Sci. Rep. Kanazawa Univ. Vol. 8, No. 2, pp. 371-395 September 1963

Electronic Structure of Nitric Oxide and Nitric Oxide Ion

Masatoshi YAMAZAKI

Department of Physics, Faculty of Science, Kanazawa University (Received 30 June 1963)

The wave functions of the ground state and several low excited states of NO and NO⁺(${}^{2}\Pi$, ${}^{4}\Pi$, ${}^{4}\Sigma^{-}$, ${}^{2}\Delta$, ${}^{2}\Sigma^{+}$, ${}^{2}\Sigma^{-}$, ${}^{4}\Delta$, and ${}^{4}\Sigma^{+}$ states for NO, and ${}^{1}\Sigma^{+}$, ${}^{1}\Sigma^{-}$, ${}^{3}\Sigma^{+}$, ${}^{3}\Delta$, ${}^{3}\Sigma^{-}$, ${}^{1}\Delta$, ${}^{3}\Pi$, and ${}^{1}\Pi$ states for NO⁺) are calculated non-empirically at nuclear distance 1.15 A by LCAO SCF MO CI method, where all fifteen and fourteen electrons are considered and Slater type 1s, 2s, and 2p atomic orbitals are used. By using the wave functions obtained, dissociation energies, excitation energies, dipole moments, gradients of the electric field at nitrogen nucleus, oscillator strengths, and spin-orbit coupling constants are calculated.

1. Introduction

The free radical nitric oxide is a particularly interesting diatomic molecule to study in detail, since this molecule is a heteropolar one with a non-closed shell configuration.

In the previous paper,¹) we calculated the self-consistent-field molecular orbitals for nitric oxide in the linear-combination-of-atmic-orbitals molecular orbital approximation using 1s, 2s, and 2p Slater atomic orbitals. Three different calculations were made. (1) An incomplete treatment in which mixing of the inner 1s orbitals to the outer orthogonalized 2s and 2p orbitals was neglected. (2) A similar calculation, but here the outer orbitals were forced to be orthogonal to the inner orbitals. (3) The complete treatment in which all the orbitals were the linear combinations of 1s, 2s, and 2p orbitals. The single Slater determinant wave function built from the orbitals calculated from the complete treatment gave a negative dissociation energy, and a limited configuration interaction calculation accounted for 26% of the observed dissociation energy. The agreement between the calculated and observed first ionization potential was very good. Certain aspects of the uv spectra were reasonably well explained from this calculation. The dipole moment

-371 -

was calculated to be 0.27D (N-O⁺) as compared to an observed value of 0.16D with undetermined sign.

In order to obtain more accurate wave functions, full configuration interaction calculations are carried out in this paper not only for the ground state but also for the several lower excited states of the nitric oxide molecule and the nitric oxide ion.

By using the wave functions here obtained, dissociation energies, excitation energies, dipole moments, spin-orbit coupling constants, oscillator strengths, and gradients of the electric field at nitrogen nucleus are calculated and reported in this paper.

2. Construction of Wave Functions

All the integral values over atomic orbitals, upon which the results of the present configuration interaction studies are based, are collected in reference 1. Conversions from integral values over atomic orbitals to over molecular orbitals was performed by Hijikata's program and IBM 650.

The present calculations are carried out by making use of SCF molecular orbitals consisting of 1s, 2s, and 2p type atomic orbitals, which were reported in the previous paper¹). They are:

 $1\sigma - 0.0008 \quad 1s_N + 1.0004 \quad 1s_0 - 0.0054 \quad 2s_N + 0.0178 \quad 2s_0 - 0.0048 \quad 2p\sigma_N + 0.0046 \quad 2p\sigma_0 + 0.0$ $1.0002 \ 1s_N \ -0.0010 \ 1s_0 \ +0.0164 \ 2s_N \ -0.0050$ 20 $2s_0 + 0.0048 \ 2p\sigma_N$ -0.0028 $2p\sigma_0$ -0.0432 $1s_N$ -0.0352 $1s_0$ +0.3583 $2s_N$ +0.6836 $2s_0$ +0.1665 $2 p \sigma_N$ +0.194430 $2p\sigma_0$ -0.0020 1s_N -0.0215 1s₀ +0.7978 2s_N -0.7259 $2s_0 - 0.0147 2p\sigma_N + 0.2995$ 4σ $2p\sigma_0$ 5σ $0.0217 \ 1s_N + 0.0192 \ 1s_0 + 0.4727 \ 2s_N$ +0.2368 $2s_0 - 0.6149 2p\sigma_N$ -0.5794 $2p\sigma_0$ $0.0799 \ 1s_N \ -0.0906 \ 1s_0 \ +0.7382 \ 2s_N \ -0.7703 \ 2s_0 \ +1.0899 \ 2p\sigma_N \ -1.0092 \ 2p\sigma_0$ бσ $0.5232 \ 2p\pi_N + 0.7508 \ 2p\pi_0$ 1π $0.8781 \ 2p\pi_N - 0.6936 \ 2p\pi_0$ 2π

where

 $1s = (Z_1^3 / \pi)^{\frac{1}{2}} \exp(-Z_1 r),$

$$2s^{*} = (Z_{2}^{5}/3\pi)^{\frac{1}{2}} r \exp(-Z_{2}r), \qquad 2s = N (2s^{*}-C \ 1s),$$

$$2p\sigma \\ 2p\pi^{+} \\ 2p\pi^{-} \end{pmatrix} = (Z_{2}^{5}/\pi)^{\frac{1}{2}} r \exp(-Z_{2} r) \begin{cases} \cos\theta \\ (1/\sqrt{2}) \sin\theta \exp(+i\varphi) \\ (1/\sqrt{2}) \sin\theta \exp(-i\varphi). \end{cases}$$

The parameters Z's are given by Slater's rule and

 $Z_{1N} = 6.7, Z_{2N} = 1.95, Z_{10} = 7.7, \text{ and } Z_{20} = 2.275.$

The parameters N and C are chosen such that the orbital 2s is normalized and orthogonal to the corresponding inner 1s orbital.

Since the Hamiltonian of our problem has $C_{\infty v}$ symmetry, its wave functions are the bases of an irreducible representation of $C_{\infty v}$ group and are classified by the quantum numbers Λ and v. Λ is the component of the orbital angular momen-

372

tum of the electron along the internuclear axs. v is the character of the reflection at any plane passing through both nuclei (for the case of $\Lambda = 0$). Moreover, since the Hamiltonian is free from spin operators, the total spin quantum number S and its component along a fixed axis M are good quantum numbers. Therefore the wave functions of our problem have the symmetry character specified by Λ , v, S, and M.

