Some Remarks on Bochner Curvature Tensors

by

Takuji Sato*

Abstract

This paper deals with the study of Kahler manifolds via Bochner curvature tensors.
Similar study has been done by Kulkarni 4), 5), 6), where he has shown that many
curvature preserving mappings between Rieamannian manifolds (or Kahler manifolds) reduce
to conformal or isometric mappings.

In the first section, we shall study K-curvature-like tensors on almost Hermitian
manifolds which include Riemannian curvature tensors, Bochner curvature tensors, and so on.

In the second section, we shall consider Bochner curvature tensors on Kahler manifolds.
The characterizations of the Kihler manifold with vanishing Bochner curvature tensor have been
obtained by many authors. We shall give some other conditions for vanishing Bochner
curvature tensor in Theorem 2. In Theorem 3, we show an analogous result to Kulkarni for a
H g-preserving mapping.

1. K-curvature-like tensors in almost Hermitian manifolds

In this paper all manifolds are assumed to be connected. We usually denote the vector
fields on the manifold by the capital letters X, Y,---, and the tangent vectors at a point by the
small letters x, y,---.

Let (M,gJ) be an almost Hermitian manifold with almost complex structure J and almost
Hermitian metric tensor g, and let T,(M) be a tangent space to M at a point p. On an
almost Hermitian manifold (M,g,/) we consider a (1,3)-tensor field 7 such that

(@ TXY)=-T(VX),

b) £T(XY)ZW)=g(T(ZW)X,Y),
© TX,Y)Z+T(Y,Z)X+T(ZX)Y=0,
d TXY)r=/TXY)

for any vector fields X, Y, Z, W on M. We shall call the above tensor field T a K-curvature-
like temsor after Ogitsu and Iwasaki 7). (The tensor T which satisfy the above (a), (b), (c) is
called a curvature structure 5), or a semi-curvature-like tensor 2).)

For a K-curvature-like tensor 7, we define a (0,2)-tensor field T, and a (1,1)-tensor field
T' by setting
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T.(X,Y)=trace of the map [Z+—T(X,Z)Y] ,
and

gTX,YV)=T/(XY) .
Then it is easy to verify that for any K-curvature-like tensor 7,

TUXJY) =T(X,Y),
TIUX:]Y)z T.(X,Y),
T%J=J.T".

For a given 7, we also define a T-sectional curvature Ky and a holomorphic T-sectional
curvature Hr by

_ g(T(xy)x,y)
Ko ) == Ay

for linearly independent vectors x, 3, and

Hr(x)=Kr(xJx)= &(T(x,Jx)x,Jx)
’ Tx]* :

where [ x]?= g(x,x)and | xAy[?= [ x|? ] y|*—g(x, »)?. It is easy to check that the K7 is
determined by the plane section spanned by x and y, independent of the choice of x, y.

Given a K—curvature-like tensor T on an almost Hermitian manifold M, the notion of the
constancy of Kt and of Hr can be considered in the same way as the ordinary Riemannian
curvature. For instance, the following two propositions are easily seen by the same methods
as the Kéhlerian (or Riemannian) case:

Proposition 1.  Let T be a K-curvature-like temsor on an almost Hermitian wmanifold
M. Then Hr is constant at a point p of M, if and only if T is of the form

T(x%y)z = % {g(x2)y—g.2)x+g(x2) y—g(n,2) Je+28(Jxy) )z}

Jor every x, y, z € T,(M), where a is constant.
Proposition 2. (Tanno 9) ). Assume that dim M = 4. An almost Hermitian manifold

M with K-curvature-like tensor T is of constant holomorphic T-sectional curvature at a point p of
M, if and only if

T(x,Jx)x s proportional to Jx

for any tangent vector x € T ,(M).

Remark. The key of the proof of Proposition 1 is the following formula (Bishop-
Goldberg 1), see also Sawaki-Watanabe-Sato 8)):

gl T(x,y)x,y)=%{362(x +3) +3Q(x—Jy)— Qx+y)— Q(x—y)—4Q(x)—4Q()} ,
where Q(x)=g(T(x,Jx)x Jx)=Hr(x) | x|* .

Now let (ﬁzﬁ be another almost Hermitian manifold with K-curvature-like tensor 7,
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and f M —M be an almost complex diffeomorphism, that is, f is a diffeomorphism satisfying
fooJ= T /.- Then, f is called Hy-preserving if the following equality holds at each peM:

Hyplx)=H7(f, x) for all x e T,(M) .

About the Hr-preserving diffeomorphism we can prove the following
Theorem 1. Let Mg]) and (M,g ]) be almost Hermitian manifolds with K-curvature—
like tensors T and T; respectively. Suppose that dim M= 2n = 4, and the set

{p € M| Hy + constant at p}

is dense in M. Then Hr-preserving diffeomordhism f: M —M s conformal.

We note only the following lemma, since the rest of proof is obtained by the same
arguments as Kulkarni 4), 6).

