The Science Reports of the Kanazawa University, Vol. V, No. 1, pp. 1-5, October, 1956

On the \lambda-Dimension of the Product of Orders

By

Tosio HIRAGUCHI

(Received October 1, 1956)

The purpose of this note is to demonstrate the following three theorems.

THEOREM 1. Let A and S be enumerably infinite sets. If L is a linear order defined on the set A, then $D_{\lambda}[L^s] = \aleph_0$.

THEOREM 2. If S is an enumerably set, then $D_{\lambda}[\lambda^{S}] = \aleph_{0}$.

THEOREM 3. The cardinal product $\Pi_s P_s$ ($|S| \leq \aleph_0$) of a system of enumerable number of orders having λ -dimensions has the λ -dimension. And if $R_s = \{L_{l(s)} | t(s) \in T_s\}$ is a minimal λ -realizer of P_s and Φ is the set of all mappings φ of S into $\cup sR_s$ such that $\varphi(s) \in R_s$ for all $s \in S$, then $D_{\lambda}[\Pi_s P_s] \leq \Sigma_{\Phi} D_{\lambda}[\Pi_s \varphi(s)]$.

(As to the terminology and the notations see §1.)

THEOREM 2 is nothing but a different formulation of the theorem, first demonstrated by Mr. Ginsburg in [1], that the λ -dimension of P'(E $_{\infty}$) is \aleph_0 . But the proof is less cumbersome, in which THEOREM 1 plays an improtant role. Previously the author demonstrated that the dimension of a cardinal product of a system of orders does not exceed the sum of the dimensions of the members [2], [3]. THEOREM 3 is an analogous theorem which estimates the λ -dimension of the cardinal product of a system of orders having λ -dimensions.

1. Preliminary.

It will be appropriate to give a brief account on the terminology and the notations used in this note. For further details refer to [3].

An *order* defined on a set A is a subset P of the Cartesian prduct $A \times A$ which satisfies the following conditions:

01: $x \in A \text{ implies } (x,x) \in P$,

02: $(x,y) \in P$ and $(y,x) \in P$ imply x=y,

03: $(x,y) \in P$ and $(y,z) \in P$ imply $(x,z) \in P$.

A linear order defined on a set A is an order L which satisfies the condition

04: $(x,y) \in L$ or $(y,x) \in L$ for any $x,y \in A$.

" $x \leq y(P)$ " means that $(x,y) \in P$. "x < y(P)" means that $(x,y) \in P$ and $x \neq y$. " $x \in A$ and $x \neq y$ are $x \in A$ and $x \in A$.

Let P be an order defined on a set A and B a subset of A. The suborder of P restricted on the set B is the subset P(B) of P specified by

$$P(B) = \{(x,y) | (x,y) \in P \text{ and } x,y \in B\}$$

An extension of an order P is an order Q defined on the same set as P such that $P \subseteq Q$. An extension of an order is said a *linear extension* when it is an linear order. λ stands for the linear order defined on the real number system according to magnitude. A linear extension of an order is said a λ -extension when it is isomorphic to a suborder of λ .

A realizer of an order P is a set $R = \{L_s | s \in S\}$ of linear extensions L_s of P such that $P = \bigcap sL_s$. In particular if L_s is a λ -extension for every $s \in S$, it is said a λ -realizer of P. A minimal realizer of an order is a realizer whose cardinality does not exceed the cardinality of any realizer of the order. A minimal λ -realizer of an order is defined correspondingly.

A dimension of an order is the cardinality of a minimal realizer of the order and a λ -dimension that of a minimal λ -realizer. The dimension and the λ -dimension of an order P are denoted by D[P] and $D_{\lambda}[P]$ respectively. If $R = \{L_s | s \in S\}$ is a minimal realizer (λ -realizer resp.) of P, then D[P] ($D_{\lambda}[P]$ resp.) is |S| where $|\cdots|$ stands for the cardinality of the set \cdots .

Let $\{P_s|s\in S\}$ be a system of orders, each member P_s being defined on a set A_s , and F the set of all mappings f of S into $\bigcup sA_s$ such that $f(s)\in A_s$ for every $s\in S$. The cardinal product of the system $\{P_s|s\in S\}$ is the order $\prod sP_s$ defined on F by

$$\prod_{s} P_{s} = \{(f,f) | f \in F\} \cup \{(f,g) | f,g \in F \text{ and } (f(s),g(s)) \in P_{s} \text{ for all } s \in S\}.$$

Let P be an order defined on a set A and F the set of all mappings of a set S into A. The cardinal power of P is the order P^S defined on F by

$$P^{s} = \{(f,f) | f \in F\} \cup \{(f,g) | f,g \in F \text{ and } (f(s),g(s)) \in P \text{ for all } s \in S\}.$$

2. Proof of the theorems.

LEMMA 1. Let L be a linear order defined on a set A. If $|S| = \aleph_0$, then $D[L^s] = \aleph_0$ provided $|A| \ge 2$.

