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1. Introduction.

The present paper is a summary of the author’s two previous ones [1], [2], revised
and supplemented. Throughout the sequel the term “order” is used in place of the
term “partial order”. It seems to the author that, so far as the linear extension and
the dimension of orders are concerned, it is convenient to consider an order as a subset
of a Cartesian product. Thus we have the following definitions.

1.1.. By an order defined on a set A we mean a subset P of the product A< A
which satisfies the following conditions:

01: {(x,x)x=A}C P,

02: (x,9)=P and (y,x)EP imply x=y,

03: (x,y)eP and (v,2)=P imply (x,z)=P.

By the above definition {(x,x) |[x= A} is itself an order on A, which is said a nell-
order.

By a Ilinear order defined on a set A we mean an order L which satisfies the
condition '

04: For every x,y= A, either (x,y)e L oy (y,x)EL.

By the domain of an order we mean the set on which the order is defined. By an
ordered set A(P) we mean a set A considered together with an order P difined on it.

We shall use the usual terminologies in the theory of the ordered sets, accompanied
by “(P)” which may be interpreted in the obvious fashion. For example: “x and y
are comparable(P)” means that either (¥,9)=P or (y,x)=P; x and y are incomprable
(P)” means that neither (x,)& P nor (y,x)= P, which will be abbreviated by “xgy(P)’’;
“x procedes(P) y” means that (x,y)= P, but x5y, which will be abbreviated by “x<<y
(P)”; “ais a maximal(P) element of A’ means that ¢<<x(P) for no element x=A4;
“B is a linear(P) subset of A means that B is a subset of A which is linearly ordered
by the order P, etc.

1.2. Let P be an order on a set A and B a subset of A. Then P(B)={(x,y|(x,y)
&P and x,y=B} is an order defined on the set B which is said a suborder of P on B.
The suborder of P on a set of single element % will be denoted by P(b) or simply by

b. When P(B) is a linear order it is said a linear suborder and B a linear(P) subset
of A.
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1.3. By an extension of an order P we mean an order @ defined on the domain of
P such that P&@. An extension L of an order P is said a [inear extesion of P
provided that L is a linear order.

Let {P,|s=S} be a system of orders defined on a fixed set A. The intersection
Nseg P, is also an order on A and each P, is an extention of it. The union
Useg P, is not always an order, but if either P,CP, or P,SP, for every ss &S,
then it is an order on A and an extension of each P..

1.4. Let{A,|s=S} be a system of pairwise disjoint sets, P, an order difined on A

for each s=S and @ an order defined on the set S. Then
UsesPsu{(x,x) | 2, EApx,EA, and s<s'(Q)}

is an order defined on the set U,eys A,, which is said the ordinal sum of the system
of orders {P,|s=S} according to the order @ and denoted by ¢ P,. In particular
when @ is the null-order on S, the sum coincides with U;eg P, and is said the
cardinal sum and denoted by Y,eg P,. The ordinal sum of finite number of summands
Ai, Ao, ..., A, according to the order of the index numbers will be denoted by A1+
As+...+A,.

1.5. Let {P,ls=S} be a system of orders P, defined on a set A for each s&.S, and
F the set of all mappings f of S into U,eg A, such that f(s)eA, for every s&S.
Then

(L OIfEFY{(f.D\f.2gEF and (f(s)g(s)EP, for very s=S}
is an order defined on the set F which is said the cardinal product of the system and
denoted by [l,ey P,. In particular, if P,=P for every s&S, F becomes the set of
all mappings of S into P. In this case the product is denoted by PS. If all P, are
isomorphic to a fixed order P, then the product is isomorphic to P¥. '

1.6. Let{P,'s=S}, A, and F mean the same as in 1.5 and let W be a well-order
defined on the set S. Then

(AL feEFY(fig)lfLigeEF and f(0)<g(o) (P,) for the least(W) element &
such that f(o)#g ()}
is an order defined on F which is said the ordinal product of the system {P,|s=S}
according to the well-order W and denoted by ]y P,.

2. Linear Extensions of an Order.
The following theorem has been already known [3].

2.1. Tureorem. Let P be an order defined on a set A and a,b any two incompar-
able(P) elements of A, them there esists a linear extension L1 such that (ab)=Ly
and a linear extemnsion Lo such that (b,a)< Lo.

This theorem will be generalized as follows:

2.2. Tueorem. Let P be an order defined on a set A and B a null-ordered(P)
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subset of A, then there exists, for any linear ovder L(B) defined on B, a linear
extension L of P such that L(B)&L.

Pyoof. For every (a,b)=L(B) put

Py={(xy|xyeA and (x,a),(b,y)EP],
then Q=PU (U e Pw) is an extension of P such that L(B)ZQ. Let % be the
set of all extensions @ of P such that L(B)S®. By the fact just mentioned 240 and
the subset £ of 9 x9 specified by

O={(Q,Q)| QA and Q=Q'}
is an order defined on . Let & be any linear suborder of £ and ¥ its domain. By the
remark stated at the end of 1.3, Ugegq @ is an order on A and is an extension of
each Q<=§, ie. it is an upper bound(£) of V. Therefore, by the Zorn’s lemma, there
exists an element L in O which has no proper extension. L is necessarily a linear
order on A. Thus L is a linear extension of P which contains L(B) as a suborder.

By a right linear extension of an order P with respect to an element ¢ we mean a
linear extension L satisfiying the condition

(a) if agx(P), then (ax)eL.
Dually a left linear extension L' with respect to « is defined by the condition
® if agx(P), then (x,a)=L’.

We have the following theorem.

Tueorem. For every order P defined on a set A and for every element a=A, there
exist a vight linear extention and a left linear extensiom with respect to a.

Pyoof. Put
Ar1={x|x=A and (x,a)=P}, As=A—A1,
As={x|x=A and (ax)=P}, Ay=A—As,
and let L; be a linear extension of P(A;) for each z=1,2,3,4. Then the ordinal sum
*) L=L1+Ls and L'=L4-+-Ls
are right and left linear extensions of P with respect to a respectively.

One sees easily that every right linear extension L and every left linear extension
L’ with respect to an element ¢ have the forms (*) respectively.

A linear extension of a given order which is right (left) with respect to every element
of a subset of the domain of the order is said »zght (left) with respect to the subset.

2.4. Tureorem. Let P be an order defined on a set A and B a subset of A. There
exists a vight (left) linear extension of P with respect to B, if and only if B is a
linear (P) subsel of A.

