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Introduction.

It is said that the original problem of integral geometry was G.L.L. Comte De
Buffon’s needle problem [13%, that is;

“A floor is ruled with equidistant parallel lines; a rod, shorter than the distance

between each pair, being thrown at random on the floor, to jfind the chance of its

Salling on mzevof the lines.”

As the direct generalization of this problem we can point out the following modifi-
cations, that is, we may use two rows of parallel lines which construct a lattice-work
by congruent rectangles, or take an oval instead of a needle.

Developing such a problem concering with the estimation of geometrical probabilities,
Blaschke and his circle organized integral geometry. Then L. A. Santald, using integral
geometry, treated a problem in the Euclidean plane which contains Buffon’s needle
problem as a special case ([3] and [47).

The aim of this paper is to generalize his results on this subject in the plane to the
case in the Euclidian three-space Z;. For this purpose we shall first define the uniform-
figure-systems in Z; and then consider the subject under three classified cases.

§ 1. Definition.

1.1 Covering of Euclidean space Z;. — In the first place, let us take a closed
surface g, in Z; which admits the construction defined by a discontinuous rigid motion
7; operating upon ¢, which satisfies the conditions () and (). Let the surface o,
be marked at its initial position in Z;. If 7 be operated upon o,, it will move to the
next position. Then we put the following condition (@) upon these two congruent
surfaces.

(a) The two adjacent surfaces have a part of them in common but neither of them
has any inner point of the domain enclosed by the other surface in common.

Suppose that the operation 7, is repeated p— times in the same direction and the
inverse operation 77! pr-times in the opposite direction starting from the initial
position of ¢,, then we obtain a tubiform surface which joins pg,(= g+ ;) -pieces
of o, piece by piece. Let us denote this tubiform surface by ¢;, and put another
condition (f,) upon o;.

% Numbers in brackets refer to the references at the end of the paper.
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(#:) For any number g, of the operation 77, the surface o, does not intercross
itself, namely it is Jordan’s curvic.

In the next place, let us consider another rigid motion 7', operating upon o, whose
direction is different from that of 7. Again upon 7, and ¢, we put the same
condition as that of () for 7 and o,. If we operate 7, upon ¢, pf-times in the same
direction and the inverse operation 7% ' p; —times in the opposite direction, we obtain
a leaf-like surface joining (=g + p5 )-pieces of ¢, piece by piece. Let us denote
this leaf-like surface by o, and put the following condition ($3,) upon it.

(B:) For any number y, of the operation 7,, the surface o, does not intercross
itself.

In the last place we define a third rigid motion 7} operating upon ¢, whose direction
is independent of those of 77 and 73, and which satisfies the condition (o) too. Then
repreating the rigid motion 7°; upon o, py-times in the same manner as before, we
obtain p,—pieces of o, arranged in layers and the boundary surface formed by all the
parts of surfaces which are not common to them is a closed surface in Z;. Let us
de_note this closed surface by ¢, and put the fdllowing condition (f#;) upon it.

(Bs) For any number p, of the operation 77, the surface o, does not intercross
itself. ‘

Thus we get a Jordan’s domain enclosed by o,, or, in other words, the whole domain
which is enclosed by o is divided into congruent s u,u-pieces of the domain enclosed
by o, without overlapping or without leaving gaps. _

Thereupon if we shall increase gy, g, and p, to infinity at the same time, the whole
space /£ will be covered by eo’-pieces of domains, each being congruent to the domain
enclosed by o,, without overlapping or without leaving gaps. '

Now let us call such a construction “a covering of Z; by ¢,”, the domain ® enclosed
by ¢, “a fundamental cell” in the covering and each domain which is arranged by the
covering “a unit cell” in the covering.

1.2 Uniform figure system.— We now proceed to give the following constructions
for three uniform-arrangements of points, curves and surfaces in /#Z,;. For the con-
struction, let us prepare three sets of figures as follows ;

(0) a set of points of a finite number,
(1) a set of curves of finite length,
(2) a set of surfaces of finite area.