In the case of NO molecule we must assign fifteen electrons to the ten SCF MO's each of which can accommodate at most two electrons. Therefore the number of orbitals which accommodate only one electron is at most five. These orbitals we call the *unpaired orbitals*. In the case of NO⁺ ion the number of unpaired orbitals is at most six. Therefore our present problem is the so-called five-electrons and six-electrons problems.

We define the spin functions $\Theta^N_{S, M, k}$ with the following form :

I
$$\Theta_{8,M,k}^{N}$$
 for NO doublet $(S = \frac{1}{2}, M = \frac{1}{2})$
1. One unpaired orbital $(N=1, S=M=\frac{1}{2})$
 $\Theta_{\frac{1}{2},\frac{1}{2},\frac{1}{2}}^{1} = \alpha$ (1)
2. Three unpaired orbitals $(N=3, S=M=\frac{1}{2})$
 $\Theta_{\frac{3}{2},\frac{1}{2},\frac{1}{2},1}^{2} = \frac{1}{\sqrt{2}} [\alpha(1) \alpha(2) \beta(3) - \alpha\beta\alpha]$
 $\Theta_{\frac{3}{2},\frac{1}{2},\frac{1}{2},2}^{2} = \frac{1}{\sqrt{6}} [\alpha(1) \alpha(2) \alpha(3) - \alpha\alpha\beta - \alpha\beta\alpha]$
3. Five unpaired orbitals $(N=5, S=M=\frac{1}{2})$
 $\Theta_{\frac{1}{2},\frac{1}{2},\frac{1}{2},2}^{2} = \frac{1}{\sqrt{12}} [\alpha(1)\alpha(2)\beta(3)\alpha(4)\beta(5) - \alpha\alpha\beta\beta\alpha - \alpha\beta\alpha\alpha\beta + \alpha\beta\alpha\beta\alpha + 2\beta\alpha\alpha\alpha\beta)$
 $\Theta_{\frac{1}{2},\frac{1}{2},\frac{1}{2},2}^{2} = \frac{1}{\sqrt{12}} [-\alpha(1)\alpha(2)\beta(3)\alpha(4)\beta(5) - \alpha\beta\alpha\alpha\beta + \alpha\alpha\beta\beta\alpha + \alpha\beta\alpha\beta\alpha + 2\beta\alpha\alpha\alpha\beta)$
 $\Theta_{\frac{1}{2},\frac{1}{2},\frac{1}{2},3}^{3} = \frac{1}{\sqrt{12}} [-2\alpha(1)\alpha(2)\alpha(3)\beta(4)\beta(5) - \alpha\beta\alpha\alpha\beta - \alpha\beta\alpha\beta\alpha + \alpha\beta\alpha\beta\alpha + \alpha\beta\alpha\beta\alpha + \alpha\beta\alpha\beta\alpha) + \alpha\alpha\beta\alpha\beta + \alpha\beta\alpha\alpha\beta + \alpha\beta\alpha\beta\alpha + \alpha\beta\alpha\alpha\beta + \alpha\beta\alpha\beta\alpha + \alpha\beta\alpha\alpha\beta + \alpha\beta\alpha\alpha\beta + \alpha\beta\alpha\alpha\beta + \alpha\beta\alpha\alpha + \beta\beta\alpha\alpha + \beta\alpha\alpha\beta + \alpha\beta\alpha\alpha + \beta\alpha\alpha\alpha + \beta\alpha\alpha + \alpha\beta\alpha\alpha + \alpha\beta$

1. Three unpaired orbitals $(N=3, S=M=\frac{3}{2})$ $\theta^3_{\frac{3}{2},\frac{3}{2}}=\alpha(1)\alpha(2)\alpha(3)$ 2. Five unpaired orbitals $(N=5, S=M=\frac{3}{2})$

$$\begin{split} &\Theta_{3/2,3/2,1}^{5} = \frac{1}{\sqrt{2}} [\alpha(1)\alpha(2)\alpha(3)\alpha(4)\beta(5) - \alpha \alpha \alpha \beta \alpha] \\ &\Theta_{3/2,3/2,2}^{5} = \frac{1}{\sqrt{6}} [\alpha(1)\alpha(2)\alpha(3)\alpha(4)\beta(5) + \alpha \alpha \alpha \beta \alpha - 2\alpha \alpha \beta \alpha \alpha] \\ &\Theta_{3/2,3/2,3}^{5} = \frac{1}{\sqrt{12}} [\alpha(1)\alpha(2)\alpha(3)\alpha(4)\beta(5) + \alpha \alpha \alpha \beta \alpha + \alpha \alpha \beta \alpha \alpha - 3\alpha \beta \alpha \alpha \alpha] \\ &\Theta_{3/2,3/2,4}^{5} = \frac{1}{\sqrt{20}} [\alpha(1)\alpha(2)\alpha(3)\alpha(4)\beta(5) + \alpha \alpha \alpha \beta \alpha + \alpha \alpha \beta \alpha \alpha - 4\beta \alpha \alpha \alpha - 4\beta \alpha \alpha \alpha \alpha] \end{split}$$

 ${\rm I\!I\!I} \quad \Theta^N_{S,\,M\,,\,k} \mbox{ for NO+ singlet } (S\,{=}\,0$, $M\,{=}\,0$)