Proof. Let L be a right(left) linear extension of P with respect to B, and assume
that b¢d'(P) for some b,6/'c=B. Then we have both (5,6’)eL and (&,0)=L, hence
b=V which contradicts 5¢4'(P). Therefore either (6,6)=P or (V,b))=P, Le. Bis a
linear(P) subset of A.

Conversely let B is a linear(P) subset of A, and split the set A to the following 3
pairwise disjoint subsets :
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Ar={x|(x,)=P for all b=B}—B,

As={x| (x,0)=P for no b= B},

Ao=A—(A1U As).
Let Ly and Ly be any linear extention of the suborders P(A7) and P(Ag) respectively
and let Ly that of P(As) constructed in the following manner.

For each element x=As put B,={b|bc=B and (x,b)P(A2)}, and define a binary
relation “~”” on Ap by writing x~y if and only if B,=B, The relation thus defined is
an equivalent relation by which the set Ao is devided into classes {A¢| = X}, the set of
representatives X being a subset of As. As is easily verified the subset Q@={(&,p|&neX
and B:SB7} of Xx X is a linear order defined on X. Now let Ls be any linear
extension of P(A¢) for each é€X and Lo= X gcx) Le the ordinal sum of L¢’s according
to the linear order @ on X. Then Lo is a linear extension of P(A2). Since it is evident
~that Lo is a linear order on Ao, it remains only to show that P(A2)SLs. But since
Sy P(Ae)SLs, it suffices to show that P(A2) S gy P(Ae). Let (x,y)=P(Ag). If
x,y=Ae for a €= X, then (x,y)EP(AE);ZQ.P(Ag). If x=Ae, ye Ay for distinct &pe X,
then we have necessarily (§,9)&Q. For otherwise there exists an element b&B such
that b=By but bFEBg. y= Ay implies B,=B;=b, hence (y,0)=P(A2) by the definition
of B,. This, together with (x,y)=P(Ag), implies (x,y)=P(A~), and hence b=B,. But
on the other hand x=As implies Be=B,=b which contradicts b¢:Bz. By the definition
of the ordinal sum (1.4),(§p) =@ implies (x,y) =X P (As). Thus we have P(A:2)S
S P(Ag).

Now let L=L1+ Lo+ Ls be the ordinal sum of L{,Ls and L3, then L is a right linear
extension of P with respect to B. Since it is evident that L is a linear order defined
on A, it remains only to show that PC L. But since we have

>P(A)=P(A1)+P(A2)+P(A3)EL1+ L2+ Lg,

it suffices to show that PEX P(A4;). Let (x,y)eP. If x,y=A; for some ¢, (x,y)=P(A;)
CXIP(A). If x=A,;, yA; for i/, we have necessarily i<7j, thence (x,y)eXP(A,).
In fact: If x€As and yeA1U A», then (x,0)eP for no b=B and (y,b) =P for some
b=B. But latter, together with (x,y)=P, implies (x,b)P which contradicts the
former. If x=Ae and y= A4, then (x,b)=P for some b=B and (y,b)=P for all b=B.
But the latter, together with (x,y)=P, implies (x,0)=P for all =B which contradicts
the former. Hence we have ;<(j.

In order to show that L is right with respect to B, it is sufficient to show that
(byx)=L whenever (x,b)¢=P for any fixed b=B. But (x,b)=P implies x=AsU As. If
x= Az, evidently (b,x)=L since b=BEZAs. If x= Ao, we have necessarily x=Ag, b=Ay
for &5 such that (,6)=@ which implies (bx)=L2EL. In fact: (§7)=@ implies
B,=B=By=B,, hence (x,0)cP(A2)SP which contradicts (x,b)EP.

Thus the existence of a right linear extension with respect to B is estsblished.
Dually the existence of a left one may be established. The gist is as follows. Split A
to the subsets

A'1={x|(bx)EeP for no b B},
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A's={x|(bx)=P for all b=B}-B,

Av=A— (AU A's),
and let L'y, L’'s be any linear extensions of P(A’y) and P(A’3) respectively. Put
B,={blb=B and (bx)=P(A’s)} for each x=A’s. The set A’s will be divided into
classes {A’¢ 6= X"} by the equivalent relation “~’’ defined by putting x~y if and only
if B,=B, Then ={(p|iyp=X and B':¢"B7y} is a linear order on X’. Let L’¢
be any linear extension of P(A’¢) and put L'eo=3,(x» L'¢, then L'o is a linear
extension of P(A’s) and L'=L"|+L'9-+L's is a left linear extension of P with respect
to B.

Let B and B be two subsets of the domain of an order P. B is said order—disjoint
(P) upwards (downwards) to B’ provided that (B’ xB)nP=0 (BxB)nP=0). When
B and B’ are order-disjoint upwards to each other, they are simply said order—disjoznt
(P). We have the following theorem and the corollary.

2.5. Turorem. Let P be an order defined on a set A and B and B two linear (P)
subsets of A such that B is ovder-disjoint (P) upwards (downwards) to B'. Then
there exists a linear extension of P which is bolh vighi(left) with respect to B and
left (right) with respect to B'.

Proof. Let A;(i=1,2,3) and A’;(j=1,2,3) be the same partitions of A asin the
proof of the last theorem, and put A;;=A;nA’;, Then considering the condition that
(B'xB)nP=0, one sees easily that

Aro=A18-As0o—Aa3=0
Hence we have
A1=Axq, Ag=As1, As=Ag1UAg2U Asgs.
A'1=A11V A1V As1, A'g= Az, A'z=Asgs.
Let Li==Lj1, Ly1 and L's=Lgg be any linear extensions of P(A1)=P(A11), P(Asz1)
and P(A’s) ~P(Azs) respectively and Lo - Lsy, L's = Lse the right and left linear
extensions of P(As)=P(Asy) and P(A’s)-=P(Aze) respectively constructed in the
same manners as in the proof of the last theorem. Then as is easily seen
Lg=Lg1+Lgo+ L3y and L'1=141+Lo1+ L3t
are linear exresions of P(Ag) and P(A'1) respectively. Now put
L=Lyi1+Lo1+La1+Lga+Las,
then we have
L=IL1+Lo+Lg=L1+Lo+1L'g
which shows that L is right with respect to B and left with respect to B. The
remaining part of the theorem may be proved dually.