Lemma 1. If dim M= 4, and Hy is not constant at p € M, then there exists an orthonormal
basis ey, e;, Je., Je,d for To(M) such that

g(T(el,fel)ex,fez)z+(HT(31)_HT(22))2 + 0,
and

&(T(ezJes)ez, e, )+ (Hrle)— Hr(e)P + 0 .

Proof. Since Hr + constant at p, taking account of Proposition 2, we can find a pair of
unit vectors x, ¥ in T5(M) such that g(x,y)=g(xJy)=0 and g(T(x,Jx)xJy) + 0.

If He(x)+ Hyp(y) or g(T(3.Jy)3Jx)+ 0, the basis {x 3 Jx Jyt is the desired one. So
we suppose Hr(x)=Hp(y) and g(T(3.Jy)y.Jx)=0, and set

€,=Co8f -x+sing -y, e,=—sing . x+ cosf -y for some 4§, 0< o< %
Then we have

Hr(e,)=cos*g Hr(x)+sin*g Hr(y)+4cos*g sing g( T(x,Jx)x,Jy)
+cos’g sin®6 {2g(T(xJx)3.Jy)+4g(T(x )% /v)}

Hr(e,)=sin'g Hy(x)+cos*9 Hr(y)—4cosd sin*6 g(T(x,Jx)x,Jy)
+cos’g sin*g {2g(T(xJx)yfy)+4g(T(x )z Jy)} .

Thus
Hy(e,)— Hr(e,)=(cos*6—sin* )(Hr(x)— Hr(y)) + 4cosd sing g(T(x,Jx)x,Jy)
=2sin 260 g(T(x,Jx)xJy)
. e
+ 0 if 0<g< 5.
Hence the basis {e,, €., Je,, Je,} satisfies the conditions in Lemma 1. Q. E. D.

2. Bochner curvature tensors in Kihler manifolds
In this section, we consider the Kahler manifold (M,g,/) of dimension m= 22 = 4, and the
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Bochner curvature tensor on M which is one of the K-curvature-like tensors. By R we
denote the Riemannian curvature tensor defined by R(X,Y)Z=V x nZ—[Vx,Vy]Z, where v
is the covariant differentiation with respect to the Kahler metric g. The Ricci curvature
tensors R,, R! and the scalar curvature » are defined by usual way, that is,

R.(X, Y)=trace of the map [Z+—R(X,Z) Y],
gR'XY)=R.(XY),
7 = trace R!.

It is well-known that R is a K-curvature-like tensor. It is also easy to see that the
following tensors are K-curvature-like tensors:

I(X,V)Z=g(X,2) Y- g(Y,Z)X+gUX,Z)]Y-gUY,2)]X+ 2¢UX,Y)/Z,

S(X,V)Z=R(X.Z2)Y-R\(Y,2)X+g(X,.Z)R' Y- g(Y.Z)R'X
+R\UX.2)]Y-R.\UY.2)]X+ 2R, UX,V)]Z
+gUX.Z)R'JY—gUY,Z)R'JX+ 26UX, Y)R'JZ.

Making use of the above tensors, the Bochner curvature tensor B is defined by

1 r
B= R St i T D 7 D)

It is clear that the Bochner curvature tensor is a K-curvature-like tensor, since R, S and I are
all so. Thus, we have following
Proposition 3. For a Bochner curvature tensor B on a Kahler manifold, we have

1 .
Kplx,y)=Kg(x,y)— CEAETNIE {1y12R.(xx)—2g(xy)R,(x,3)+ | x I2R.(3.»)

¥
dn+D(n+2) |xAy|?

+6g(xy)R.(Jey) + {1 x Ay 112+ 3gUx, 7} ,

and

4 r
wri=r e DD -

Proof. From the definition of the T-sectional curvature, we have

Hpg(x)= Hg(x)—

1
Ks(x,y)=W {1 y12R\(x, x)—2g(x, y)R.(x,y) + | x|*R.,(3, y)+6gUx )R, (Jx )} ,
1
K(xy)=————={ [ x A y[*+3gUx, y)?
H%,y) llx/\yllel gUx, y)* |
The first formula is obtained at once from these formulas. The second follows immediately
from the first. Q. E.D.
Lemma 2. B,=0.

Proof. Recall that B, (x,y)=trace of [z+—B(xz)y] . Let {e\, -, en} be an orthonormal
basis for T,(M). Taking account of the fact R’ J=/-R', we have for any tangent vectors x, y
in To(M)
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Si(x,y)=trace of [z2——S(x,2)y]
=._§1g(3(x,e,-)y,e.-)

=__§1 {Ri(xy)—gxe )R (e,,y)+2(xy)R (e;e)—gle.,y)R,(x.e,)

+gUeie )R \(Jxy)—gUxe )R (Je ,y)+28(y,e )R, Ux,e )
+eUxyIR \Uese)—gUe.y)R,(Jxe)+2g(Jxe )R (Jve)}

=2n+ 2)R,(xy)+rg(x,y).
Similarly
Ii(xy)=2(n+ 1)g(xy).

Therefore, for any x, y € T,(M)

7
B,(xy)=R,(xy)— 5 +2)S(xy)+ W DD 1,(x,y)
1 7
=R:i(%y)— 5= {2(n+ 2)R, (x,9)+ 7 6, ))} +—5—L—g(x,9)
-0, 2(n+2) 2(n+2) Q.E. D.