1. Two unpaired orbitals
$$(N=2, S=M=0)$$
 $\theta_{0,0}^2 = \frac{1}{\sqrt{2}} [\alpha(1)\beta(2)-\beta\alpha]$
2. Four unpaired orbitals $(N=4, S=M=0)$
 $\theta_{0,0,1}^4 = \frac{1}{2} [\alpha(1)\beta(2)\alpha(3)\beta(4) + \beta\alpha\beta\alpha - \beta\alpha\alpha\beta - \alpha\beta\beta\alpha]$
 $\theta_{0,0,2}^4 = \frac{1}{\sqrt{12}} [2\alpha(1)\alpha(2)\beta(3)\beta(4) + 2\beta\beta\alpha\alpha - \beta\alpha\alpha\beta - \alpha\beta\alpha\beta - \beta\alpha\beta\alpha - \alpha\beta\beta\alpha]$
3. Six unpaired orbitals $(N=6, S=M=0)$
 $\theta_{0,0,1}^6 = \frac{1}{\sqrt{8}} [\alpha(1)\beta(2)\alpha(3)\beta(4)\alpha(5)\beta(6) + \beta\alpha\beta\alpha\alpha\beta + \beta\alpha\alpha\beta\beta\alpha + \alpha\beta\beta\alpha\beta\alpha - \beta\alpha\beta\alpha\beta\alpha - \alpha\beta\beta\alpha\beta\alpha - \alpha\beta\beta\alpha\beta\alpha - \alpha\beta\beta\alpha\beta\alpha - \alpha\beta\beta\alpha\beta\alpha - \beta\alpha\beta\alpha\beta\alpha - \beta\alpha\beta\alpha\beta\alpha - \beta\alpha\beta\alpha\beta\alpha - \beta\alpha\beta\alpha\beta\alpha - \alpha\beta\beta\alpha\alpha\beta - \beta\alpha\alpha\beta\alpha\beta - \beta\alpha\alpha\beta\alpha\beta - \beta\alpha\alpha\beta\alpha\beta - \alpha\beta\alpha\beta\alpha\beta - \alpha\beta\alpha\beta\alpha\beta - \alpha\beta\alpha\beta\alpha\beta\alpha - \alpha\beta\beta\alpha\beta\alpha - \alpha\beta\beta\alpha\beta\alpha - \alpha\beta\beta\alpha\beta\alpha - \alpha\beta\beta\alpha\beta\alpha - \alpha\beta\beta\alpha\alpha\beta - \alpha\alpha\beta\beta\beta\alpha - \beta\alpha\alpha\beta\beta\beta - \alpha\alpha\beta\beta\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta - \alpha\alpha\beta\beta\beta\alpha - \alpha\beta\alpha\beta\beta - \alpha\alpha\beta\beta\beta\alpha - \alpha\beta\alpha\beta\beta - \alpha\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta - \alpha\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\alpha - \alpha\beta\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\beta - \alpha\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\alpha - \alpha\beta\alpha\beta\alpha - \alpha\beta\alpha\beta\alpha - \alpha\beta\alpha\beta\alpha - \alpha\beta\alpha\beta\alpha - \alpha\beta\alpha\beta\alpha - \alpha\beta\alpha\beta\beta - \alpha\alpha\beta\beta\alpha - \alpha\beta\alpha\beta\alpha - \alpha\beta\alpha\beta\alpha - \alpha\beta\alpha\beta\alpha - \alpha\beta\alpha\beta\beta - \alpha\alpha\beta\beta\alpha - \alpha\beta\alpha\beta - \alpha\beta\alpha\beta\alpha - \alpha\beta\beta\alpha - \alpha\beta\alpha\beta - \alpha\alpha\beta\beta - \alpha\alpha\beta\beta\alpha - \alpha\beta\alpha\beta - \alpha\beta\alpha\beta - \alpha\beta\alpha\beta - \alpha\beta\alpha\beta - \alpha\beta\alpha\beta - \alpha\beta\alpha\beta - \alpha\beta\beta\alpha - \alpha\beta\beta\alpha - \alpha\beta\alpha\beta - \alpha\beta\alpha\beta - \alpha\beta\alpha\beta - \alpha\beta\beta\alpha - \alpha\beta\beta$

 $\mathop{\rm I\!V}_{S,\,\mathcal{M}\,,\,k} ~{\rm for}~{\rm NO^+}$ triplet (S=1 , $M\!=\!1$)

1. Two unpaired orbitals $(N=2, S=M=1) = \theta_{1,1}^2 = \alpha(1)\alpha(2)$

2. Four unpaired orbitals $(N\!=\!4\,,~S\!=\!M\!=\!1\,)$

$$\begin{aligned} \theta_{1,1,1}^{4} &= \frac{1}{\sqrt{2}} \Big[\alpha(1)\alpha(2)\alpha(3)\beta(4) - \alpha\alpha\beta\alpha \Big] \\ \theta_{1,1,2}^{4} &= \frac{1}{\sqrt{6}} \Big(-2\alpha(1)\beta(2)\alpha(3)\alpha(4) + \alpha\alpha\alpha\beta + \alpha\alpha\beta\alpha \Big) \\ \theta_{1,1,3}^{4} &= \frac{1}{\sqrt{12}} \Big(-3\beta(1)\alpha(2)\alpha(3)\alpha(4) + \alpha\alpha\beta\beta + \alpha\alpha\alpha\beta\alpha \Big) \\ \alpha\beta_{1,1,3}^{4} &= \frac{1}{\sqrt{12}} \Big(-3\beta(1)\alpha(2)\alpha(3)\alpha(4) + \alpha\alpha\beta\alpha + \alpha\alpha\alpha\beta + \alpha\beta\alpha\alpha \Big) \\ \beta\alpha_{1,1,1}^{6} &= \frac{1}{\sqrt{12}} \Big(\alpha(1)\alpha(2)\beta(3)\alpha(4)\beta(5)\alpha(6) - 2\alpha\beta\alpha\alpha\beta - \alpha\alpha\alpha\beta\beta\alpha - \alpha\alpha\alpha\beta\beta\alpha \Big) \\ \alpha\beta_{1,1,2}^{6} &= \frac{1}{\sqrt{12}} \Big(2\alpha(1)\beta(2)\alpha(3)\alpha(4)\beta(5)\alpha(6) - 2\alpha\beta\alpha\alpha\alpha\beta - \alpha\alpha\alpha\beta\beta\alpha - \alpha\alpha\beta\alpha\beta\alpha - \alpha\alpha\beta\alpha\beta\alpha \\ &\quad +\alpha\alpha\beta\alpha\alpha\beta + \alpha\alpha\alpha\beta\alpha\beta \Big) \\ \theta_{1,1,3}^{6} &= \frac{1}{\sqrt{24}} \Big(3\beta(1)\alpha(2)\alpha(3)\alpha(4)\beta(5)\alpha(6) - 3\beta\alpha\alpha\alpha\alpha\beta - \alpha\alpha\alpha\beta\beta\alpha - \alpha\alpha\beta\alpha\beta\alpha - \alpha\alpha\beta\alpha\beta\alpha \\ &\quad -\alpha\beta\alpha\alpha\beta\alpha + \alpha\alpha\beta\alpha\alpha\beta + \alpha\alpha\beta\alpha\beta + \alpha\beta\alpha\alpha\beta - \alpha\alpha\alpha\beta\beta\alpha - \alpha\alpha\beta\beta\alpha\alpha - \alpha\alpha\beta\alpha\beta\alpha \\ &\quad -\alpha\beta\alpha\alpha\beta\alpha + \alpha\alpha\beta\alpha\alpha\beta + \alpha\alpha\beta\alpha\beta\alpha + \alpha\beta\alpha\alpha\beta\alpha - 3\beta\alpha\alpha\alpha\beta\alpha - 3\beta\alpha\alpha\alpha\beta\alpha - 3\beta\alpha\alpha\beta\alpha\alpha \\ &\quad -\alpha\beta\alpha\beta\alpha\alpha\alpha - 3\alpha\beta\alpha\alpha\alpha\beta - 3\alpha\beta\alpha\alpha\beta\alpha - 3\beta\alpha\alpha\alpha\beta\alpha - 3\beta\alpha\alpha\alpha\beta\alpha - 3\beta\alpha\alpha\alpha\beta\alpha \\ &\quad -\alpha\beta\alpha\beta\alpha\alpha\alpha - 3\alpha\beta\alpha\alpha\alpha\beta - 3\alpha\beta\alpha\alpha\beta\alpha - 3\beta\alpha\alpha\alpha\beta\alpha - 3\beta\alpha\alpha\alpha\beta\alpha - 3\beta\alpha\alpha\beta\alpha\alpha \\ &\quad -3\alpha\beta\beta\alpha\alpha\alpha - 2\alpha\alpha\beta\alpha\beta\alpha + 2\alpha\alpha\alpha\beta\beta\alpha + 2\alpha\alpha\alpha\beta\beta\beta + 2\alpha\alpha\alpha\beta\alpha\beta + 2\alpha\alpha\alpha\beta\alpha\beta \\ &\quad +2\alpha\alpha\alpha\beta\beta\alpha + \alpha\beta\alpha\alpha\beta\alpha + \alpha\beta\alpha\beta\alpha\beta - 2\alpha\alpha\beta\beta\alpha\alpha - 3\beta\alpha\alpha\alpha\beta\alpha - 3\beta\alpha\alpha\beta\alpha - 3\beta\alpha\alpha\beta\alpha \\ &\quad -2\alpha\beta\beta\alpha\alpha\alpha - 2\alpha\alpha\beta\alpha\beta\alpha - 2\alpha\alpha\beta\beta\alpha + 2\alpha\alpha\alpha\beta\beta\alpha - 3\beta\alpha\alpha\alpha\beta\alpha - 3\beta\alpha\alpha\beta\alpha - 3\beta\alpha\alpha\beta\alpha \\ &\quad -2\alpha\beta\alpha\beta\alpha\alpha - 2\alpha\alpha\beta\alpha\beta\alpha - 2\alpha\alpha\beta\beta\alpha + 2\alpha\alpha\alpha\beta\beta\alpha - 3\beta\alpha\alpha\alpha\beta\alpha - 3\beta\alpha\alpha\alpha\beta\alpha - 3\alpha\alpha\beta\alpha\beta\alpha - 2\alpha\alpha\beta\beta\alpha\alpha \\ &\quad -2\alpha\beta\alpha\beta\alpha\alpha - 2\alpha\alpha\beta\alpha\beta\alpha - 2\alpha\alpha\beta\beta\alpha + 2\alpha\alpha\alpha\beta\beta\alpha - 3\beta\alpha\alpha\alpha\beta\alpha - 2\alpha\alpha\beta\beta\alpha\alpha - 2\alpha\alpha\beta\beta\alpha\alpha - 2\alpha\alpha\beta\beta\alpha - 2\alpha\alpha\beta\alpha - 2\alpha\alpha\beta\alpha - 2\alpha\alpha\beta\alpha\beta - 2\alpha\alpha\beta\alpha\beta - 2\alpha\alpha\beta\alpha\beta - 2\alpha\alpha\beta\alpha\beta - 2\alpha\alpha\beta\alpha\beta - 2\alpha\alpha\beta\beta\alpha - 2\alpha\alpha\beta\beta\alpha - 2\alpha\alpha\beta\beta\alpha - 2\alpha\alpha\beta\beta\alpha - 2\alpha\alpha\beta\beta\alpha - 2\alpha\beta\alpha\beta\alpha - 2\alpha\beta$$