Thereupon, let us cover Z; by a fundamental cell ¢, attached with a set of
figures, and every unit cell in the so covered space by ¢, will be allotted uniformly
with a set of figures. Then we cross out the covering surfaces. Let us call each

of the sets of figures “the fundamental figure” and choose it so that these figures
allotted to each unit cell may not intersect with the others in its adjoining cells.

We classify such an arrangement of figures corresponding to the kind of the
fundamental figure (0), (1) or (2) by calling
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(0) a uniform-point-system in £,

(1) a uniform-curve-system in 7,

(2) a uniform-surface-system in Z;.
Hereupon we only give an example for such uniform-figure-system, that is, a regular
system of points in Z; [5].

§ 2. A uniform-point-system in F;.

2.1 Set of points of a finite number.— Let © be a set of a finite number of points
(P, Puy-r--+, Pp) which are fixed in £, and & a closed surface of volume P, which
moves in Z;. It is well known that the total measure of the positions of & which
contains some points of & is given by the formula

fmf‘? =8n*pV, D
CYaNtET]
where & denotes the kinematic density for & [2], » the number of the points of ©
contained in & at a position and the integration is extended all over the intersection
points of € and §&.

2.2 A uniform-point-system and moving surface.— Let us take a uniform-point-system
in Z; which is defined by the fundamental cell carrying p-points and a closed surface
& of volume ¥ which moves in the space Z,. Then the number » of points of the
system, which are contained by &, depends upon the position of & in the space Z.
Let us find the mean value of the numbers of such points. ‘

1) Let us take a domain in £, which is composed of g+ usps—pieces of unit-cell. In
this domain, gy, ¢, and p;-pieces are lying in three rows respectively whose directions
are mutually independent. Let us denote this domain by 2 and the set of points of the
system in % by Por- Now we move & freely in £; with the sole condition that the
origin ~(x, y, z) of the moving frame attached to it remains always in %. The set
of the unit cells which be able to have common points with such a moving & forms a
domain including % in it. We denote it by %. In 9, if the numbers of the unit cells
arranged in the three directions are gy +2v,, p+2v,, ps+2y; respectively, the total
number of the unit cells is (gy+2v) (pe+2v,) (us+2v;). Accordingly the number of
the points of the system which are contained in ¥ is oCus+200) (pat2v,) Cpts+2v5).
Then let us denote the set of points contained in % by Bg. ‘

Next, if we take off v,, v, and v, layers of the cell of 9 from both sides of each
direction respectively, we get a domain formed by (u—2v;) (ps—2v,) (p3—2p5)—cells.
This domain is denoted by 9 and the hollows domain, which is formed by taking off
o from %, by 9 — 9. Further the set of the points of the system in % — % is denoted
by $g_g. Obviously A — 9 contains
oAC+2v ) (pa+20) (ps+2v5) —(pry—2v1) (pa—2v,) (us—2v5)} ~points of the uniform-
point-system.

2) To obtain the mean value of the number of points of the system which are
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contained by &, we apply the formula (1) in § 2.1 to the present case and we have
fmgé — 8 p VIt +2,). @
B g §t 0 '

We divide the integral at the left side into two parts; the one is a total measure of
® as the origin P(x«,y,z) attached to & is contained in %, and the other is the rest
of the integral. If we denote the former by 7,cg and the latter by Z,zg, we have

]P6u+lpég=8n2pVH(;1i+2ui).
Then, denoting by f 7713;@ the total measure of positions of ® so that 2 attached to
PED -
® may be contained in a unit cell ® and & may contain m(=1)-points of the system,
we can express /pcg as follows,

Ipcy = ullu.z/lsfm@ .
PED
On the other hand, we denote by /7pc g the total measure of & in positions that it has

some points in common with P 3i-9 on condition that 7 attached to & be out of .
Therefore we can put

Tpeg<8a®pV{ll (pts+2v, )— T (prs —2v;)%.

Dividing the both members by gy, and letting gy, s, ps—roo, we have,

Jra(-2 i)} o

tim €% < jim gy {77(142

Vi
wiveo Mifofls Ri>oo i i

Y7
Then, if we rewrite (2) as follows,
,u,/lg,ugfmé +Ipcy=8mtp VIl (ps+2v;),
PED
and divide both members by g up;, We have

(i + ]”gi:snzpmz(nzl’ﬁg).

