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The purpose of this note is to demonstrate the following three theorems.

THEOREM 1. Let A and S be enumerably infinite sets. If L is a linear ovder
defined on the set A, then D;[LS]=R,.

THEOREM 2. If S is an enumerably set, then D;[18]= .

THEOREM 8. The cardinal product Il1sP. (|S|<NRo) of a system of enwmerable
number of orders having A~dimensions has the I-dimension. And if Ri={Lus|t(s)ET:}
is a minimal *-realizer of Ps and © is the set of all mappings ¢ of S into UsRs
such that ¢(s)ERs for all s€S, then D)[[l1sP: 1< ¢D;[[ls¢(s)].

(As to the terminology and the notations see §1.)

THEOREM 2 is nothing but a different formulation of the theorem, first demonstrated
by Mr. Ginsburg in [1], that the A-dimension of P'(E«) is No. But the proof is less
cumbersome, in which THEOREM 1 plays an improtant role. Previously the author
demonstrated that the dimension of a cardinal product of a system of orders does not
exceed the sum of the dimensions of the members [2], [8]. THEOREM 3 is an analogous
theorem which estimates the 4-dimension of the cardinal product of a system of -orders
having A-dimensions.

1. Preliminary.

It will be appropriate to give a brief account on the terminology and the notations
used in this note. For further details refer to [3].

An order defined on a set A is a subset P of the Cartesian prduct A xA which
satisfies the following conditions:

01: x=A implies (x,x)EP,
02: (x,y)EP and (y,x)EP imply x=y,
03: (x,9)=P and (y,2)EP imply (x,2)=P.

A linear order defined on a set A is an order L which satisfies the condition
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04: (x,y)eL or (y,x)=L for any x,y=A.

“x<y(P)” means that (x,y)=P. “x<y(P)” means that (x,y)=P and x=4y. “x and
v are incomparable(P)” means that (x,y)¢EP and (y,x)EP. “a is the least(P) element
of A” means that a= A and (g,x)eP for all x<= A.

Let P be an order defined on a set A and B a subset of A. The suborder of P
restricted on the set B is the subset P(B) of P gpecified by

PB)={(x,9)|(x,9)=P and x,y=B}

An extension of an order P is an order @ defined on the same set as P such that
PZ@. An extension of an order is said a limear extenmsion when it is an linear order.
A stands for the linear order defined on the real number system according to magnitude.
A linear extension of an order is said a l-exfemsion when it is isomorphic to a suborder
of 4

A realizer of an order P is a set R={Ls|s=S} of linear extensions Ls of P such that
P=ngLs. In particular if L: is a A-extension for every s&.S, it is said a A-realizer of
P. A minimal realizer of an order is a vealizer whose cardinality does not exceed the
cardinality of any realizer of the order. A minimal I-rvealizer of an order is defined
correspondingly. ,

A dimension of an order is the cardinality of a minimal realizer of the order and a
J-dimension that of a minimal i-realizer. The dimension and the A-dimension of an
order P are denoted by D[P] and D;[P] respectively. If R={Ls|s=S} is a minimal
realizer (A-realizer resp.) of P, then D[P] (D;[P] resp.) is |S| where |-+ | stands
for the cardinality of the set ------ .

Let {P:|s=S} be a system of orders, each memebr Ps being defined on a set As, and
F the set of all mappings f of S into UsAs such that f(s)eds for every s=S. The
cardinal product of the system {P.|s=S} is the order /1:Ps defined on F by

ILsPs={(f,HIfEFYU{(f,2)|f,gEF and (fls)gls)EPs for all s€Sj}.

Let P be an order defined on a set 4 and F the set of all mappings of a set S into
A. The cardinal power of P is the order P§ defined on F by

Ps={(f,OIfeFIU{(f,2\f.gcF and (fis)gls)eP for all s&€S}.
2. Proof of the theorems.

LEMMA (. Let L be a linear order defined on a set A. If | S| =3, then D[L5]= R,
provided | Al Z2.

This is a special case of 9.8 THEOREM on p. 18 of [31.
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LEMMA 2. Let P be an order defined on a set A and S a set such that |S»S|=|S},
then D[(P$)"1=D[P*8]. Moreover if P has the ~dimension, (P®)% has dalso the
A-dimension and D;[(P$)8]=D;[P~].

This follows immediately from the fact that (P5)¢ is isomorphic to P5=% and the
latter in turn to PS.

LEMMA 38, Let A and S be enumerably infinite sets and L a linear ovder defined
on the set A. Then therve exists a subordey of (L5)S which is isomorphic to 25.

Proof. Let W be the linear order defined on the set N of all natural numbers
according to magnitude and J the linear order defined on the set {x|0<<x<C1} according
to magnitude. Since 4 is isomorphic to J and there exists a suborder of L isomorphic
to W, there exists a suborder of LS isomorphic to W¥. By the LEMMA I.1 on p. 591
of [1] there exists a suborder of W¥ isomorphic to J. Hence there exists a suborder of
L8 isomorphic to 2. Let it be @, then Q3 is isomorphic to 45,

Proof of THEOREM 1. Consider a well-order W defined on the set S and let Ls, for
each element s=.S, be a subset of Fx F gpecified by

Li={(f,OIfeFIU{(f,)|f.gEF and f(s)<g(s)(L)}
UL 1 f,8EF, f(s)=g(s) and f(o)<<g(s)(L)
for the least(W) =S such that (o) g(c)}.