In these formulas the i-th spin orbital, if numbered from left to right, accommodates the i-th electron.

Configurations used in the present CI calculations for various symmetry states of the nitric oxide molecule and the nitric oxide ion are collected in Tables I \sim VI.

TABLE I

Configurations Used in CI Calculation for $^2\varPi$ and $^4\varPi$ States of NO

Doublet	Quartet	2π-	$2\pi^+$	$1\pi^{-}$	$1\pi^+$	6σ	5σ	4σ	30	2σ	1σ
0			1.	2	2	****	2	2	2	2	2
1			2	2	1		2	2	2	2	2
$2_{1,2}$	2	1	1	1	2		2	2	2	2	2
3		2	1		2		2	2	2	2	2
41,2	4	1	2	1	1		2	2	2	2	2
5		2	2		1		2	2	2	2	2
6 _{1,2}	6		1	2	2	1	1	2	2	2	2
71,2	7		2	2	1	1	1	2	2	2	2
81,2,3,4,5	$8_{1,2,3,4}$	1	1	1	2	1	1	2	2	2	2
9 _{1,2}	9	2	1		2	1	1	2	2	2	2
$10_{1,2,3,4,5}$	$10_{1,2,3,4}$	1	2	1	1	1	1	2	2	2	2
$11_{1,2}$	11	2	2		1	1	1	2	2	2	2
12		1	2	2	2			2	2	2	2
13		2	2	1	2			2	2	2	2
14				1	2	2	2	2	2	2	2
15		1			2	2	2	2	2	2	2
$16_{1,2}$	16		1	1	1	2	2	2	2	2	2
17			2	1		2	2	2	2	2	2
$18_{1,2}$	18	1	1		1	2	2	2	2	2	2
19		1	2			2	2	2°	2	2	2
20			1	2	2	2		2	2	2	2
21			2	2	1	2		2	2	2	2
$22_{1,2}$	22	1	1	1	2	2		2	2	2	2
23		2	1		2	2		2	2	2	2
$24_{1,2}$	24	1	2	1	1	2		2	2	2	2
25		2	2		1	2		2	2	2	2
26 _{1,2}	26		1	2	. 2	1	2	1	2	2	2
27 _{1,2}	27		2	2	1	1	2	1	2	2	2
28 _{1,2,3,4,5}	$28_{1,2,3,4}$	1	1	1	2	1	2	1 ·	2	2	2
$30_{1,2,3,4,5}$	$30_{1,2,3,4}$	1	2	1	1	1	2	1	2	2	2
32 _{1,2}	32		1	2	2	2	1	1	2	2	2
341,2,3,4,5	341,2,3,4	1	1	1	2	2	1	1	2	2	2
38 _{1,2}	38	1	2	2	2	0	1	1	2	2	2
42		_	1	2	2	2	2		2	2	2
441,2	- 44	1	1	1	2	2	2		2	2	2
48	F 4	1	- 24	2	2	4	2	0	2	2	2
54 <u>1</u> ,2	54		1	2	. 2	1	2	2	1	4	ム 9
551,2	55	1	2 1	4	1	1	2	ച റ	1	ച റ	2 9
501,2,3,4,5	57	1	1	T	4	1	4	- 	1	2 0	2
58.	58		- 9	1	ے 1	1	ے م	2	1	2	2
50 <u>1</u> ,2,3,4,5	$50_{1,2,3,4}$	T	ے 1	1 0	0	1 0	ے 1	2	1	2 9	2
621.2 6 4 5	621 +	1	1	ے 1	2	2	1 1	2	т 1	2	2
664 0	66	1	2		2	4	1	2	1	2	2
701.0	70	т	1	2	2	2	2	1	1	2	2
761.0	76	1	2	2		4	2	1	1	2	2
86	10	Ŧ	1	2	4 9	2	2	2	1	2	2
881.9	88	1	1	1	2	2	2	2		2	2
92	00	. 1	2	2	2	4	2	2		2	2
		-			64		4	4		4	int.

