The Science Reports of the Kanazawa University, Vol. II, No. 1, pp. 1-3, March, 1953.

A Note on Mr. Komm's Theorems

By Toshio HIRAGUCHI

(Received June, 27, 1952)

§ 1. Mr. Horace Komm (1) has proved that (1) $\dim P_{n'}(E_n) = n$ provided $n \le \aleph_0$ by showing that (2) $\dim P_{n'}(E_n) \le n$ ($n \le \aleph_0$) and (3) if P is a denumerable partially ordered set of dimension n, there exits a subset M_n of E_n such that $P \sim P_{n'}(M_n)$. Here E_n means the set of all sequences of real numbers $\{x_k\}$, $k=1, 2, \dots, n$ where $n \le \aleph_0$ and $P_{n'}(M_n)$ for every $M_n \subseteq E_n$ a partially ordered system in which $x = \{x_k\} > \{y_k\} = y$ if and only if $x_k \ge y_k$ for all k and $x_i \ne y_i$ for some i. In the sequel we use the convenient abbreviation "poset" for partially ordered set and the notation D(P) for dim P. Now let us define a cardinal product of posets. Let X_s be a poset associated with each element s of a set S, $x = \{x_s \mid s \in S\}$ a set of x_s selected one at a time from each set X_s and X the set of all such x. Then

$$X = \{(x, y) | (x_s, y_s) \in X_s \text{ for all } s \in S\}$$

is a partial order¹⁾ on the set X where X_s is the partial order associated with each poset X_s . By the cardinal product Π_S X_s we mean the set X together with the partial order X. When X_s are all isomorphic with a poset Y, Π_S X_s is the cardinal power Y^S which will also be denoted by Y^m where m is the number of elements of S. Thus if the chain of real numbers is denoted by R the three propositions of Mr. Komm will be formulated as follows. (1*) $D(R^m)=m$, $m \le \aleph_0$ (2*) $D(R^m) \le m$, $m \le \aleph_0$ (3*) Every poset P with $n \in P$:

(P)*) $\le \aleph_0$ and D(P)=m is isomorphic with a subposet of R^m .

The purpose of this note is to prove that the propositions (1^*) , (2^*) and (3^*) hold in more general forms. That is

Theorem 1. Let $\Pi_s X_s = X$ be a cardinal product of posets X_s , $s \in S$ and $\Re_s = \{M_{t(s)} | t(s) \in T_s\}$ a minimal realizer²⁾ of X_s . Then $D(X) \leq n(T)$ where $T = \bigcup_s T_s$. (A generalization of (2^*) .)

Theorem 2. If X_s is a chain for every $s \in S$, $D(\Pi_s X_s) = n(S)$. (A generalization of (1^*) .)

Theorem 3. Every poset P with D(P)=m is isomorphic with a subposet of some cardinal product of m chains whose dimension is m. (A generalization of (3^*) .)

Theorem 3 is a special case of

Theorem 4. If X_s is a poset which is d-reducible³⁾ to a poset which is isomorphic with 2^{T_s} for every $s \in S$, then $D(\Pi_s X_s) = n(T)$ where $T = \bigcup_s T_s$.

^{*)} n [] means the number of elements of a set written in the brackets.

^{1), 2), 3), 4)} As to the terminologies refer to the author's previous paper (2).

§ 2. 1. Proof of the theorem 1. It may be assumed that S and T_s are well-ordered sets without loss of generality. Let $t_0(s)$ be the first element of T_s . Then

$$L_s^{t(s)} = \{(x,x) | x \in X\} \cup \{(x,y) | x_s \neq y_s, (x_s, y_s) \in M_{t(s)}\}$$

$$\bigcup \{(x, y) | x_s = y_s, (x_\sigma, y_\sigma) \in \mathbf{M}_{t_0(\sigma)} \text{ for the first } \sigma \text{ such that } x_\sigma = y_\sigma\}$$

is a linear order⁴⁾ on the set X. That the reflexivity and antisymmetry hold is evident. To show that the transitivity holds let $(x, y) \in L_s^{t(s)}$ and $(y, z) \in L_s^{t(s)}$. Then there are following four cases:

- (1) $x_s \neq y_s, (x_s, y_s) \in M_{t(s)};$ $y_s \neq z_s, (y_s, z_s) \in M_{t(s)}.$
- $(2) \quad x_s = y_s, \ (x_s, y_s) \in \mathbf{M}_{t(s)};$ $y_s = z_s, \ (x_\sigma, y_\sigma) \in \mathbf{M}_{t_0(\sigma)} \text{ for the first } \sigma \text{ such that } y_\sigma = z_\sigma.$
- (3) $x_s = y_s$, $(x_\sigma, y_\sigma) \in \mathbf{M}_{t_0(\sigma)}$ for the first σ such that $x_\sigma = y_\sigma$; $y_s = z_s$, $(y_s, z_s) \in \mathbf{M}_{t(s)}$
- (4) $x_s = y_s$, $(x_\sigma, y_\sigma) \in M_{t_0(\sigma)}$ for the first σ such that $x_\sigma \pm y_\sigma$; $y_s = z_s$, $(y_{\sigma'}, z_{\sigma'}) \in M_{t_0(\sigma')}$ for the first σ' such that $y_{\sigma'} \pm z_{\sigma'}$.