2.6. Cororvrary. Let P be an ovder difined on a set A and B and B’ linear(P)
subsets of A which ave order-disjoint(P). Then therve exists a linear extension which
is vight with respect to B and left with vespect to B, and a linear extension which
is left with respect to B and 7ight with respect to B'-



6 T. Hiracur:

3. Dimension of QOrders.

3.1. By a realizer of an order P we mean a system {L,|s=S} of linear extensions
of P such that NgL,=P, and by a minimal realizer a realizer {L, 1T} such that
the cardinality | 7| of its index-set is less than that of every realizer of P. By the
dimension of an order P we mean the cardinality of the index-set of its minimal
realizer. The dimension of an order P is denoted by D[P]. It is evident that a
system {L,|s=S} of linear extensions of an order P is a realizer of P, if and only if
there exists, for any incomparable(P) elements x and y, s,s’=S such that (x,y)eL;
and (y,x)eLy By this remark and the theorem 2.1, every order has a realzer and
hence the dimension. )

Evidently the dimension of a linear order is | and that of a null-order is 2.

The following theorem gives an estimation of the dimension of orders difined on a
fixed set A.

3.2. Tureorem. The dimension of an order P does not exceed the cardinality of
its domain A, i.e. D[P]1<|A].

Proof. Let L, for each element x=A, a right linear extension of P with respect
to x. Then the system {L,|x=A} is a realizer of P, since (x,y)&L, and (y,x)EL,
for any incomparable(P) elements x and y.

The  estimation given above is not the sharpest. The sharpest cne will be given in
section 8. The last theorem will be generalized as follows.

3.3. Turorem. Lel P be an ovder defined on a set A and {A,|s=S} be a system
of pairwise disjoint linear(P) subsels of A. Then DIPI</A—UzA; +|S!.

Proof. Let L,, for each element x=A— UgA,, a right linear extension of P with
respect to x and L,, for each element s=S, a left linear extensicn of P with respect
to A;. Then the system {L,|x=A— NgA}U{L, s=S} is an realizer of P.

3.4. Cowrorvary. Let P be an order defined on a set A and {A,|s=S} a system
of pairwise disjoint linear(P) subset of A salisfying A=UgA,. Then D[PI<|S|.

4. Dimension of Suborders.

4.1. Let P be an order defined on a set A and B a subset of A. Then D[P(B)]
<. D[P] where P(B) is the suborder of P on B. Thus if some elements are deleted
from the domain of an order, the dimension diminishes in general. In this section the
amount of thé diminution caused by the deletion of elements will be estimated. We

shall begin with showing that the diminution caused by deleting an element is at most 1.

4.2. Tuzorem. Let P be an order defined on a set A and a an element of A.
Then D[PI<D[P(A—a)]+1.

Proof. Let{L';|s=S} be a minimal realizer of P(A—a), and split the set A—q to
the following subsets :
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Ai={xx=A—a, (x,a)=P},
As={x|x=A—a, (a,x)=P}
Ae=(A—a)—(A1U Az).
Take an element ¢=S and fix it. Put
Li=L (A1) +a Lo=1";(A21As),
Lg=L',(A1VA»), Ly=a+L ;(Asg).
Then L=Li+Ls and L*=Ls- L4 are right and left linear extensions of P with respect
to a respectively.
For each s=S—¢ put
Ag=1{x x=A and (x,x1)=L', for some x1=A1},

Agp=(A—a)—Aq.
Then

Li=UgLv{(aa)}v{xa) x=Aqtv{(ax) xcAxa]
is a linear extension of P and the system {L,|s=S—¢}jU{L,L*} is a realizer of P.
Hence we have

D[P]<|S—¢ | +2=|S|+1=D[P(A—a)]+1.

The last theorem shows that if # elements are deleted from the domain of an order
the dimension diminishes, in general, by #. But when the deleted elements satisfy a
particular condition the diminution will be lessend.

4.8. Tusorem. Let P be an order defined on a set A and a a minimal (P)
element and b a maximal(P) element of A. If agb(P), then D[PI<D[P']+1, P’
being the subovder of P on the set A =A—{ab}.

Proof. Split the set A’ to the following subsets :
Ar={xlx= A, x¢pa(P) and (x,b)=P},
Ao={x|x=A, xpa(P) and x¢b(P)},
Ag={x|x=A’, (ax)=P and x¢b(P)},
and let L; be a linear extension of P(A4;) for each i=1,2,3. Then
L=L1+b+Lo+a+Lsg
is a linear extension of P which is left with respect to ¢ and right with respect to &.
Now let {L';|s=S} be a minimal realizer of P’. Then, for each s=S, L,=a+L ;b
is a linear extension of P which is right with respect to ¢ and left with respect to &,
and the.system {L,|s=S}uL is a realizer of P. Therefore we have
D[PI<D[P']+1.

It is noteworthy that the diminution of the dimension caused by deleting a linear
subset, whatever the cardinality may be, is at most 2, as the following theorem shows.

4.4. Tuvorem. Let P be an order defined on a set A and C a linear(P) subset
of A. Then D[P]<D[P(A—-C)]+2.

Proof. Let {L’; s=S} be a minimal realizer of P(A—C). For each element c=C,
put U,={ulu=A—C and (uc)=P}. Obviously U,CU,, if (¢c,c')=P(C). For given s=S
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and ¢c=C, put either A, ={x|x€A—~C and (xu)=L, for some usU,} or A,=0
according as U,=40 or U,=0, and put A*,=(A—C)—A,. Then

L=L UP(CO)u{(x,0)ceC and x€A,}0{(c;x)]|cEC and xS A%}
is a linear extension of P. Now let L; be a right linear extension of P with respect
to C and Lo a left one with respect to C. Then the system {L, s=S}u{Li,L2} is a
realizer of P. Hence we have D[P]<|S|+2=D[P(A-C)]+2.

To verify that L, satisfies the conditions 01, 02, 04 is not hard. To verify that it
satisfies 03 let («x,%), (y,2)EL,. There are the following 8 cases: )

(1) x,92=A-C. Then (x,9), (y,2)EL,, hence (x,2)=L'EL,.

(2) x,9z2=C. Then (x,%), (y,2)=P(C), hence (x,2)=P(C)CL..

(8) %9=A—C and z=C. Then (x,y)eL’; and y= A,, that is (yu)eL’; for some
u=U,. Therefore (x,u)=L’, for some u=U, that is x= A,,. Hence we have (x,2)E L.

4) %22 A—C and y=C. Then (x,2)EL, and x=A,, that is (xu)=L’; for some
usU, and ze A*,, that is (w,z)eL’, for all u=U,. Hence we have (x,2)E L,

(5) yzeA—C and x=C. Then (y,2)=L’, and y= A*,,. Hence when U.#0, (u,y)
€L, for all u=U, which implies (u,z)= L, for all u=U, that is z2 A*,,. When U,=0,
ze A—-C=A*,, since A,,~(. Thus in either case we have (x,2)=L,.

