,9]Sz]na>
— can be obtained using the follow-
<+al ©+3/7)7 /10 (/7 —1/14 -3/14 ing relations ;
<0a| -/10 (/7 -1)/14 ~15/14 JI0 (/7 +1/14 <mal| S, | na>
<—aq] —3/14 JIOWT +1/14  (9-3/7)/7 =T<mB|Se| np>,

<ma| S;| ng>
=<mB| S;| ne>=0.

» Table A3 (the matrix elements of S.)

[ +a> | +8> [ 0g> [0g> | —a> | —g>
<+al 0 (21-6,/7)/14 0 JIOT+/7)/14 0 -1/2
<+8|| (6/7—15)/14 0 v106—/7)/14 ' 0 —1/14 0
<0a| "0 J10(7+.,/7)/14 0 0 0 V10(7-/7)/14
<08| | /I06—/T)/14 0 - 15/7 0 V106 +/7)/14 0
<—al 0 —-1/2 0 VI0(T~/T)/14 0 (21+6,/T7)/14
<—8| —1/14 0 JI06+/7)/14 0 —(6,/7 +15)/14 0

The matrix of S_ is given by the transpose of the matrix of S.. (a proof is given in
Appendix B.)

Appendix B. A proof of the generalization to the case 2S+1=2N (N=2,34+ » » + )

In order to show that the general form for S=5/2 obtained in the present article can be
used for the general case of S=N —% (N=24, + +), it is sufficient only to prove that Eqs.(9)
and (10) hold for the general case, that is, S=N —% (N=23,4,+ « + ), provided that we can
calculate eigenvales of #,. We can easily calculate the eigenvales of #, for S=3/2 and 7/2,
and they are +2D//3F and +2D /21+4,/97//F, respectively.

Denote eigenfunctions of g, corresponding to Eq.(4) as follows.

| ma>=Cin| S>+Con| S=2>++ ¢ o ¢ ¢ ¢« +Cn-pym| —=S+3>+Cpn| —=S+1> (A

| mp>=Cin| =S>+Com| —S+2>++ ¢ ¢ « +Ciy-ym| S—3>+Cym | S—1>

1) Clearly, <ng| S, | ma>=0,<ma| S, | na>=<na|S;| ma>=—<mpg| S.| ng>
=—<nB| S.| mp>. (A.2)
2) Wedenote <ms+1| S, | m;>=[(S—m)(S+m:+1)1"? as d(m;). Then we have
<ms—1]|S_| m>=d(—ms) and d(—m—1)=d(m,). Using those relations, we can show
<nB|Si|ma>=<mB| S, | ne>=<na|S_ | mp>=<ma| S_| ng>, (A3)
and <na|Si|mp>=<ma|S:|n>=<ng|S_| ma>=<mp| S_| na> (A.4)
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3) Clearly, <npg| (53+S5?% | ma> =0.
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We denote <m+2] S%2| ms> and

<ms—21S% |ms>as f.(ms) and f.(m;) respectively. Then we have f,(ms)=d(m)d(ms+1),
fm)=d(—m)d(—ms+1) and f_(m.+2)=f.(m,). Using these relations, we can show

<na|(S24S%) | ma>=<ma| (S2+S?) | na>=<nB| (S2+S2)|mp>=<mp|(S}+S?)|ng>.

(A.5)

We can easily show that Eqs.(9) and (10) hold for the general case, that is, S=N —%—
(N=234,» + + ), using Egs.(A.2), (A.3), (A.4) and (A.5). Thus we can make the similar tables
as Tables Al, A2, A3, 1, 2 and 3 for S=N—% (N=2,40 o + o),

by
2)

3)
4)
5)
6)
7
8)
9

Table 1.
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g

i
1

X

y 2

+

6/7~0.86

12(3—/7)/7~0.61

12(3+/7 W7

30/7~4.29

30/7

30/7

6/7

12(3+/7)/7~9.68

123-/7)/7

Table 2. P}

(Recieved May 9, 1974)

- 7

x

¥y

2

1053/686,/7 ~0.58

—81(29—~13,/7)/686,/7 ~0.24

—81(29+13,/7)/686,/ 7 ~—2.83

0

2025/686

~2.95

—2025/686

~~2.95

—1053/686,/7 ~—0.58

81(29+13,/7)/686,/7 ~2.83

81(29—-13./7)/686/7 ~—0.24

Table 3. o}
N 2 + -
| —216/T-2/392/7 27(24-5,/7)/392./7 27(28+5/7)/392,/T
135/196 135/196 —135/196
- —27(5/7+2)/392/7 —27(24+5/7)/392/7 —27(28—-5/7)/392/7
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Table 4. C,
! + 0 —
81(154—57./7) 2025 81(154+57,/7)
— = ~(), a1l — = —~—3.
O —graayr 0036 | gp~148 27447 340

Note added in proof :

Eguation (36) was found not to hold when either of the hyperfine interaction or the
effective g-tensor is anisotropic. Accordingly, Egs. (49)«57) do not hold.
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