.

TA	BL	Æ	Π
		_	

Doublet	Quartet	$2\Sigma^+$	2 ∑ -	$4\Sigma^{+}$	4 ∑ -	$2\pi^{-}$	$2\pi^+$	$1\pi^{-}$	$1\pi^+$	бσ	5σ	$4\sigma^a$)
1 _{1,2} ^c)	1	11	1_{2}		1	1	1	2	2		1	2
2 _{1,2}	2	$2_{1,2}$	$2_{1,2}$	2	2	2	1	1	2		1	2^{b}
3 _{1,2}	3	3 ₁	3_{2}		3	2	2	1	1		1	2
4		4						2	2	1	2	2
$5_{1,2}$	5	$5_{1,2}$	$5_{1,2}$	5	5	1		1	2	1	2	2
6		6	б			2			2	1	2	2
$7_{1,2,3,4,5}^{d)}$	$7_{1,2,3,4}^{e)},f)$	$7_{1,3,5'}$	$7_{2,4'}$	$7_{2,4'}$	$7_{1,3'}$	1	1	1	1	1	2	2
8 _{1,2}	8	8 _{1,2}	81,2	8	8	2	1		1	1	2	2
9		9				2	2			1	2	2
$10_{1,2}$	10	10 ₁	10_{2}		10	1	1	2	2	1		2
$11_{1,2}$	11	$11_{1,2}$	$11_{1,2}$	11	11	2	1	1	2	1		2
$12_{1,2}$	12	12_{1}	12_{2}		12	2	2	1	1	1		2
13		13						2	2	2	1	2
14 _{1,2}	14	$14_{1,2}$	$14_{1,2}$	14	14	1		1	2	2	1	2
15		15	15			2			2	2	1	2
$16_{1,2,3,4,5}$	$16_{1,2,3,4}$	$16_{1,3,5'}$	$16_{2,4'}$	$16_{2,4'}$	$16_{1,3'}$	1	1	1	1	2	1	2
$17_{1,2}$	17	$17_{1,2}$	$17_{1,2}$	17	17	2	1		1	2	1	2
18		18				2	2			2	1	2

Configurations Used in CI Calculation for $2\Sigma^+$, $2\Sigma^-$, $4\Sigma^+$, and $4\Sigma^-$ States of NO

Table ∏ Foot Notes

- a) 1σ , 2σ , and 3σ are doubly occupied for all configurations.
- b) The set of orbitals contained with the positive coefficient in the orbital product function of each configurational wave function (Σ^{-} state) is shown by specifying numbers of electrons occupying each orbital.
- c) It is assumed for $2\Sigma \pm$ states that, in making the orbital product functions, the unpaired σ -orbital must be put first and then the unpaired π -orbitals both with the order we read from left to right in the table.
- d) For ${}^{2}\Sigma^{\pm}$ states, 7_{4} and 7_{5} do not give the functions with the correct space symmetry, while 7_{4} , and 7_{5} , made from these two yield the ones with the correct space symmetry.

$$\begin{array}{rcl} (7_{4'}) = & -\sqrt{(1/3)} \ (7_4) + \sqrt{(2/3)} \ (7_5) & 2 \ \varSigma^- \\ (7_{5'}) = & \sqrt{(2/3)} \ (7_4) + \sqrt{(1/3)} \ (7_5) & 2 \ \varSigma^+ \end{array}$$

- e) It is assumed for $4\Sigma^{\pm}$ states that the orbital product function of configuration 7 is $2\pi^{-}(1)2\pi^{+}(2)6\sigma(3)1\pi^{-}(4)1\pi^{+}(5)$ $(5\sigma)^{2}(4\sigma)^{2}(3\sigma)^{2}(2\sigma)^{2}(1\sigma)^{2}$.
- f) For $4\Sigma \pm$ states, 7_3 and 7_4 do not give the functions with the correct space symmetry, while $7_{3'}$ and $7_{4'}$ made from these two yield the ones with the correct space symmetry.

$$\begin{array}{rl} (7_{3'}) = & -\sqrt{\ \overline{(3/8)}\ }(7_3) + \sqrt{\ \overline{(5/8)}\ }(7_4) & 4 \ \varSigma^{-} \\ (7_{4'}) = & -\sqrt{\ \overline{(5/8)}\ }(7_3) - \sqrt{\ \overline{(3/8)}\ }(7_4) & 4 \ \varSigma^{+} \end{array}$$

T.	AB	LE	Ш
	120		

Configurations Used in CI Calculation for $^{2}\varDelta$ and $^{4}\varDelta$ States of NO

Doublet	Quartet	$2\pi^{-}$	$2\pi^+$	$1\pi^{-}$	$1\pi^+$	бσ	5σ	$4\sigma^a$)
$1_{1,2}$	1	1	2	1	2		1	2
2			2	2	2		1	2
3		2	2		2		1	2
41,2	4		1	1	2	1	2	2
51,2	5	1	1		2	1	2	2
6 _{1,2}	б		2	1	1	1	2	2
71,2	7	1	2		1	1	2	2
81,2	8	1	2	1	2	1		2
9			2	2	2	1		2
10		2	2		2	1		2
11 _{1,2}	11		1	1	2	2	1	2
12 _{1,2}	12	1	1		2	2	1	2
131,2	13		2	1	1	2	1	2
14 _{1,2}	14	1	2		1	• 2	1	2

a) 1 σ . 2 σ , and 3 σ are doubly occupied for all configurations.