(6) x€A—C and yz=C. Then x=A,, that is (xu)eL’; for some ue U, (5£0),
hence (x,u)=L’, for some u=U, which implies (x,z)& L,.

(1) y€A—C and x,z2&C. Then y= A*,, and y=A,, that is (u,y)EL’, for all ucU,
and (yu)c L', for some u=U,. Assuming that (z,x)c P(C) and x4z we have U,CU,
which is impossible. Hence (x,2)eP(C)EL,.

(8) z26A—C and x,y=C. Then U,CU, and z£ A*,,. When U,+0, U,#0 and we
have (uz)eL’; for all u=U,, a fortiori for all u=U,. Therefore z=A*,,. When
U,=0, evidently z& A*,, since A,,=0. Hence in either case we have (x,z)&L,.

In order to verify that L, is an extension of P, let (x,y)= P. There are the following
three cases:

1) xysA—-C. Then (x,9)eP(A-C)=L L,

(2) x€A—C and y=C. Then x€U,, hence x= A, which implies (x,y)E L.

(3) yeA—C and x=C. If U,#0, (u,y)=P for all uU, which implies ye A*,,. If
U,=0, evidently y= A*,,. Hence in either case (x,y)e L.

4.5. Tureorem. Let P be an order defined on a set A and Ci and Co be two linear
(P) subsets of A which are order-disjoint(P). Then [PI<D[P(A—-Ci—C2)]+2.

Proof. Let {L’,|s=S} be a minimal realizer of P(A-C1—Cg). Let L'y be a linear
extension of P(A—C1) constructed from L” in the same manner as L, was constructed
from L', in the proof of the theorem 4.4. Then let L, be a linear extension of P
constructed from L’; in like manner. On the other hand since Cy and Co are order-
disjoint(C) there exists a linear extension both left with respect to Ci and right with
respect to Cg, and a linear extension both right with respect to Ci and left with
respect to Co. Let it be L1 and Ls respectively. Then the system {L,'s=S}u{L1,Ls}
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is a realizer of P. Hence we have D[P]<D[P(A—-C1—C2)]+2.

4.6. Let P be an order defined on a set A and @b two distinct elements of A.
When (g,0)eP, (a,x)=P and (x,b)=P for no x= A, it is said that b covers(P) a or a
and b are consecutive(P) and denoted by (a:0)eP. When (a:b)=P, the pair of
consecutive elements ¢ and b is denoted by (@:5). A pair (@:b) is said of rank 7 if
there exist » pairs of elements x,y= A such that (x:5) &P, (a:y)=P and xgy(P).

We have the following theorem.

4.7. Turorem. Let P be an order defined on a set A and (a:b) a pair of consecu-
tive elements of rank O or 1. Then we have D[P(A—a—b)]+1.

Proof. Let ={L |s=S} be a minimal realizer of P(A—a—5b). When (a:b) is of
rank 0 choose arbitrarily an element of & and let it be L';,. When (a:b) is of rank 1
there exists a single pair #, and y, such that (x,:8), (a:y,)=P and «x,$y,(P). Hence
there exists an element of § which contains (x,,y,) as an element. Let it be also Z/,.
Split the set A’=A—a—b to the following five disjoint subsets:

Ar1={x x= A’ and (x,a)= P},

As={x|xc A, xpa(P) and (%,b)=P},

As={x |z A, x¢a(P) and x¢b(P)},

Ag={x 2= A, (a,x)EP and x¢b(P)},

As={x|x= A" and (bx)=P}.
Put

A123=A1UA20 As, Agzan=AgU AgU As,

Liog=L'; (A129), Laas=L; (Asas),
and

Li=L,(A) for i=1,2,3,4,5.

Then L=Li+a+Lo+b+Lgss is a right linear extension of P with respect to {a,b}
and L*=Ljog+a-+Lsi+b-+Ls is a left linear extension of P with respect to {a,b}.

Now let L, for s&€S—¢, be the linear extension of P constructed from L', in the
same manner as in the proof of the theorem 4.4 for the case where C=(a@:b), then
the system {L, s=S—o}U{L,L*} is a realizer of P. Hence we have

D[P]1<|S—0¢|+2=|S|+1=D[P(A—a—b)]+1.

5. D-reducible Orders.

5.1. Let P be an order defined on a set A. A subset B of A is said to be d-
removable provided P[D(A—B)]=D[P]. An order P is said to be d-reducible if there
exists at least a d-removable element in its domain. On estimating the dimension of a
given order, it will be often convenient to delete beforhand the d-remvable set if it
exists. ,

As a criterion for the d-removabilty of a subset we have the following very
comprehensive theorem.
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5.2. Tueorewm*. Let P be an ovder defined on a set A and B a subset of A
satisfying the following conditions:

1° If there exists an element x=A—B such that (x,b)eP for an element b= B,
then (x,0)=P for all elements b= B.

2° If there exists an element x=A—B such that (bx)=P for an element b= B,
then (bx)=P for all elements b= B.

Then B is d-vemwvable except at most an element b, (chosen arbitrarily), provided
D[P(A)I=D[P(B-b,)] where A=A—(B—b,).

Pyoof. Let £1={L';|s=S} be a mimimal realizer of P(A’) and Se={L; |t T}
that of P(B—b,). Since D[P(A)]1>D[P(B—b,)] means that | S[>|T |, there exists a
mapping of 1 onto ®2. Let it be f. Then

L=L vf(L')uv{(xy) | x€d’, y=B—b, and (x,b,)=L’}
v{(x,y) | x=B—b, y= A" and (b,y)=L'}
is a linear extension of P for each s&S and the system f&={L,|s=S} is a realizer of
P. Hence we have D[P]=D[P(A")].
In order to verify that L, satisfies 03, let (x,y), (y,2)EL,.
There are the following 8 cases:

1D x93,z 4, 2) x,y,2&B—b,,

3) x,y=A’; z& B—b,, 4) yz=A'; x=B—b,,
5) x,z=A’; y=B—b,, 6) x=A’; y,ze B—b,,
7 yeA'; x,z2&B—b,, 8) z=A'; x,y=B—b,.

If 1) or 2), evidently (x,2)=L, If 3), we have (x,9)=L’, and (y,b,)=L’,, hence
(xb,)e L’y which implies (x,2)eL,. If 4), we have (3,2), (b,y)=L; hence (b,z)=L,
which implies (x,z)eL,. If 5), we have (x,0,) (b,,2)&L’,, hence (x,2)eL’,CL. If 6),
(x,y)€ L, implies (x,b,)= L’ which implies (x,2)eL’,. If 7), we have y=>b, since (b,,y),
(yb)el',, Hence (x,b,)eLl’; and (b,z)=L’, which impliy (x,2)el’ L. If 8),
(y,z)e L, implies (b,,z)=L’; which implies (x,2)=L..