(1 9 [ i
reD Hitta s
Consequently, the limit of the equation as p;—oo(7=1,2,3) is
f m% =8a2pV . 3+
PED i

On the other hand, the total measure of & at such a position as P(x, y, z) attached
to ® is contained in a unit cell of the system is given by

fﬁ% =8n%C, “

PED
where C denotes the volume of a unit cell.

Dividing (3) with (4), we have the following theorem.

Theorem 1. When a closed surface & of volume V moves in Es where a uniform-

% In order to save trouble of reexplanation of the same procedure, we shall speak of the equation

(3) as ‘“a limit equation by covering procedure of the whole space Z; with the equation (1)”.
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point-system is defined, the mean value m of the number of points of the system
contained in R, is given by ‘

;;zici , (5D

where P denotes the number of points belonging to a unit cell and C the volume

of a unit cell.

3) Geometrical probability (1) .

Let us suppose a special case in which the number of points contained by & is
exclusively limited to m; or m,.. Let z,(7=1,2) be the probabilities that the number
in question is m; (7=1,2), (my>m.=>0).

Then

iy pitms po= ‘OCV and pi+p.=1.

Hence we have

- PV—=Cmy_ _Cm—pV_
21 CCmy—msy) ’ 2= CCmy—ms) ®

§ 3. A uniform-curve-system.

3.1 A uniform-curve-system and moving surface.— Let us take a uniform-curve-system
in Z; which is defined by a fundamental cell attached with rectifiable curves of tatal
length 7/, and & is a surface of area # which moves in the space. We denote by
the number of common points of & at any position with curves of the system.

Let us find the mean value of .

First, we take two domains % and ¥ in the space under the same manner as
in §2.2, (1), namely % and % contain II,u, and [I Cps+2v;)-pieces of unit cell
respectively; and then denote two set of curves in % and 2[ by €g and €y respectively.
Denoting by U the total length of the curves allotted to a unit cell and using the
kinematic density S:E = [cos 0| soT 8 [6], we obtain

f m® =4 U P Cpri+2,).
@ﬁm@:&:‘) ’
In the same manner as in §2.2, (2), let us denote by f m® such a tatal measure of

PED
® as the origin 2 attached to ® is contained in a unit cell ® and & crosses with

some of the curves in ©, and by Jrcq the total measure of ® in positions where 2
is out of %. Then the above equation can be represented as follows,

/llﬂgllgfﬂl@. +/pEg =4t UL (pty+2v;).

PED
Divinding the both members by gipps and letting g, —eo(7=1,2,3), we have
fmé =4 U F. D)
PED

Again dividing the above equation with (4), we have a following theorem with regard
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to the mean value in question.

Theorem 2. When a closed surface ® of area F moves in Es, where a uniform-
curve-system is defined, the mean value m of the number of common pointsto R and
curves of the sysiem is given by ‘

=5z ®
where C denotes the volume of a wunit cell ® and U the total length of curves
attached to a unit cell.

3.2 Kinematic formula and geometrical probability (2).— Let us take a convex
body ®; of volum WV, which is enclosed by a closed surface & of area #. And apply
to ®,, moving in the space £, the kinematic principal formula ([2] and [61) by
W. Blaschke, that is,

f‘('(@()y(‘31)@31:87{2{6'0V1+M)SI+SOM+ VoCi}. <9>
In this case, taking account of C(Cg,&)=dn, Cy=4n, V=V, My=nU, Si=7F,

So=V,=0, we have
f &1 =22 (AW + U pri+20,). 10
CYU@ o ‘
Taking now the same procedure as in §2.2 (2), we can obtain the limit equation® by
the covering procedure of the whole space £; with the kinematic formula (10) for the
present case, as follows,

f &, =2m2(4V+ U F) (1D
ENGy0
Now, we can classify ®’s position with reference to the uniform-curve-system into
three cases as follows;
(i) & includes completely one or any pieces of curves belonging to the uniform-
curve-system,
(ii) & has common points with the uniform-curve-system,
(iii) &; has no common point with the uniform-curve-system.
Corresponding with the above classification, we divide the integral standing at the
left side of (11) into two parts, that is, ‘
ésl+f(§ﬁ1=2n2(4V+UF>,
C'CG; ERko

where €’ represents any pieces of curves belonging to a unit cell. On the other hand,

the integral f (351 can be written by (7) as follows,
CER=0
fésl=fm§>e 4T F.
CR+0 PED