TABLE IV

Configurations Used in CI Calculation for $1 \Sigma^+$, $1 \Sigma^-$, $3 \Sigma^+$ and $3 \Sigma^-$ States of NO+

Singlet	Triplet	1 <u>5</u> +	1 <u>></u> -	3 ∑ +	3 ∑ -	$2\pi^{-}$	$2\pi^+$	$1\pi^{-}$	$1\pi^+$	бσ	5σ	$4\sigma^a$)
1		1						2	2		2	2
2		2	2				2	2			2	2
3		3				2	2				2	2
41,2	$4^{d}_{1,2,3}$	$4_{1,2}$		$4_{3'}$	41,2'	1	1	1	1		2	2
5	5	5	5	5	5	1		1	2		2	2^{b}
6	б	б	б	б	6	1	2	1			2	2
7	7	7		7				2	2	1	1	2
8	8	8	8	8	8		2	2		1	1	2
9	9	9		9		2	2			1	1	2
$10_{1,2,3,4,5}^{c)}$	$10_{1,2,3,4,5,6,7,8,9}^{e),f)}$	10 ₁ , ₃ ,4	$10_{2,5}$	$10_{1,4,5^{\prime},7^{\prime},9}$	$10_{2,3,6',8'}$	1	1	1	1	1	1	2
11 _{1,2}	$11_{1,2,3}$	$11_{1,2}$	$11_{1,2}$	$11_{1,2,3}$	$11_{1,2,3}$	1		1	2	1	1	2
$12_{1,2}$	12 _{1,2,3}	$12_{1,2}$	$12_{1,2}$	$12_{1,2,3}$	$12_{1,2,3}$	1	2	1		1	1	2
13		13						2	2	2		2
14		14	14				2	2		2		2
15		15				2	2			2		2
$16_{1,2}$	$16_{1,2,3}$	$16_{1,2}$		16 _{3'}	16 _{1,2′}	1	1	1	1	2		2
17	17	17	17	17	17	1		1	2	2		2
18	18	18	18	18	18	1	2	1		2		2
19	19	19			19	1	1	2	2			2
20	20	20	20	20	20	1	2	2	1			2
21	21	21			21	2	2	1	1			2

Table IV Foot Notes

- a) 1σ , 2σ , and 3σ are doubly occupied for all configurations.
- b) The set of orbitals contained with the positive coefficient in the orbital product function of each configurational wave function (Σ^- state) is shown by specifying the numbers of electrons occupying each orbital.
- c) It is assumed for $1\Sigma^{\pm}$ states that the orbital product function of configuration 10 is $2\pi^{-}(1)2\pi^{+}(2)6\sigma(3)5\sigma(4)1\pi^{-}(5)1\pi^{+}(6) (4\sigma)^{2}(3\sigma)^{2}(2\sigma)^{2}(1\sigma)^{2}$.
- d) For $3\Sigma^{\pm}$ states, $4_{2,3}$ and $16_{2,3}$ do not give the functions with the correct space symmetry, while $4_{2',3'}$ and $16_{2',3'}$ made from these unprimed ones yield the ones with the correct space symmetry (the transformation for configurations $16_{2',3'}$ is the same as that for $4_{2',3'}$).

$$\begin{array}{ll} (4_{2'}) = & -\sqrt{(1/3)} \ (4_2) + \sqrt{(2/3)} \ (4_3) & 3 \ \varSigma^- \\ (4_{3'}) = & \sqrt{(2/3)} \ (4_2) + \sqrt{(1/3)} \ (4_3) & 3 \ \varSigma^+ \end{array}$$

- e) It is assumed for ${}^{3}\varSigma^{\pm}$ states that the orbital product function of configuration 10 is $6\sigma(1)5\sigma(2)2\pi^{-}(3)2\pi^{+}(4)1\pi^{-}(5)1\pi^{+}(6) \quad (4\sigma)^{2}(3\sigma)^{2}(2\sigma)^{2}(1\sigma)^{2}.$
- f) For $3\Sigma^{\pm}$ states, $10_{5,6,7,8}$ do not give the functions with the correct space symmetry, while $10_{5',6',7',8'}$ made from these unprimed yield the ones with the correct space symmetry.
 - $\begin{array}{ll} (10_{5'}) = \sqrt{\ (1/3)} \ (10_5) + \sqrt{\ (2/3)} \ (10_6) & \ ^3\varSigma^+ \\ (10_{6'}) = \sqrt{\ (2/3)} \ (10_5) \sqrt{\ (1/3)} \ (10_6) & \ ^3\varSigma^- \\ (10_{7'}) = \sqrt{\ (1/3)} \ (10_7) + \sqrt{\ (2/3)} \ (10_8) & \ ^3\varSigma^+ \\ (10_{8'}) = \sqrt{\ (2/3)} \ (10_{7}) \sqrt{\ (1/3)} \ (10_8) & \ ^3\varSigma^- \end{array}$

Singlet	Triplet	$2\pi^{-}$	$2\pi^+$	1π-	$1\pi^+$	бσ	5σ	$4\sigma^{a}$)
1	1		1	2	2		1	2
2	2		2	2	1		1	2
3 _{1,2}	31,2,3	1	1	1	2		1	2
4	4	2	1		2		1	2
$5_{1,2}$	$5_{1,2,3}$	1	2	1	1		1	2
6	6	2	2		1		1	2
7	7		1	2	2	1		2
8	8		2	2	1	1		2
9 _{1,2}	91,2,3	1	1	1	2	1 .		2
10	10	2	1		2	1		2
$11_{1,2}$	$11_{1,2,3}$	1	2	1	1	1		2
12	12	2	2		1	1		2
13	13			1	2	1	2	2
14	14	1			2	1	2	2
15	15		2	1		1	2	2
16	16	1	2			1	2	2

TABLE V

Configurations Used in CI Calculation for 1 II and 3 II States of NO+

a) 1σ , 2σ , and 3σ are doubly occupied for all configurations.

Singlet	Triplet	$2\pi^{-}$	$2\pi^+$	$1\pi^{-}$	$1\pi^+$	бσ	5σ	$4\sigma^{a}$
1	1		1	1	2		2	2
2	2	1	1		2		2	2
3	3		2	1	1		2	2
4	4	1	2		1		2	2
5			2	2	2			2
6		2	2		2			2
7	7	1	2	1	2			2
81,2	81,2,3		1	1	2	1	1	2
91,2	91,2,3	. 1	1		2	1	1	2
101,2	$10_{1,2,3}$		2	1	1	1	1	2
$11_{1,2}$	$11_{1,2,3}$	1	2		1	1	1	2
12	12		1	1	2	2		2
13	13	. 1	1		2	2		2
14	14		2	1	1	2		2
15	15	1	2		1	2		2

TABLE VI

Configurations Used in CI Calculation for 1Δ and 3Δ States of NO+

a) 1σ , 2σ , and 3σ are doubly occupied for all configurations.

we can define unambiguously our wave functions by determining the forms of spin functions and orbital functions. The recipe used how to define orbital product functions is, except otherwise noted, that in each of sets of fifteen (and fourteen) one-electron orbitals, which are collected in Tables I~VI, the *i*-th unpaired orbital, if numbered from left to right in those tables, accommodates the *i*-th electron, and that the *j*-th paired orbital accommodates the (2j-1+u)-th and the (2j+u)-th electron (*u* is the number of unpaired electrons). The recipe how to define some orbital product functions for Σ^{\pm} states is different from that stated in the above and it is explained in detail in the foot notes of Tables II and IV. The subscript *k* added to some labels for configuration collected in Tables I~VI expresses that, in order to obtain the desired wave function, we must associate the *k*-th spin function of the proper set of spin functions $\Theta_{S,M,k}^N$ with the orbital product function.

