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1. Introduction

Let f(«) be an Z’-integrable and periodic function with period 1, and satisfy the
following conditions,

1
.1 f F(a)dx=0,
[
1
1.2) f Fr(a)dn=1.
0
The Fourier series of f(x) and the »-th partial sum of it are respectively,
(1,3) } f(x)~k2 cp ™R
and

n
Sn(‘x): E Ck eza‘ik”y
ko —m

and R(n) denotes

1 1/2 1/2
(1.0 RO =( [/ @d=Suan) " =(2g)er) "
0
In this note we shall prove the convergence of a gap series
> 1
.9 Bz T

under some restrictions on R(»), where {7;} is a sequence of positive integral numbers
satisfying
<1.6> 0<”1<”2< ...... L ppglvnenen )
and Zp(%) is defined for arbitrary numbers a>0, #>1 and a non-negative integral
number p, by the following
Lo(x)=x1"*(logx)P,
a.m Ly(x)=x(logx )1~ *(Logsx)®,
Lp(x)=x(logx)++(Logp-12)(logpx )t~ *(Logpt12)® (p=2).
In the sequel we suppose that log,x means x.
Theorem 1, If for any a>0 and an integral number p=>1,f(x) satisfies
1
(1.8 RCn)= O(T/?}EW)’
then for almost all x, (1.5) converges, where {z;} is a sequence of (1.6).
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Theorem 2, If for a_>_l, f(x) satisfies

(1.8 R(w)=0Q/n*)
and {z,} satisfies (1.6), then the convergence of
a.9 SY art k loghk logykee-- logp-1k(logpk)®,

implies the almost everywhere convergence of

(1.10) :2_1 arf(nrx),

where 8>1 and p is a positive integer.
Theorem 3., If for any @>0 and an integral number p>2, or for any 0<a<% and
2=1, f(x) satisfies

1
(1.11) RC”D:O(W)’
then for almost all x,
i 1
1.12 ———
(12 Bz S

converges, where {7,} is a 'sequence of positive integral numbers satisfying
(1.13) %geﬂ (h=120).
k

The case 0<a<—12‘ and p=1 of Theorem 3, was proved by M. Kac, R. Salem and A.

Zygmund [17, and also by S. Izumi [2], whose method is the different way from
them. We now give another proof of it. S. Izuim [2] proved weaker results of the
cases p=2 and 3 of Theorem 3 than (1.12). Theorem 1 is proved by use of the
methods of J. L. Koksma [3], which treated the law of large numbers of some
sequence of f(#zzx), and the proof of Theorem 3 is analogous to that of Theorem 1.

It is interesting that we discuss the almost everywhere convergence of (1.10) by
use of {#z;} which satisfies a stronger condition than (1.6). We have a theorem below
in this sense that is a little generalized one of the theorem obtained by M. Kac [5]
and generalized by S. Izumi [2].

Theorem 4. If for any a>0, f(x) satisfies (1.8") and {»,} satisfies

(1.14) f}( 2k )l<oo,

E=1\ 724y

where A is an arbitrary positive number, then from the convergence of
oo
E a/czy
k=1

the almost everywhere convergence of (1.10) follows.

2. Proof of Theorem 1

For the proof of Theorem 1 we need a lemma.
Lemma 1., If f(x) and {#;} satisfy the hypotheses of Theorem 1, then for arbitrary
integral numbers z2(1<z) and V(1< /V), it holds that
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2.1 D o T A L e i Sy ey

Proof. If the greatest common divisor of 7; and #; is &, then there exist two

numbers 7, and 7;’ such as
(npy ni)=d, (ny', n;')=1, npy=dn;’ and n;=dn;’.