Now, we show the following theorem which gives some characterizations of vanishing
Bochner curvature tensor.

Theorem 2. On q Kihier manifold (MgJ]) of dimension 2n = 4, the Jollowing state-
ments are equivalent :
(1) B=0 atapointpof M,
(2) Hp is constant at p,
(3) For every vector x of To(M),

R(x,Jx)x—

5 I x2RJx s proportional to Jx.

Proof. 1t is evident that (1) = (2).
2 =) : From the Remark in the previous section, we get the formula
&(Bxy)xy)= 35~ 3Hp(+Jy) | x+Jy |* +3Hp(x—Jy) | x —Jy |*— Hy(x+) | x+ y|*

—Hplx—y) | x—y|'—4Hp(x) | x |*—4H () | ¥ I*} .
If Hy=q (constant) at p € M, then we have
gBELN=—g 13| 2+ L1 +3 1 x—Jy 1= I x+ 31~ | x—y*—4 | x4 | y]*}
=1 U212 1 312~ g(xy¥ +3g(Jyy |
Using an orthonormal basis {e,,-,e.Je., - Je,l of Tp(M), we have
Bie0)=3 (g(Blne) ne)+a(Bluedr e
=2
4

3 Ul +gloe )+ e
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=22 |1 +5 | 1)

+1
= (Lz__)_‘i ]z .
Thus, by Lemma 2, we see
a=0,

and
2(B(x,y)x,y)=0 forallx, y e To(M) .

Now, g(B(x,y)z,w)=0 is an immediate consequence of the following relation which is
checked by straightfor'ward computation :

g(B(x,y)z,w):—fl-;- {B*(x+ 2,3+ w)— B*(x+ w,y+ z)+ B*(x,y+ z)— B*(x,y+ w)
+ B*(3x+ w)— B*(3,2+ 2)+ B*(2,x+ w)— B*(z,y+ w)+ B*(w,y+ 2)
— B*w,x+ 2)+ B*(x,w)— B*(x,2)+ B*(3.2)— B*(,w)} ,

where B*(x,y)=g(B(x)x,y).
(2) &> (3): Applying Proposition 2 to the Bochner curvature tensor B, we see that the
condition (2) holds if and only if

™* B(x,Jx)x is proportional to Jx.
On the other hand, we have
2 2 7

B(x,Jx)x= R (x,Jx)x—

R, (x,x)Jx— | 2R Jx +

R R
by definition. Seeing that the second and the last term of the right hand side of the above
equation are proportional to Jx, we can see that (*) is equivalent to the condition
(3). Q.E.D.

As an application of Theorem 2, we obtain the following

Corollary. A Kihler manifold is of constant holomorphic sectional curvature if and only

n+2 n+2

if the manifold is an Einstein Kihlerian with vanishing Bochner curvature tensor.

Proof. It is well-known that the Kahler manifold M of constant holomorphic sectional
curvature is an Einstein, that is, R‘=% id (id stands for the identity transformation). In this
case, on account of Proposition 2, both R(X,/X)X and R'JX are proportional to JX. Hence
B= 0 from the equivalence (1)¢&= (3) in Theorem 2.

Conversely, if B=0 and R' =—,’;l id, fram the equivalence (1) <= (3) once more, we have

R(x,Jx)x is proportional to Jx at each point of M,
or equivalently
Hpy is constant at each point of M.
Owing to the Schur’s theorem for Kihlerian case (Kobayashi-Nomizu 3) II, p.162), we see that
M is a space of constant holomorphic sectional curvature. Q. E.D.

As for a Hg-preserving diffeomorphism of a Kahler manifold onto another, the following is
an analogous fact to Kulkarni.

Theorem 3. Let (M g J), (ME,% be two complete Kihler manifolds with Bochner
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curvature tensors B, B respectively. Suppose that the Bochner curvature B does not vanish tden-
tically. Then Hg-preserving diffeomorphism 1 M— M is an isometry.
Proof. First we observe that the set of points where B is not zero is dense in M by the

analyticity of the manifold. And by equivalence in Theorem 2, the assumption B = 0 implies
that the set

{p e M| Hg + constant at p}
is dense in M.

As the assumptions in Theorem 1 are fulfilled, f is conformal, that is, f*g= ¢.g for some
positive real-valued function ¢ on M.

Next, let o, & be the fundamental 2-forms on M, ﬁ, respectively (w is defined by w(X,Y)
=g(X,JY)). Then f*g= ¢.g implies f*o=¢.w Since w and & are closed, we have dpAw=0.
This means dp=0 and ¢ is constant, because of dim M = 4 and connectedness of the
manifold. Therefore, we see that f is a homothety.

Furthermore, considering that the Kihler manifold M is not locally Euclidean when B
does not vanish everywhere, we can see that the homothety f is an isometry (Kobayashi-
Nomizu 3) I, p242, Lemma 2). Q.E. D.

Finally, the author would like to express his thanks to Prof. K. Takamatsu for his
constant encouragement.
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