This is a special case of 9.3 THEOREM on p. 18 of [3].

LEMMA 2. Let P be an order defined on a set A and S a set such that $|S \times S| = |S|$, then $D[(P^s)^S] = D[P^s]$. Moreover if P has the λ -dimension, $(P^s)^S$ has also the λ -dimension and $D_{\lambda}\lceil (P^s)^S \rceil = D_{\lambda}\lceil P^S \rceil$.

This follows immediately from the fact that $(P^s)^s$ is isomorphic to $P^{s \times s}$ and the latter in turn to P^s .

LEMMA 3. Let A and S be enumerably infinite sets and L a linear order defined on the set A. Then there exists a suborder of $(L^{g})^{g}$ which is isomorphic to λ^{g} .

Proof. Let W be the linear order defined on the set N of all natural numbers according to magnitude and J the linear order defined on the set $\{x \mid 0 < x < 1\}$ according to magnitude. Since λ is isomorphic to J and there exists a suborder of L isomorphic to W, there exists a suborder of L^S isomorphic to U. By the LEMMA 1.1 on p. 591 of [1] there exists a suborder of U isomorphic to U. Hence there exists a suborder of U isomorphic to U. Let it be U, then U is isomorphic to U.

Proof of THEOREM 1. Consider a well-order W defined on the set S and let L_s , for each element $s \in S$, be a subset of $F \times F$ specified by

$$L_s = \{(f,f)|f \in F\} \cup \{(f,g)|f,g \in F \text{ and } f(s) < g(s)(L)\}$$

$$\cup \{(f,g)|f,g \in F, f(s) = g(s) \text{ and } f(\sigma) < g(\sigma)(L)$$

$$for \text{ the least}(W) \text{ } \sigma \in S \text{ such that } f(\sigma) \neq g(\sigma)\}.$$

Then $R = \{L_s | s \in S\}$ is a λ -realizer of L^s , hence we have the inequality $D_{\lambda}[L^s] \leq |S| = \aleph_0$. On the other hand we have, by LEMMA 1, the inverse inequality $D_{\lambda}[L^s] \geq D[L^s] = \aleph_0$. Thus we obtain the equality to be demonstrated.

It is not hard to verify that L_s is a linear order defined on the set F and a extension of the order L^s and that R is a realizer of L^s . In order to verify that L_s is isomorphic to a suborder of λ put $W^* = s + W(S - s)$, W(S - s) being the suborder of W restricted to the set S - s, then L_s will be written as follows:

$$L_{s} = \{(f,f)|f \in F\} \cup \{(f,g)|f,g \in F \text{ and } f(s) < g(s)(L) \\ \cup \{(f,g)|f,g \in F, f(s) = g(s) \text{ and } f(\sigma) < g(\sigma)(L) \\ \text{for the least}(W^*) \sigma \in S \text{ such that } f(\sigma) \neq g(\sigma)\}.$$

Thus we may take A as the set N of all natural numbers, L as the order defined on N according to magnitude and L_s as the lexicographical order Q defined on the set of all infinite sequences of natural numbers. To be demonstrated is that the order Q is isomorphic to a suborder of λ .

For a semi-closed interval I=[a,b), let $D_n(I)$ mean the interval $[b-(b-a)/2^{n-1}, b-(b-a)/2^n)$ for each integer n and let I_n stand for the interval [n, n+1) for every

integer n. For a given sequence of natural numbers $n_1, n_2, \ldots, n_k, \ldots$, there is a decreasing sequence of intervals

$$I_{n_1}, I_{n_1 n_2}, \ldots, I_{n_1 n_2}, \ldots, I_{n_k n_k}, \ldots,$$

where $I_{n_1n_2...n_k}$ stands for the interval $D_{n_k}(I_{n_1n_2...n_{k-1}})$ for $k \ge 2$. Since the length of the interval $I_{n_1n_2...n_k}$ converges to 0 as $k \to \infty$, this sequence of intervals determines a real number $a_{n_1n_2...n_k}$... Letting correspond this to the given sequence $n_1, n_2, ..., n_k, ...$, we obtain an isomorphic mapping of Q into λ^g .

Proof of THEREM 2. Since λ^{g} is, by LEMMA 3, isomorphic to a suborder of $(L^{g})^{g}$ we have, by THEOREM 1 and LEMMA 1, the inequality $D_{\lambda}[\lambda^{g}] \leq D_{\lambda}[(L^{g})^{g}] = D_{\lambda}[L^{g}] = \aleph_{0}$. On the other hand we have, by LEMMA 1, the inverse inequality $D_{\lambda}[\lambda^{g}] \geq D[\lambda^{g}] = \aleph_{0}$.