That L, satisfies the conditions 01, 02 and 04 may be easily verified. Therefore L, is
a linear order on A.

In order to verify that L, is an extension, let (x,y)=P. There are the following 4

cases:
D x,yA4, 2) x=A', y=B—b,,
3) y=A, x=B-b, 4) x,y=B—B,.

If 1), evidently (x,y)eL’ ,CL,. If 2), by the condition 1°, necessarily (x,6,)=P. Hence
we have (x,b,)=L'; which implies (x,y)=L,. If 3), we have (b,y)=PCL’; which
implies (x,yv)eL,. If 4), (x,y)=f(L)CL,.

In order to verify that ® is a realizer of P, let x¢y(P). If x,y=A’, since x¢y(P(A)),
(x;y)eL’S;Ls and (y,x)eLl’ CL,, for some s,§=S. If x= A’ and y=B—b, we have
necessarily x¢b,(P) by the conditions 1° and 2°. Therefore there exist s,s'&S such that

* (64), (6.5), (6,6), (6.8), (6.9) and (6.10) in [1] are all special cases of this theorem.



On the Dimension of Orders 11

(x,0,)= L’ and (b,,yv)=L'y, hence (x,y)=L, and (y,x)=L',. If x,y=B—b,, there exist
tLt'=T such that (x,y)=L’; and (y,x)=L’,. But since there exist s,s’=S such that
L,=f(L,) and L',=f(L ), there exist s, =S auch that (x,y)=L, and (y,x)=L,.

It must be noticed that the set B satisfying the conditions 1° and 2° is not always
removable as a whole.

6. Dimension of the Sum of Orders.

6.1. Turorem. Let Q be an order defined on a set S, {A;|s&S} a system of
pairwise disjoini sets, A, an order defined on P, and o an element of S such that
D[P,] = D[P for all s=S. Then

DIQIED[ZgnPs]1=Max (D[P,], D[QD).

Proof. Let B be a set of representstives slected from each set A,. Then suborder
of TowPs on the set B is isomorphic to @. Therfore D[Q]< D[Xo Pl

Let ®={L,|t=T} be a minimal realizer of @ and R,={L,,|#(s)=T,} that of P,
for each s&S. Since D[P,]=D[P,] means |T,|=>>|T,|, there exists a mapping f, of
§ onto R,. Let {f, s=S} be a system of such mappings where f, may be chosen
arbitrarily for s=4e¢, but for ¢ let it be the identical mapping. For each {(¢)eT, and
for each (=T let Ly =X rn:fs(Liy), be the sum of f,(Lys)’s according to the linear
order L, on S. Then L, ., is a linear order defined on Ug¢A, and a linear extension
of Zon P, In fact, considering f,(Li») =L for some #(s)eT,, L2 P, and L,2Q,

we have _
L= Ugfs (L) V{(x,y) | x= A5, yEA,, and (s,s)=L,}

DULPu{(x,y) [x=A, vEA, and (s5,5)=Q}
=g Ps
If D[P,1=D[Q], there exists a mapping of T, onto 7. Let it be ¢, then S;=
{Loco o (t(e)=T,} is a realizer of SgwP, and we have D[ oo P,]=D[P].
If D[P,]<<D[Q], there exists a mapping of T onto T,. Let it be v, then the
system S;;={L,y |[t=T} is a realizer of ZTywf; and we have D[P 1=D[Q].
In order to verify that $; is a realizer of Y oP,, let x¢y(P). If x,y= A, for some
s=S, then x¢y(P,). Hence there exist #(s), #'(s)eT, such that (x,y)=Ly=f(Liw>)
and (y,2)E Lu¢y=f(Li). Therefore (x,y)= L.y and (3,%)E Ly for all (=T, In
particular (x,9)E Lo and (9,2)E Logioie). I x€A, and y=E A, for s+s,
then s¢s'(€). Hence there exist £,#/=T such that (s,s)&L, and (s,s)E L. Let t=¢
(o)) and #'=@(#(s)). Considering that the domains of f(Li») and fu(Lyy) are A
and A, respectively, we have (%,y)E Louco i) and (3,%)E Loqidied. That 877 is
a realizer of Xgcs) P, is verified similarly.

The following theorem is an immediate result of the theorem 6.1.

6.2. Tureorem. Let P be an orvder defined on A=UsA, which is decomposable to
a sum ZowP,, @ and P, being orders defined on S and A, vespectively, and ¢ be an
element of S such that D[P,]=D[P.] for all s&S. Then A—A, is d-removable
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provided D[ P,]=D[Q], and A—{f(s)|s&S} is d-removable provided D[P,]>D[Q],
S being a function which selects one element from each set A /

As a particular case of 6.2, we have the following corollary.

6.3. Cororvary. Let P be an order difined on a set A. If a is an element of A
comparable(P) to each element of A, then a is d-vemovable. In particular, the
‘greatest(P) element and the least(P) element are d-removable.

7. Some Examples.
In this section some particular orders will be studied

7.1. Let X={x;licI}, Y={y,'i€I} be two disjoint sets where I is the set of all
integers, and let W be the order on XuY specified by
W={(xix) licl}u{(yiy) |iel}
U{xpy i€}V {(xiv,90) [1E1)
Then DIW 1=2.

Proof. Let L; and L'; be linear orders on the sets {x;.1,y;} and {x,,v;} respectively
specified by

Li={(%;+1, %ix1), (Yos¥:), (yir1,30)}

L'i={(x%;,%,), (yi:3), (X533 )
and let Q(I) be the linear order defined on I in the natural fashion and Q'(I) the
inverse order of @(I). Then L=%opnL; and L'=>ypnL; are linear extensions of W
and {L,L'} is a realizer of W. Since D[W]=2 is evident, we have D[W]=2.

and

7.2. Let X={x,/s=S} and Y={y,/seS} be two disjoint set and P, the order on

XUuY specified by
P={(xsx,)|s€S}0{(y59:) | s=S}
U{(%5¥s) 15,5 ES and s#5'}.

Py is isomorphic to the order on the set composed of all elements of S and their com-
pliments in S defined by the relation of set inclusion. As is already known [4] the
dimension of the latter is |S|. Hence D[Pgl=|S|. Therefore if |S|is a transfinite
cardinal number, Pg is d-reducible. But if [S|is an integer it is d-irreducible in
general, i.e. we have the following theorem.