% see §2.2 (2)
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By the above two equations, we have

f &, =204V—UR. (12
¢'Ce, ‘ '
Let us now denote by p, (=1, 2, 3) the respective probability that one of the above

classified cases (i), (ii) and (iii) may occur. Using the above equation (12), we have,
_AV-UF _UF AC—VI—UF

M=TTge T ec 0 T 4 (1
3.3 Geometrical probability (3). — In regard to the preceedihg prbblem, let us
consider such a special case in which the number s of the intersection points is
exclusively limited to »; and .. Then the equation (7) can be written as follows,
fmé =mlf§.? +mgff.? =42y, (14)
PED P& D, PED,
where D, (7=1, 2) is a sub-domain in a unit cell ®, that is, so long as P is contained
in ®;, the number of the intersection points of € and & is alvwaysymi (7=1, 2), Ca}zl
>m2\é()).
Let us now denote by p; (7=1,2) the respective probabilities that the number of
the intersection points in question is »; (7=1,2). Then

&
P
=S i1 2)
R
PED
where f'@ AP
, PED
So we have 5 v » ) , o
_ UF=2m;C_ _ 2mC—UF
I1= 2C(myi—ms) 2= 2C(my—ms) * : (15

For example, when a convex closed surface & moves in a space £,;, where we
take a uniform-curve-system defined by a set of parallel lines whose distances are
greater than the diameter of &, §® will either intersect one of the curves or not.
Let %2 be the number of curves and ¢/ the length of a curve in a fundamental domain.

Now ;=2 and m,=0, hence the probability that & will intersect one of the parallel

curves is

_ U
= i (16D

§ 4. A uniform-surface-system.

4.1 A uniform-surface-system and moving curves. — Let us take a uniform-surface-
system in £, which is defined by a fundamental cell attached with a set of surfaces of
total area /4, and move a set of curves of total length {7, in the space. If we denote
by s the mean value of the number of common points of the set of curves with
surfaces of the system, by the same procedure as in § 3.1 we have the following theorem.
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Theorem 3. When a set of curves of total length U moves in Ky where a uniform-
surface-system is defined, the mean value m of the number of common points to the
set of curves and surfaces of the system is given by

— UF
=g (17)*

where C denotes the volume of a unit cell and F the total area of a set of surfaces
attaching to a unit cell.

4.2 Uniform-surface-system and moving surfaces. — Let us now consider that a set
®, of surfaces of total area #,; moves in the space %, where a uniform-surface-system
is defined. In this case ®,; will cross with surfaces of the system along curves.

Let us represent by s the total length of intersecting curves. Let us now find the
mean value of 5. Using the kinematic density by L. A. Santalé [6]

.....

we have a integral formula
f:c§1=47r3]?0-1?1, (18)
ﬁof\ﬁlﬂi‘)
where &, represents a set of surfaces contained in a unit cell and #, the sum of the
surface area of ®,. Taking now the same procedure as in § 2.2 (2), we can obtain

the limit-equation by covering procedure of the whole space Z, with the equation (18),
as follows,

JECIEYED YA (19
T PED
Now the above integration is extended to all over the positions in which &, always
intersects some of the surfaces of the system and the origin 7 («, y, z) attached to
®; is contained in D.

Then, dividing (19) by the equation (4), we have a following theorem in regard to
the mean value of s.

Theorem 4. When a set of surfaces of total area Fi moves in FE; where a
uniform-surface-system is defined, the mean wvalue of the total length s of the
intersection curves along which the moving surfaces cut some of the surfaces of the
system is given by

— FoF
F=Ihly 20)

where C denotes the volume of a unit cell and Fy the total area of a set of surfaces

attaching to a unit cell.
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