Then R={L:|s=S}is a A-realizer of L%, hence we have the inequality D[ LS 1<|S| = o.
On the other hand we have, by LEMMA I, the inverse inequality D;[L8]=D[L8]= .
Thus we obtain the equality to be demonstrated.

It is not hard to verify that L: is a linear order defined on the set F and a extension
of the order LS and that R is a realizer of LS. 1In order to verify that L. is isomorphic
to a suborder of 4 put W* =s+W(S—s), W(S—s) being the suborder of W restricted
to the set S—s, then Ls will be written as follows:

L:={(f,OIfeFIU{(f,.\f,.g=F and f(s)<g(s)(L)
UL g€ F, f(s)=g(s) and f(o)<<g(o)(L)
for the least(W™) oS such that f(o)s%g(o)}.

Thus we may take A as the set N of all natural numbers, L as the order defined on N
according to magnitude and Ls as the lexicographical order @ defined on the set of all
infinite sequences of natural numbers. To be demonstrated is that the order @ is
isomorphic to a suborder of A.

For a semi-closed interval I=[a,b), let D.(I) mean the interval [b— (b—a)/22—1,
b—(b—a)/2") for each integer » and let I. stand for the interval [u, n+1) for every
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integer #. For a given sequence of natural numbers #i, #g, -
decreasing sequence of intervals

vy Npy ..., there is a

Iﬂl, Iﬂlng, sy ]7:1712 ces gy ey

where fuyng...n, stands for the interval Du,(Injn,...n,_,) for k2. Since the length
of the interval lnlﬂz

real number dnln

...n, converges to 0 as k—>co, this sequence of intervals determines a

PRRRE P Letting correspond this to the given sequence 71,72, ..+, %k, « »
we obtain an isomorphic mapping of @ into 25.

L]

Proof of THEREM 2. Since 15 is, by LEMMA 8, isomorphic to a suborder of (L5)%
we have, by THEOREM 1 and LEMMA 1, the inequality D;[281<D;[(L8)S]=Di[LS]=

Ro. On the other hand we have, by LEMMA 1, the inverse inequality D;[45]>D[18]=
Ro-

As an immediate result of THEORE 2 we have the

COROLLARY. If Ls is, for each s=S, a linear order isomorphic to a subovder of 2
and |S|< Ry, then Ils Ls has the i~dimension which does not exceed Xo.

Proof of THEOREM 8. Put P=[I:¢P, and Qo=1Isp(s). ¢(s) being defined on
As; and a Zl-extension of Ps, Qo is an order defined on F'; moreover since (f,g)eP
implies ( f(s),g(s))=P; for all s=S, it implies (fls),2(s)) =¢(s), hence P&Qg¢ for all o= ®.
By the COROLLARY to the THEOREM 2, @¢ has the i-dimension. Let Ro={L.p)|{(9)
T¢} be a minimal A-realizer of Q¢ for each ¢=0, then R=UgRe is a A-realizer of
P. In fact: since PCQ for all ¢=® and every member of R is a i-extension of Q¢
for some =0, each member of R is a 1-extension of P. In order to verify that R is
a realizer of P, let f and g be two incomparable(P) elements of F. To be shown is
that there exist two members Ly and Lg of R such that (f,g)eLs and (g,f)ELa.
Assume that (f,g)eL for all member L of R. Then (f,g)=Lig) for all ¢=@ and
for all t(¢)eTy, hence (f,g)EQe for all ¢=@, hence (f(s),g(s)Ep(s) for all =@
and for all s=S, hence (f(s),g(s)SLis for all s&S and for all #(s)eTs, hence (fls),
gsNe P, for all s=S, hence (f,g)=P. But this contradicts the hypothesis that f and
g are incomparable(P). Consequently there exists a memeber Lg such that (g,f)ELg,
and similarly a member L1 such that (f,g)eL;. Thus R is a A-realizer of P and P
has the A-dimension. Clearly we have D[PI<|R|<>¢|Ro|=pD;[@e].
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page line read instead of

2 17 A A

2 23 into A(=A;) into P
10 8 A'=A—-(B-b,) A=A-(B-b,)
11 17 L) Liico
12 1 DIP,1<DIQ] DIP,1>D[Q]
13 24 Py(An=Yn-1) Po(An=9a 1)
16 32 |A—a-0b| |A—a-b
16 37 |A]/2 |A| 2
17 1 |A|/2 Al/2
17 20 D[P]=z3 DIP]<=3
17 22 n=3 n<3
17 26 n=2 n=2
17 36 |Alz4 |A]=4
18 7 M) M)
18 9 s<<s'(W) ses/(W)
19 8 [S] |S

19 25 {L|s=S} {L, s=S}