7.3. Tureorem. The order P, defined on the set
A= X102, 0 X0 V1592« o Y}
by specifying that
P,={(xpx)1i=1,2,....n}0{(y»,y:) i=1,2,....,n}
U{(xoy)j=1,2,..., n; i7#]}
is d-ivveducible provided that n=>3.

Proof. We shall begin with proving the following lemma.
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Lemma. If any paiv of consecutive(P,) elements is deleted from A,, the dimension
diminishes by 2 provied that n=4.

One sees easily that whatever pair (x:y) may be deleted the suborder P,(A,—%—y)

is isomorphic to the suborder P,(A,—%,—¥.-1). Therefore to be proved is that

DIP,(Ay—%,—Yn-1)]1=n—2,
since D[P,]=n» by 7.2. The mathmatical induction is used for the proof. In the first
place we have D[P,]=4 and D[P4(A4s—x4—y3)]=2, since Py(Aa—x4—y3)=W(x1,%2,
X3,91,Y2,94) is a suborder of the order W defined in 7.1. Hence the lemma is ture for
n=4. In the next place assume that the lemma is true for n=~F—1, i.e. D[P,-1(As-1
—%y-1—yi-2)]=k—3, and show that D[P,(A,—%,—y,-1)]=Fk—2 holds. For the brevity
put

P =P, 1(Ai-1—%1-1—Y1-2)=P,(Ay— %, —9,—X4-1— Y5 -2),

P’ =P, (Ay—%,—y1-1),

P"=P (A% —Yt-1—%Xp-2—Yp-2)-
P’ and P’ being isomorphic, we have

k—3=D[P']=D[P"], €Y)
and by the theorem 4.4 we have k=D[P,]<D[P""]+2, hence
k—2<D[P"]. @

Since P’ is obtained by delting x)-2 and y;-» from P” which are incomparable minimal
(P") and maximal(P") elements, we have by the theorem 4.3

D[P"I<D[P"]+1 @)
From (1),(2) and (3) we obtain D[P"]=k—2.

In order to prove the theorem it suffices to show that the equality D[P, (A, —yn-1)]
=xn—1 holds, since P,(A4,—x) is isomorphic or inversely isomorphic to P,(A,—Y» 1)
for any x=A,. When #=3, D[P3]=3 and D[P3(As—y2)]=2 since P3(Asz—ys)=W
(x1,%2,%3,91,¥3), a suborder of W in 7.1. Hence the theorem is true for »=3. When
n=4, we have by the theorem 4.2 and the lemma,

n—I1=<D[P,(A,—y.,-1)I<D[P,(A,—%,~yu-1)]+1=n—1,

hence D[P,(A,—yu-1)]=n—1.

We shall close this section with proving the following theorem.

7.4. Turorem. Let A be a set whose cardinality does not exceed 5. Then for
every order P defined on A, D[ P1<2. In other words in order to define an ovder
whose dimension is greater than 2, a set whose cardinality is greater than 5 is
necessary.

Proof. When| A =2 it is trivial. Let 3<|A'<4. Every order which is decompos-
able to a cardinal sum may be left out of consideration, since it is d-reducible by the
theorem 6.2. Classifying all orders under consideration by the combination of the
number of maximal elements and that of minimal ones, we obtain the following table:
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[A|=3 |Al=4 1AI=5

Iy IIs Iy IIg T004 IV, Iy II; Il IVs Vs VI

1No.ofmax.el. 1 1 1 1 1 2 11 1 1 2 2

|

Ne. of min. el. 1 2 1 2 3 2 1 2 3 4 2 3

By interchanging the number of vmaximal elements and that of minimal ones we obtain
other classes than those listed in the table which may be left out of consideration on
account of the duality. Every order belonging to the classes other than IVy, V5 and
VIs may be also left out of consideration, since it has the greatest element which is
d-removable by the corollary 6.3. The domain of each ordef belonging to the class
IV4 is decomposable to a union of two disjoint linear subset. Therefore the dimension
is at most 2 by the corollary 3.4. The domain of each order belonging to the class
Vs contains a linear set of three elements. The remaining two elements are either
comparable or incomparable. If they are comparable, then the domain of the order is
a union of two disjoint linear subsets, hence the dimension is at most 2 by 3.4. If they
are incomparable, then one of them is maximal and the other minimal. Therefore the
dimension is, by the theorem 4.3, at most 2 since the dimension of the order obtained
by delting them is 1. Every order belonging to the class VIy is isomorphic to one of
four orders represented by the following diagrams:

The first three of them are d-reducible by the theorm 5.2. The last is isomorphic to
the suborder W(x1,%2,¥1,y2) of the order W in 7.1, hence the dimension is 2. Thus
the theorem is proved completely.

8. The Least Upper Bound of the Dimensions of the
Orders difined on a fixed Set.

We know that for the dimensions of the orders defined on a fixed set A, | A is an
upper bound but not the least one (3.2) and that for every cardinal number # there
exists an order of dimension #z defined on a set of cardinality 2% (7.2), which shows
that in order to define an order of dimension z a set of cardinality 2z is sufficient.
Here arise the following two questions closely connected with each other: ‘“What is
the least upper bound for the dimensions of the orders defined on a fixed set A?” and
“Is a set of cardinality 2# necessary in order to define an order of dimension #?”. To
answer to these questions is the subject of this section.

We shall begin with proving two lemmas on the finite orders.
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8.1. Lemma 1. For every order P defined on a set A whose cardinality is at meost

7, there exists at leas a paiv of two consective(P) elements whose rank is at most 1.

Proof. Let us prove the contraposition: If the rank of every pair of consecutive
elements is at least 2, then | A{=8. Denote the set {a|(a:b0)=P} by A(d) for b= A
and the set {b|(a:b)= P} by B(a) for a=A. Now let (@1:61) be a pair of consecutive
elements. Since its rank is, by hypothesis, at least 2, there exists three elements either

1) 2= A1) —a1, bs=B(a1)—b1 and bicsB(a1)—b1—bs such that ao¢bs(P) and
@2 $ba (P)
or

2) beeB(a1) —b1, as€ A(b1)—a1 and as= A(b1) —a1—as such that az@b2(P) and
(L,Lyﬁbg(P).

We may assume, without loss of generality, that the case 1) occurs.