As an immediate result of THEORE 2 we have the

COROLLARY. If L_s is, for each $s \in S$, a linear order isomorphic to a suborder of λ and $|S| \leq \aleph_0$, then Π_S L_s has the λ -dimension which does not exceed \aleph_0 .

Proof of THEOREM 3. Put $P = \prod_{s} P_{s}$ and $Q_{\varphi} = \prod_{s} \varphi(s)$. $\varphi(s)$ being defined on A_s and a λ -extension of P_s , Q_{φ} is an order defined on F; moreover since $(f,g) \in P$ implies $(f(s),g(s)) \in P_s$ for all $s \in S$, it implies $(f(s),g(s)) \in \varphi(s)$, hence $P \subseteq Q_{\varphi}$ for all $\varphi \in \Phi$. By the COROLLARY to the THEOREM 2, Q_{φ} has the λ -dimension. Let $R_{\varphi} = \{L_{\iota(\varphi)} | t(\varphi)\}$ $\in T_{\varphi}$ } be a minimal λ -realizer of Q_{φ} for each $\varphi \in \emptyset$, then $R = \bigcup_{\varphi} R_{\varphi}$ is a λ -realizer of P. In fact: since $P \subseteq Q$ for all $\varphi \in \Phi$ and every member of R is a λ -extension of $Q\varphi$ for some $\varphi \in \emptyset$, each member of R is a λ -extension of P. In order to verify that R is a realizer of P, let f and g be two incomparable (P) elements of F. To be shown is that there exist two members L_1 and L_2 of R such that $(f,g){\in}L_1$ and $(g,f){\in}L_2$. Assume that $(f,g) \in L$ for all member L of R. Then $(f,g) \in L_{\ell(\varphi)}$ for all $\varphi \in \emptyset$ and for all $t(\varphi) \in T_{\varphi}$, hence $(f,g) \in Q_{\varphi}$ for all $\varphi \in \emptyset$, hence $(f(s),g(s)) \in \varphi(s)$ for all $\varphi \in \emptyset$ and for all $s \in S$, hence $(f(s), g(s)) \in L_{t(s)}$ for all $s \in S$ and for all $t(s) \in T_s$, hence $(f(s), g(s)) \in L_{t(s)}$ g(s)) $\in P_s$ for all $s \in S$, hence $(f,g) \in P$. But this contradicts the hypothesis that f and g are incomparable(P). Consequently there exists a member L_2 such that $(g,f) \in L_2$, and similarly a member L_1 such that $(f,g)\in L_1$. Thus R is a λ -realizer of P and Phas the λ -dimension. Clearly we have $D_{\lambda}[P] \leq |R| \leq \sum_{\emptyset} |R_{\varphi}| = \sum_{\emptyset} D_{\lambda}[Q_{\varphi}]$.

References

¹ S. Ginsburg, "On the λ-dimension and the A-dimension of partially ordered sets", American Journal of Mathematics, Vol. 76 (1954), pp. 590-598,

- 2 T. Hiraguchi, "A note on Mr. Komm's Theorem", Science Reports of Kanazawa University, Vol. II, No. 1 (1953), pp. 1–3.
- 3 T. Hiraguti, "On the dimension of Orders", ib., Vol. IV No. 1 (1955), pp. 1-20.

ERRATA

T. Hiraguti, "On the Diemension of Orders", Vol. IV, No. 1 (1955), pp. 1–20.

page	line	read	instead of
2	17	A_s	A
2	23	into $A(=A_s)$	into P
10	8	$A' = A - (B - b_o)$	$A = A - (B - b_o)$
11	17	$L_{t,t(\sigma)}$	$L_{t,t(\sigma}$
12	1	$D[P_{\sigma}] \!\! < \!\! D[Q]$	$D[P_{\sigma}]{>}D[Q]$
13	24	$P_n(A_n-y_{n-1})$	$P_n(A_n - y_{n-1})$
16	32	A-a-b	A-a-b
16	37	A /2	A 2
17	1	A /2	$A \mid /2$
17	20	$D[P] \ge 3$	$D[P] \leq 3$
17	22	$n \geq 3$	<i>n</i> ≤3
17	26	$n \ge 2$	$n \leq 2$
17	36	$ A \ge 4$	$ A \leq 4$
18	7	$M_{t(\sigma)}$	$M_{t\sigma}$
18	9	s < s'(W)	$s \in s'(W)$
19	8	S	S
19	25	$\{L_s s{\in}S\}$	$\{L_s\ s{\in}S\}$