If we suppose that

< <mp<N+z, -
then

d<(ny —ni dd=n—n; <V,
and

from which it follows that by the Parseval’s relation,

[ fOnadfnmdan=) 31 cad

s=iny
=203 ca it K23 ol S ewn )
v =1 v=1 V=1
2
(2.2) <R DOROSR(E-
From the monotonity of Z,(£) and (2.2), it holds that

1 24N 1
13 o/ Onras

k=241
z+N 1 1 ) 1 1 ) >
- k§+lmaf‘ S(npx)dx+ EJ’ _anczﬂmj Bf f(?lpt)f(ﬁ.,ﬁ)(l’x

N 2 )z( z+N 1 )2
<———+ R B
= LPCZ)Z + ( N k§+1 Lp<k>

N +0( N2 R(z/ NV )? )
Lp(2) Ly(2) '
Thus we obtain Lemma 1.

IA

We now prove the theorem. In the inequality (2.1), if we put
z=A and NV=Q+1)—2=21+1(=N)),
then

ety q , N ()
of I]g.—.'z+1 —Lp_(@f@k@l ”’xSTpUT)Z—-I.O( Ly (Logp BV )

1 )
_0( [Alog Alogyd -+ 108 pA(208 p+A)PTE )7
This contains the almost everywhere convergence of the series
o (A+D?

2.3) s O —é—é)—f(nkx).

L A
XTie=%ro1 Ly

Whence it follows the almost everywhere convergence of (1.5), provided that for

almost all x
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2.0 lim max 2 5 S| =

A>oo lz<m5(l+1)2’ IcEM+1 L,.(k
For the proof of (2.4) we use the device of P. Erdds [4].
For every 0>0 and

and
12 Log V(D)
=12, , Jog 2 (=rD),
we have
A+ Qut M)z’ . 5
meas(| k§2+2“,(n2_,+1 ché) S Qo 27)

2t 1 A’ +Qutd v @A)z~ .y
526{. i L @) S (npx)Pdx

=<

E=XZ 420N ()

~of 212725 )
LA%20gA-+(logy ) =2(Logp+1A)8 T

XZ 2—-2'}
+0( CA2208A 20gyA (208Dt *(L02p41A)E 12 (L0 2, A )% )

<o(-Z5")+o(U5).

Whence it follows that

o P(A) 2 A2+ Cut N2~ 1
g}x uz=1 uz:}o meas(I & Zuuzvcx)z o1 Lp(2) Sl = ? )
oo V(X)) oo VA)
S M) 2127 <oo,
A=1 v=1 A= v=1
and by the Borel-Cantelli lemma, we have for almost all x
m 0 0
B SHCOI A S SR B

Since 0>0 is an arbitrary number, we obtain (2.4).

3. Proof of Theorem 2

When f(x) and {#;} satisfy the conditions of Theorem 2, and if
MA1Z < ; <M+ IV,
then it is seen that

[ scosas <e( 37 o(37),

M2e
and then
1 1 M+1v by < | " 9 -1 M+tN R M \2
3.1 Ofn S S ontan <3 a4 2 3 o 'S @i k(7 )
<

M+N . NZo+l
(:3],, @)+ o))

If we put in the above inequality
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M=5s* and N=N(s)=2s+1,
then we have

fll Cs+1)° ’ (s+1)*
S a fondbae=0( 3 @),
0 k=82+1 k=38241

and the almost everywhere convergence of
o (s+1)*
(3.2 > > anf Q)

Seml k9241

holds, whenever

o 1 (s41)? 1/2
(3.3) > ( >3 ak”) <eo.
3=l \k=d741
However this is reduced from (1.9), i.e.,
o 7D 2)1/2 i(caix})z S e . 1 12
g(k-g-u @ = P @'y log & (Zogal) W/,é_logé """ C/Oé’?é)ﬁ )
éi 1 (s+1)?

1/sl0g s s (logps)® \/,C_EH ap*y/ klog ke (Logph)®

< i 1 oo (s+1°
=L slogs- (logps)® Fhn5i

@2 & L0g ke neees (/0gp/e)":|l/2

o, 1/2
SO X @'V log kw-(Log )0 | <
=1
In order to prove Theorem 2 it is only sufficient to prove that

(3.4) ifl max | i‘ ay f(npx) fdx<oo.