3. Ground State ²II of NO

We can construct two hundred eighteen configrations with ${}^{2}\Pi$ symmetry from our ten MO's on the assumption that 1 σ and 2 σ orbitals are always doubly ocupied. Among two hundred eighteen configurations fourty four configurations have the non-zero elements of energy matrix against the ground configuration 0. Twenty five configurations are selected from these fourty four ones by the energy criterion $(H_{\sigma i})^{2}/(H_{ii}-H_{\sigma 0})$. The result of CI calculation is listed in Table VII,

Т	A	BI	Æ	VI	
		பட	<i></i>	V II	

Wave Functions for Ground and Two Lower Excited 211 States of NO

,		G	round 2∏			First Exc	ited ² ∏	Second Ex	cited ² <i>II</i>
	а	b	С	d	e	d	e	d	e
0	0.9692	0.9670	0.9587	0.9562	0.9562	0.0509	0.0503	0.0226	0.0199
1			-0.0302	-0.0206	-0.0206	-0.6743	-0.6703	0.4326	0.4351
2 ₁			-0.0765	-0.0780	-0.0776	0.6916	0.6956	0.4738	0.4587
2_{2}		•	0.0493	0.0371	0.0375	-0.0745	-0.0640	0.7267	0.7311
3	-0.1338	-0.1289	-0.1358	-0.1495	-0.1495	0.0802	0.0790	-0.0681	-0.0706
4 1	-0.1267	-0.1108	-0.1224	-0.1388	-0.1389	0.0318	0.0327	0.1148	0.1121
42	-0.0921	-0.0843	-0.0869	-0.0996	-0.0997	-0.0611	-0.0606	0.0358	0.0351
5				-0.0329	-0.0327	0.0496	0.0501	0.0538	0.0519
61			0.0513	0.0610	0.0613	0.0270	0.0285	0.0503	0.0529
6 ₂				0.0013	0.0010	-0.1388	-0.1401	-0.1072	-0.1023
7_1	-0.0751	-0.0737	-0.0747	-0.0753	-0.0753	-0.0851	-0.0844	0.0313	0.0323
7_{2}	0.0039				0.0043		0.0129		-0.0011
8 1	-0.0396	-0.0386	-0.0453	-0.0467	-0.0466	0.0695	0.0701	0.0471	0.0459
8_{2}	0.0899	0.0867	0.0891	0.0907	0.0906	0.0035	0.0047	0.0912	0.0903
84					0.0068		0.0043		0.0110
85					-0.0013		-0.0016		0.0039
9 1				-0.0170	-0.0172	-0.0635	-0.0630	0.0439	0.0452
10 ₁				-0.0167	-0.0161	-0.0262	-0.0270	-0.0802	-0.0796
10_{2}				-0.0107	-0.0106	0.0639	0.0645	0.0182	0.0187
12		0.0310	0.0324	0.0441	0.0440	0.0117	0.0115	0.0383	0.0332
13					-0.0012		-0.0176		-0.0693
14					-0.0003		0.0169		0.0506
161		0.0233	0.0218						
17					0.0001		-0.0175		0.0020
20	-0.0536	-0.0504	-0.0501	-0.0521	-0.0523	-0.0012	-0.0011	0.0049	0.0049
21				-0.0023	-0.0026	0.0433	0.0424	-0.0313	-0.0322
22 ₁				0.0042	0.0038	-0.0482	-0.0481	-0.0322	-0.0297
261		-0.0011	-0.0046						
26_{2}		-0.0312	-0.0329						
27_{1}		0.0178	0.0141						
28_{1}		0.0104							
28_{2}		-0.0209	-0.0164						
381		-0.0265							
42		-0.0233	-0.0224		,				
48		0.0495	0.0471						
54 1			0.0073						
55_{1}		0.0319	0.0320						
56 <u>1</u>		0.0200	0.0200						
56_{2}		-0.0364	-0.0376						
564		-0.0238							
60 1		-0.0285	-0.0292						
661		-0.0100							
86		-0.0242	-0.0231						
92		0.0099							
energy in au	-128.861	-128.884	-128.889	-128.873	-128.873	-128.626	-128.626	-128.501	-128.507
oinding energy in ev	1.71	2.34	2.48	2.04	2.04				

"ground state b" The energy depression due to CI calculation is 0.131 au, and the wave function obtained gives the dissociation energy 2.34ev, which is 36% of the experimental one. Next, by the wave function criterion $H_{oi}/(H_{ii}-H_{oo})$ twenty five configurations are selected from fourty four configurations mentioned before. Configurations 1, 2₁, 2₂, 6₁, and 26₁ are preserved because they have non-zero matrix elements of one-electron operator against the ground configuration 0 and therefore they play important roles for some molecular quantities. The result of CI calculation is listed in Table VII, "ground state c". This wave function gives the dissociation energy 2.48ev (38% of the experimental one). The value for "case c" is better than that for "case" b". A CI calculation corresponding to the wave function (equation 18) in reference 1 is shown in Table VII, "ground state a".

Magnetic hyperfine structure constants for the ground ${}^{2}\Pi$ state of the NO molecule have been calculated and reported elsewhere³).

4. Excited States of NO

By several pilot CI calculations, configurations are selected which are important for the first excited ${}^{2}\Pi$ state. Two CI calculations are carried out using configurations chosen by pilot calculations. The wave functions and energies obtained are shown in Table VII. "excited state d and c". The wave functions and energies for the ground ${}^{2}\Pi$ state obtained from these calculations are listed in Table VII. "ground state d and e".

Two CI calculations for ${}^{4}\Pi$ state are caried out using configurations which are chosen in the calculations "*d* and *e*" for ${}^{2}\Pi$ state. The results are shown in Table VIII. "lowest *a* and *b*". In that table the wave functions for the second lowest ${}^{4}\Pi$ state are also shown ("second lowest *a* and *b*"). It turned out that the configuration 2 makes very large contribution to the wave function for the lowest ${}^{4}\Pi$ state. In order to obtain more accurate wave function for the lowest ${}^{4}\Pi$ state, a CI calculation is carried out using configurations, which are selected by the wave function criterion $H_{i}^{2}/(H_{i}^{i}-H_{2}^{2})$ from all the configurations within our framework, the number of which is one hundred fourteen. The result is shown in Table VIII. "lowest *c*".