Since (a2:61), (a1:b1) and (a1:b2) are at least of rank 2, there must exist three

elements

beo=B(a2) —by such that a1¢bQ(P),

ass A(b3) —a1 such that asgbi(P),

as= A(be) —a1 such that a_4¢b1(P).
Evidently 5;(:=1,2,3,%) are pairwise distinct and @14a; for i=2,3,4 and ae=£a; for
{=3,4. Hence when ass*a4, a; and b; (i,j=1,2,3,4) are pairwise distinct. When az=a4.
for every as= A(b3) —a1 and for every as= A(bs) —ai1, necessarily A(bs) —a1=A(bs) —
a1. Hence if (a3,b2)=P and there exists an element ¢ such that gg<<c<<b2(P), then
a;(i1=1,2,8), bj(j=1,2,3,4) and ¢ are pairwise distinct. And if either (as:b2)=P or
azpb2(P), then, since the rank of (@s:b4) is at least 2, ther exists at least an element
bs=B(az) —bs—by such that bspai(P). Since b;+#b; for i=1,2,3,4, a;(¢=1,2,3) and
bi(7=1,2,3,4,5) are pairwise distinct. Thus A must contain at least 8 distinct elements.

8.2. Lemma 2. Let P be an order defied on a set A satisfying the following
conditions :

1° Ewvery linear subset of A is composed of ai most 3 elements.

2° There exists at least a linear subsel of A composed of 3 elements.

3° No pair of consecutive elements is of rank O.

4°  Every minimal element is comparable with every maximal element.
Then there exists at least a paiv of two order disjoint linear subset of A.

Proof. Denote the set of all maximal elements by B and the set of all minimal
elements by /4. By the condition 2° let {a,a1,b1} be a linear subset composed of three
elements where ¢a= M, bi=B and (a:a1), (a1:b))=P. Since (a@1:b1) is not of rank 0,
there exist two elements ae=A(b1) —a1 and bz=B(a1) —b1CB such that asgbs(P).
Then since (a2:51) is not of rank 0, there exists an element d2&B(a2) —b1 such that
badas(P). Evidently b1,b2 and b3 are pairwise distinct, and A(d3) —a170 since (a1:83)
is not of rank 0. Hence if there exists an as= A(b3) —a1 such that either ag¢b1(P)
or azgpba(P), then (az:b3z) is order-disjoint with either (a2:b1) or (a2:b2). In case
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(a3:b1), (as:b2)e P for all az= A(b3) —a1, take any ag and let it be fixed. The rank
of (a1:b3) mot being 0, there must be a ba=B(a1)—b1—b2—bs such that bigasz(P).
Evidently b4+4b; for i=1,2,3 and as¢=M by the condition 4°. Therefore (a1:5,)=P for
all =1,2,3 by the condition 1°. The rank of (g1:54) not being 0, A(b4) —a140. Hence
if there exists an as& A(by) —a1 such that au¢b;(P) for a value of {=1,2,3, then
(a4:b4) is order disjoint with (a4:b;) for a value of :=1,2,3. In case (gu:b,)=P for
every a4 A(by) —a1 and for every value of 1=1,2,3, take an a4 and let it be fixed.
The rank of (a@1:b4) not being 0, there must be a b5 B(a1) —b1 —be—by—by such that
bspas(P). Evidently b5+#b; for every i<4 and asEM by the condition 4°. Therefore
(as:b;)e P for 1<<3 by the condition 1°. The rank of (a1:bz) not being 0, A(b5) —a+#0.
Hence if there exists an a5 = A(bs) —a1 such that a;¢d;(P) for a value of <4, (as5:b5)
is order-disjoint with (a4:b;) for a value of {=1,2,3,4. In case (a5:b;) for every i<4,
apply the same reasning and continue the same procedure as above. We will obtain
two sequences
b1,b2, ... 1B ... (biEB(a1) —bi—bo. .. —b;—1),

and a1,@2,.-.,a;,-.. such that aijbi(P) for every ¢ and (a@;-1:b,) P for a fixed 7 and
for every k<_i—1. But since A is a finite set and &’s are all distinct the sequence{p;}
must be finite. Let the last term be b,. Then there must be an a,= A(b,) —a1 such
that @,¢d;(P) for a value of i<z -1, and hence (a,:b,) is order-disjoint with (a@,-1:8;)
for a value of {<un—1. In fact, assume that (a,,b;)=P for all ;<n—1 and for all
a,=A(b,)—a1. Then since (ai:b,) is not of rank 0, there must be a b,.1EB(a1) —
U; «b;» This contradicts the definition of b,.

8.3. Tueorem. Lel A be a set whose cardinality is greater than 8 and P any
order defined on A. Then DIPI<[IA|/2] where [| A|I2] means the integral part of
|A|/2 in case |A| is finite and | A| itself in case it is transfinite.

Pyoof. When | Al is transfinite it is evident by the theorem 3.2. When |A] is
finite we shall prove it by the mathematical induction according to the cardinality of
A. By the theorem 6.5 the proposition is true for |A|=4,5. Let |A|=6 or 7; then
there exists, by the lemma 1, a pair of two consecutive elements (g:5) the rank of
which is 0 or 1. Hence by the theorem 4.7 we have

D[PI<DI[P(A—a—b)]+1<3=[[A]/2]
considering that |A—a—>b =4 or 5. Thus the preposition is true for | A|<7. Now let
|A'Z=>8 and assume that the proposition is ture for the sets whose cardinality are less
than that of A. If P is d-reducible, then there exists an element a such that D[P]=
D[P(A—a)]. Considering that the proposition is true for P(A—¢a) by the assumption
we have

DIP=D[P(A-a) )=l A—a|/2]<[|A] 2].
Let P be d-irreducible. If there exists a pair of incomparable minimal and maximal
elements ¢ and b, then we have, by the theorem 4.3 and the assumption of the
induction,
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DIPI<DIP(A—a—b)]+I1<[|A—a—b|/2]+1=[ A|/2].
Let every maximal element is comparable with every minimal element. If there exists
linear subset C composed of 4 elements, then by the theorem 4.4 and the assumption
of the induction we have

D[PI<DIP(A-C)]+2<[|A—-C|/2]+2=[1A]/2].
Let every linear subset of A be composed of at most three elements. If therer exists
no linear subset of three elements, then by the thecrem 5.2, P is d-reducible since
in this case there is no element other than maximal or minimal elements and every
maximal element is comparable with every minimal element. Hence it suffices to
consider the case where at least a linear subset of three elements exists. Now if
there exists a pair of consecutive elements (@:0) of rank 0, then by the theorem 4.7
we have

DIPI<D[P(A—a—b)]+I1<[|A—a—bl/2]+-1=[]A /2].
Let every pair of consecutive elements is not of rank 0. Then there exists, by the
lemma 2, two order-disjoint linear subsets B and C. Hence we have, by the theorem
4.5,

D[PI<D[P(A-B—-C)]+2<[|A—B—C|/2]+=Z2[(JA|-4)/2]+2=[14)/2].
Thus ‘ghe proposition is established completely.