When one of the first three cases occurs it is evident that $(x_s, z_s) \in M_{t(s)}$. Hence $(x, z) \in L_s^{t(s)}$. When the last case occurs $x_s = z_s$. If $\sigma \leq \sigma'$, then σ is the first suffix such that $x_{\sigma} \pm z_{\sigma}$ and for this $(x_{\sigma}, z_{\sigma}) \in M_{t_0(\sigma)}$. Similarly if $\sigma' < \sigma$, then σ' is the first suffix such that $x_{\sigma'} \pm z_{\sigma'}$, and for this $(x_{\sigma'}, z_{\sigma'}) \in M_{t_0(\sigma')}$. Hence in either case $(x, z) \in L_s^{t(s)}$. Thus the transitivity is verified. The chain $L_s^{t(s)}$ obtained by associating $L_s^{t(s)}$ with X is a linear extension of the poset X. In fact, if $(x, y) \in X$ and $x \pm y$, then either $x_s \pm y_s$, $(x_s, y_s) \in M_{t(s)}$ or $x_s = y_s$, $(x_{\sigma}, y_{\sigma}) \in M_{t_0(\sigma)}$ for the first σ such that $x_{\sigma} \pm y_{\sigma}$; hence $(x, y) \in L_s^{t(s)}$. Moreover the system

$$\Re = \{ \mathcal{L}_s^{t(s)} | s \in S, \ t(s) \in T_s \}$$

of all linear extensions $L_s^{t(s)}$ is a realizer of the poset X. To show this let $x \notin y$ in X. Then either (1) $x_s \notin y_s$ in X_s for some $s \in S$ or (2) $x_s \neq y_s$, $(x_s, y_s) \in X_s$ for some s and $y_{s'} \neq x_{s'}$, $(y_{s'}, x_{s'}) \in X_{s'}$ for some $s' \neq s$. If (1), then $(x_s, y_s) \in M_{t(s)}$ for some $t(s) \in T_s$ and $(y_s, x_s) \in M_{t'(s)}$ for some $t'(s) \in T_s$; hence $(x, y) \in L_s^{t(s)}$ and $(y, x) \in L_s^{t'(s)}$. If (2), then $(x_s, y_s) \in M_{t(s)}$ and $(y_s, x_s) \in M_{t(s')}$; hence $(x, y) \in L_s^{t(s)}$ and $(y, x) \in L_s^{t(s')}$. Thus \Re is a realizer of X. Therefore D(X) = n (T_s) .

2. Proof of the theorem 2. By the theorem 1 we have the inequality $D(\Pi_s X_s) \leq n(S)$. To have the inverse inequality it suffices to show that $\Pi_s X_s$ contains

a subposet of dimension n(S). But evidently 2^s is a subposet of $H_s(X_s)$. To prove that $D(2^s) = n(S)$ let 2 be $\{0, 1\}$, a_s the element of 2^s whose s-component is I and other components are 0 and b_s the element of 2^s whose s-component is 0 and other components are I. Then the subposet of 2^s composed of all a_s and all b_s is isomorphic with the poset composed of all elements of S and their complements in S and ordered by the relation of set-inclusion. It has been known (3) that the dimension of the latter poset is n(S). Hence we have $D(2^s) = n(S)$.

- 3. Proof of the theorem 3. Let a minimal realizer of P be $\Re = \{L_s | s \in S\}$, n(s) = m. Then P is isomorphic with a subposet of $\Pi_S L_s$. In fact P is isomorphic with the subposet P^* of $\Pi_S L_s$ composed of all elements such that all the components are equal to an element $x \in P$.
 - 4. Proof of the theorem 4.

 $D(\Pi_S X_s) \leq n(T)$ is evident by the theorem 1. On the other hand $D(\Pi_S X_s) \geq D(\Pi_S 2^{T_s}) = D(2^T) = n(T).$

REFERENCES

- 1. H. Komm, "On the dimension of partially ordered sets", American Journal of Mathematics, vol. 71 (1948), pp. 507-520.
- 2. T. Hiraguchi, "On the dimension of partially ordered sets", Science Reports of the Kanazawa University, vol. 1, No. 2 (1951), pp. 77-94.
- B. Dushnik and E. W. Miller, "Partially ordered sets" American Journal of Mathematics, vol. 63(1941), pp. 660-610.