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A Note on Mr. Komm’s Theorems
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§ 1. Mr. Horace Komm (1] has proved that (1) @im P’ (En)=n provided #< o by
showing that (2) @imP.' (E,) Zn (<X and (3) 72f P is a denumerabdle partially
ordered set of dimension n, there exits a subset My of En such that P~P," (M,). Here
£, means the set of all sequences of real numbers {x}, 2=1, 2, - , 7 where 2N,
and P, (IM,) for every M, F, a partially ordered system in which x= {w}>{yz}=yp
if and only if w22y for all %2 and x;==y; for some 7. In the sequel we use the convenient
abbreviation “poset” for partially ordered set and the notation 2 () for dim 2 Now let
us define a cardinal product of posets. Let X, be a poset associated with each element s
of a set S, o= {u,;[sCS} a set of x, selected one at a time from each set X, and X the
set of all such «. Then

X=1{Cx, »)ICaxs, y:)EX, for all sCS}

is a partial order? on the set X where X is the partial order associated with each poset
X;. By the cardinal product f1s X: we mean the set X together with the partial order
X. When X, are all isomorphic with a poset ¥, [Is X, is the cardinal power ¥*¥ which
will also be denoted by Y™ where = is the number of elements of .S. Thus if the chain of
real numbers is denoted by A& the three propositions of Mr. Komm will be formulated as
follows. (1*) DUR™)=m, m<Ry (%) DIR™ISm, m<N, (3%) Every poset P with »
(PIOXN, and D (Pl=m is isomorphic with a subposet of R™

The purpose of this note is to prove that the propositions (1%), (2%) and (8%) hold in
more general forms. That is

Theorem 1. Zet Ils Xo=X be a cardinal product of posets Xs, sCS and R s={Mi s>
[2COETSY a minimal realizer® of Xs. Then D (X)Zn (T) where T=Us Ts. (A
generalization of (2%).)

Theorem 2. 7f X, is a chain for every s S, D (M sX,)=n(S). (A generalization
of (1%).)

Theorem 3. Every poset P with D (Pl=m is isomorphic with a subposet of some
cardinal product of m chains whose dimension is m. (A generalization of (3%).)

Theorem 3 is a special case of

Theorem 4. 7f X, is a poset which is d-reducible® to a poset which is isomorphic
with 27s for every sCS, then D (Il sX,)=u(T) where T=UsT;.

%) 7 [ ] meens the number of elements of a set written in the brackets.

1), 2), 3), 4) As to the terminclogies refer to the author’s previous paper [2].
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§ 2. 1.Proof of the theorem 1. It may be assumed that S and 7 are well-ordered sets
without loss of generality. Let 7, (s) be the first element of 7. Then

L= {2 [+EXYULC, )]sty (os, 3 )0EM (2}
UiCx, »lxs=ys, (xg, y6)EM ;o> for the first ¢ such that xs=+ys}
is a linear order® on the set X. That the reflexivity and antisymmetry hold is evident.
To show that the transitivity holds let Ca, ) ELL and (y, 2) ELL). Then there are

following four cases :

<1> xs:‘:y.h (xs, _}’s) Mt(s);
YsFzs, (_J/s, 2s) M, s>.
(2) xs=kys, (a5, J’s) Mt(S);

M, s> for the first ¢ such that y,==z,.
M, > for the first ¢ such that xs=ys ;
M t(s)

M, > for the first o such that xe=+ys 3

Vs =2s, (xg, }’a)
3) Xs=Ys, (g, J’a)
ysFzs, (vs, 2s)
(4) xs=ys (x5, y5)
ys=2s, (ygty 267) © M.y for the first 07 such that yera=z,7.

M MM MMM D

When one of the first three cases occurs it is evident that (s, 25) EM ;). Hence (x, 2)
€L, When the last case occurs x, =zs;. If 0=<0’, then o is the first suffix such that
x5z, and for this (g, 24) EMto(o')‘ Similarly if ¢’<o, then ¢’ is the first suffix such

that wsr= 247, and for this (agr, 257) CM: o). Hence in either case (a,2)ELEC2.  Thus

the transitivity is verified. The chain Z{% obtained by associating £L:¢? with X is a linear
extension of the poset X. In fact, if (&, v) €X and x=Fvy, then either x,=y,, (x5, ps)
EM ;s> or xs=ys, (xg, y5) EM:, > for the first & such that x5y, ; hence (x, y) €L,
Moreover the system

R ={ZL(sCS, 2(DHET S}

of all linear extensions 2% is a realizer of the poset X. To show this let x ¢ y in X.

Then either (1) x5 ¢ y, in X, for some s €S or (2) x,=%y,, (x;, y,) EX, for some s
and ysrFxss, (ys’, as’) CXss for some s'==s. If (1), then (x;, ys) EM, sy for some

t(s) €T and (ys, x5) EMis¢sy for some #/(s) €75 ; hence (x, y) ELLY and (y,x)
ELY . If (2), then (s, y5) EM:s> and Cys, x5) €M, (ary; hence (a, ) ELL and

(y, ) ELY?. Thus R is a realizer of X. Therefore DI X)=7 (7T3).

2. Proof of the theorem 2. By the theorem 1 we have the inequality D [[1sX,)
<#(SJ. To have the inverse inequality it suffices to show that [Ts X contains
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a subposet of dimension » [.S). But evidently 25 is a subposet of [ls X,. To prove that
D(25)=n(S) let 2 be {0, I}, a, the element of 25 whose s-component is I and other
components are 0 and 4, the element of 25 whose s-component is 0 and other components
are I.  Then the subposet of 2% composed of all a@s and all 4s; is isomorphic with the
poset composed of all elements of S aud their complements in .S and ordered by
the relation of set-inclusion. It has been known (3] that the dimension of the latter poset
is #(.8). Hence we have D[25])=z[S).

3. Proof of the theorem 3. Let a minimal realizer of 2 be % = {Z,|sCS}, nls)=mm.
Then 2 is isomorphic with a subposet of [/sZs. In fact P is isomorphic with the
subposet P* of IsZ, composed of all elements such that all the components are equal to
an element x C2.

4. Proof of the theorem 4.

DU s X )<#(T] is evident by the theorem 1. On the other hand

DU s X2 DU 2% )= D27 )=n( T ).
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