The following proposition is equivalent to the last theorem.

8.4. Turorem. Let P be an order defined on a set A. If D[P]<3, then 2D[P]
<AL, In other words, in order to define an order of dimension n a set of cardi-
nality 2n is necessary, provided n<.g3.

The example 7.2 shows that for every cardinal number x (finite or transfinite),
there exists an order of dimension » defined on a set of cardinality 2». But this
will be generalized as follows.

8.5. Turorem. For every cardinal number n<2, there exists an order of dimen-
sion [n/2] difined on a set of cardinality n.

Pyoof. It suffices to consider the case where z is an odd integer. Let P’ be an
order of dimension (#—1) 2 defined on a set A’ of cardinality »—1. Then the order,
for example, specified by

P=Pu{bb)}u{xb)|x=A};bFA
is one of required orders.

As an immediate result of the theorems 8.3 and 8.5 we have the following theorem

which is the dnswer to the first question mentioned at the begining of this section.

8.6. Turorem. Among the dimenosions of the orders defined on a fixed set A,
[1A!/2] is the greatest, provided | A|<4.



18 T. Hiracur:

9. The dimension of the Product of Orders.

9.1. Tareorem. Let [y P, be the product of the ovders P, according to a well-
order W difined on a set S, wheve P, is difined on a set A, for each s€S. If D[P,]
=2DIP] for all s€S, then D[ IlwoHP,)=D[P,].

Proof. Let ®,={L;, |t(s)eT,} be a minimal realizer of P,. Sinse D[P,]=D[P;]
there exists a mapping ¢, of ®, onto ®,. Let {¢,|sS} be a system of such
mappings, where ¢, is the identical mapping, and for s+#a, ¢, may be taken arbitrarily.
Then M o= 1Ilwe ¢;(Li») is a linear extension of /1w P, and ®={M» [t(e)=T,}
is a realizer of [lwpP, In fact, let f<g([lyP,), then there exists an element
seS such that f(s)=g(s) for all s=s' (W) and f(s)<<g(s) (P,). Since ¢.(L,y) is
a linear extension of P, we have (f(s'),g(s')E¢, (L) for every {(¢)eT, Hence we
have (f,g)e L'y for every t(o)eT,. Now let f¢g([lwP,). Then there exists €S
such that f(s)¢g(s)(P,) and

(a) f(s)=g(s) for every s<s'(W).
Hence there exist {(s"), # ()T, such that (f(s)glsNELin and (g(s),f(s") € Ly
Let Lin=0¢(Luy») and Lucy=¢(Lup). Then (f(s'),g(s)E@a(Lis) and (g(s"),f(s') e
¢.(Lyp), which imply, together with (@), (f,g)eM,» and (g,f)EMu,). Thus &
realizer [lw¢p.D. Hence D[y P,J<D[P,] and since it is evident that the inverse
inequality holds we have D[l P,1=D[P,].

9.2. Tueorem. Let {A;|sES} be a system of sets, P, an order defined on A,, S,=
{Lip 1 t(s)ET} a minimal vealizer of P, and P=1IlyP, the cardinal product of the
system {P,|s=S}. Then D[PI<|UsT,| under the condition that Ts are pairwise
disjoint, i.e. D{P1<3sD[P,].

Proof. Consider any well-order W and W, defined on S and on each T, respectively
and let ¢,(s) the least(W,) element of T,. Then
Li&={(f,NIfEFYA{(f,2)|f,.g=F and f(s)<g(s)(Li)}
V{(f,@) I f,.g€F, f(s)=g(s) and f(6)<g(o) (L)
for the least(W) element o such that f(e)#g(o)},
F being the set of all mappings f of S into Ugd, such that f(s)e A, (see 1.5), is a
linear order on F and a linear extension of P and the system
f={Lt®|s=S and t(s)eT,} is a realizer of P. Hence we have D[PI<IUT,!.

In the conclusion of the last theorem the equality does not always hold.

9.3. Tumrorem. If P, is a linear ovder for each s=S, then D[ [lP]=\S|, provided
that the domain of each P contains at least two elements.

In order to prove this we shall prove the following lemma.

9.4. Lemma. If Q be a linear orvder defined on a set of two elements, then
D[Q*]=|S].



On the Dimension of Orders 19

Proof. Let @ be the order defined on the set {a,b} so that (eb)=Q and let f, and
g, be the functions specified by

fi(s)=b, fi(s)=a for every s'+s;

g.(s)=a, g,(s)=>b for every s'=*s
respectively. Put F={f,|s=S} and G={g,|s=S}. Then the suborder Q¥(FUG) of &*
on FuG is equal to the order

{(fofD1s=SIU{(gog) |sESIV{(fug) s ES and s#5'}
whose dimension is, by 7.2, |S. Hence we have D[@Q%]=!S|. On the other hand we
have by the theorem 9.2, the inverse inequality.

Now since the linear order P, contains a suborder which is isomorphic to the order

Q, the order P contains a suborder which is isomorphic to the order @5. Hence we
have the inequality D[/IgP,]=>!S!, and the inverse inequality by the theorem 9.2.

Mr. H. komm has proved that D[P, (E,)]=#»n for n}R, [6]. Putting P,=R where
R is the linear order defined on the set of all real numbers in the natural fashion, we
have, by 9.3, D[RS]=|S|. And when |S|=n<,, R¥=PFP’,(E,). Thus the Mr. Komm’s
theorem is a special case of the theorem 8.3.

The theorem 9.3 will be generalized as follows:

9.5. Tusorem. If P, is an order which contains a suborder isomorvphic to the
ordes QFs, where T, is a set whose cardinality is equal to the dimension of P, and Q
is the same order as in the last lemma, then D[P, =|UsT;| under the condition
that TJs are pairwise disjoint.

9.6. Tusorem. For every order P of dimension m (finite ov transfinite), there
exists a cardinal product of m linear ovders which contains a suborder isomorphic to
P.

Proof. Let a minimal realizer of P be {L, s=S} where |[S|=m, and f, the constant
mapping such that f,(s)=«x for each x= A4, A being the domain of P. Then the sub-
order of the product [IgL, on {f,'x= A} is isomorphic to P.

Problems still open.

The author conjectures the following two propositions, but can not prove nor dis-
prove.

1. Let P be an order defined on a set A and a a maximal(P) element of A.
If there exists one and only one element b such that (b:a)EP, then a is d-removable.

It may be proved easily that if, moreover, either no element other than & exceeds
(P) a or the suborder P(A—ga) is d-irreducible, then « is d-removable.

2. Il is not possible to define a d-irvreducible ovder om a set whose cardinality Zs
an odd integer.
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