3-10 sr<<m<($+1)% k=s52+41

But the left hand member of (3.4) is less than by (3.1)

1ogn(s) NCs)2 1 s®+Cut1)z’
Swg v [ ay f na) dx

w=0 =8%u3®

) logn(s) s+1)? oo/ Cst1)
- 5 00s v S Wz (3 ar)= (3 @) ws v
o (s-1)? e o _
go(z:i 3w log é)zo(z:a,m/,é log é) <oo.
s=1 k=824 k=1

Thus if we make use of the Menchov’s device [61, we verify (3.4), and from (3.2)
and (3.4) we complete the proof of Theorem 2.

4, Proof of Theorem 3

For the proof of Theorem 3 we need a lemma corresponding to Lemma 1.
Lemma 2. If f(x) and {z,} satisfy the hypotheses of Theorem 3, then it holds that

1ozt 1 . N N2
wv [ g o= s+ O g e )

Proof. It is easy to prove the following formula
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(4.2) | [ rCmad £yl = Oty )-

In fact, if £4>j, then by the Parseval’s relation, we have

[ O fCrsdaxl=I T3 ezl

Sy =g

= X CsCsmyins |
158 <ooym |sn,

<(Zler g e )" = (52 )= o= )

This is (4.2), and since Zp-;(4) is non-decreasing as 4—co, we have

I

z+N
3 ;+1 Lp- 1(13

a’x :V‘_,N Z.- 1<,é>sz(¢zkx)dx

k=241

T, Lm(/é)le-}(j) Of S (i)

k+j

- N n (z+1v-1 1 24N 1 )
S e 12 Lo (D) 8 LB lag o (A=)

N +0(Z 1 “"'ﬁ r 1 )
Lp—l(zy r=1 (/ogp_lr)“ j=z41 Lp—1<j>£p—1<j+7”)

A

- 2ol )
Lp-1(2)* Ly—1(2)*(logp— V) )’
Thus we complete the lemma.

If we proceed along the same line as the proof of Theorem 1, we obtain the proof
of Theorem 3, but in this case we must put in (4.1)

g=/N=2*,

5. Proof of Theorem 4
We suppose that f(x) and {z;} satisfy the hypotheses of Theorem 4, and if we put
_ [ A
ulc_?lk-)-l, T_[Za]

(5.1 _r. 1 Zstoptrits \°
Hs, 8= men \— )
g i<t s+t

then for each s(s=1, 2, 3, - , 7D,

o 1
Sl avsesl [ 1 fOropman)=SpuCresn)|d
0

IA

© 1/2f = 1 o2
(3 a3ees) (S [ 1 £ Cresesd—=SuuCrosesadlian)
0

A}

(Za) (5 [ 1S

k=
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BNV 1 1/2
SERRRERES

) 2a
iZo Mk

had i 1/2 oo 1/2
- o3 o) =ow(FA) <.
& ’;" min (,.”H‘kﬂiﬂ,) w) =0 .fc‘govk =
0<i<T s+t

It shows the almost everywhere convergence of each series
G2 2 @ateilf (ania) =S, (2sn i)} (s=1,2, 00 T

On the other hand we can easily verify the convergence in the Z’sense of two
series > a; f(nzx) and (5.2), and then each series

o
1020 as"-TlcSP«:,h(%s-i-Tkx) <s=1, 27 """ yT>
is so also.
Now by (5.1), we have
7Zs 4+ _ 72547 1 Zs4vpdy o TsdTitr
sk 7stp 725 T k1 72 8 47 T~
. 7254 : ~.
= (min —EEIER N 2 Gp

I<i<t s+4tpti

and then we obtain by the Kolmogoroff’'s theorem [7], the almost everywhere

convergence of each series
oo
(5.3) kZ_}U st (72sprp), (s=1,2, e >

whence Theorem 4 follows from (5.2) and (5.3).
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