For $2\Sigma^{\pm}$, $4\Sigma^{\pm}$, ^{2}A , and ^{4}A states, CI calculations are carried out using configurations in which 1σ , 2σ , 3σ , and 4σ *MO*'s are doubly occupied. Some configurations are dropped out which have small matrix elements against the important configurations for the sake of simplification. The results are listed in Tables IX~ XIV.

The vertical excitation energies from the ground state ${}^{2}\Pi$ to each of the excited states are obtained by taking the differences of the respective total energies. The results are given in Table XV.

TABLE VII

Wave Functions for ${}^4\varPi$ States of NO

		Lowest 4 II		Second Lo	west ⁴∏
	а	b	с	a	b
2	0.9822	0.9807	0.9769	-0.0230	-0.0281
4	-0.1107	-0.1144	-0.0934	0.0809	0.0280
6	0.0259	0,0278	0.0341	0.9654	0.9582
7	0.0022	0.0007		-0.0403	-0.0397
8 1	0.0953	0.0983	0.1076	0.0237	0.0106
8_{2}	0.0157	0.0159	0.0140	0.0797	0.0711
83		0.0065			-0.0373
84		0.0056			-0.0344
9	-0.0080	-0.0079		-0.2282	-0.1830
10 ₁	0.0958	0.0977	0.0922	0.0154	0.0004
10_{2}		0.0038			0.0441
103		-0.0042			-0.1515
104		0.0011			0.1063
11		-0.0004			-0.0366
16		-0.0014			0.0017
18		0.0180	0.0167		-0.0004
22	-0.0621	-0.0618	-0.0584	0.0023	-0.0004
24		0.0230			-0.0002
26			-0.0099		
281			-0,0024		
28_2			0.0417		
283			0.0346		
284			0.0251		
301			-0.0090		
341			-0.0353		
38			-0.0040		
44			-0.0247		
54			-0.0461		
561			-0.0147		
562			-0.0060		
57			0.0181		
58 ₁			-0.0347		
- 58 ₂			-0.0127		
- 621			-0.0357		
76			-0.0166		
88			-0.0245		
energy ir	n au -128,659	-128.661	-128.681	-128.300	-128.334

383

Wave	E Functions for 2Σ +	States of NO Second	Wave Fu ² Stat	nction for e of NO
	Lowest ² 2	Lowest ${}^2\Sigma^+$		Lowest ² Z -
1	0.9580	-0.0605		
2 1	-0.0842	0.0193	1_2	0.9790
2_{2}	0.0416	-0.0552	21	-0.0592
3 1	-0.2366	0.0159	2_{2}	0.0371
4	0.0634	0.9393	32	-0,1549
5 1	0.0289	0.1286	-2 5-	0.0175
5_{2}	0.0148	-0.0060	51	0.0133
6	-0.0065	-0.1971	02	0.0100
7_{1}	0.0055	0.1820	6	0.000.0
7_{3}	-0.0075	-0.0959	7_{2}	-0.0108
$7_{5'}$	-0.0002	-0.0006	$7_{4'}$	0.0007
81	-0.0066	0.0145	8 ₁	-0.0022
82	-0.0043	0.0012	82	0.0001
101	0.0226	-0.0583	11.	-0.0002
11_{1}	-0.0910	0.0146	11.	0.1062
11_{2}	-0.0020	-0.0034	112	0.0020
13	-0.0554	-0.0215	141	-0.0029
141	-0.0129	-0.0904	14_2	0.0004
14_{2}	0.0010	-0.0020	16_{2}	0.0278
161	0.0110	-0.0096	16 ₄ ,	-0.0034
16 ₅ ,	0.0014 in au -128.522	-0.0006 -128.458	energy ni au	-128.516

TABLE IX Wave Functions for ${}^2 \varSigma {}^+$ States of NO

TABLE XI Wave Function for

4 Σ +	State	of	NO	

	Lowest $4\Sigma^+$
2	0.9926
5	-0.0113
7_{2}	-0.0114
7 _{4'}	-0.0325
8	0.0024
11	0.1065
14	0.0434
16_{2}	0.0029
16 _{4'}	0.0011
17	0.0155
energy in au	-128.352

TABLE XII Wave Function for

TABLE X

4Σ- State of NO

	Lowest $4\Sigma^-$
1	0.9813
2	0.0112
3	-0.1457
5	0.0394
7 ₁	-0.0099
73'	-0.0020
8	0.0041
10	0.0221
11	0.1106
12	-0.0216
14	-0.0014
16 ₁	0.0296
16 _{3'}	-0.0031
17	-0.0016
energy in au	-128.636

TABLE Wave Fur ² 1 State	XII. action for of NO	TABI Wave Fr 4 d Sta	LE XIV. unction for te of NO
	Lowest 2 1		Lowest 41
11	-0.0533	1	0.9930
1,	-0.0445	4	-0.0022
2	0.0007	5	0.0103
4	0,9007	6	-0.0234
3	-0.1891	7	-0.0005
4_1	-0.0028	8	0.1067
42	-0.0366	11	0.0412
5.	-0.0006	12	0.0003
51	0.0010	14	0.0155
5 ₂	0.0012	energy in au	-128.358
01	0.0000		
6 ₂	0.0066		
71	-0.0016	TABI	LE XV.
72	-0.0002	Vertical Exc	itation Energies
81	-0.0461	Relative to	the Ground
82	-0.1373	² ∏ State	of NO in ev
9	0.0296	cal	c. obs.
10	-0.0262		
11.	-0.0018	$4\Sigma^+$ 14.1	.7
111	0.0001)1
11_{2}	-0.0001	$2\Sigma^{+}$ 11.2	9
12 ₁	0.0046	$2 \Pi = 10.1$.Z '1
12_{2}	0.0048	$\frac{2}{2}$ 9.7 $2 \Sigma + 0 \Sigma$	5 8.5(?)4)
131	-0.0160	² 4 8.2	2 7.75)
19-	-0.0242	$^{2}\Pi$ 6.7	2 6.5 ⁴)
102		4 <i>∑</i> - 6.4	5
energy in au	-128.571	⁴ Π 5.8	2 4.76)

5. Ground and Low Excited states of NO⁺

NO⁺ ion is known to play important roles for some reactions occurring in the upper atmosphere. Therefore it is interesting to study this ion in detail. In the calculations of the wave functions of the NO⁺ ion we used the same MO's as used in the calculations of the wave functions of the NO molecule. The MO's used are orthogonal MO's. Therefore they still can be used as the basis ortitals for CI calculations of NO⁺. Configurations used for various symmetry states are collectted in Tables IV~VI. For the sake of simplification we consider only the configuration in which 1σ , 2σ , 3σ , and 4σ MO's are doubly occupied. The results

are listed in Tables XVI \sim XXIIII. The vertical excitation energies from the ground state ${}^{1}\mathcal{S}^{+}$ to each of the excited states are given in Table XXIV. The calculated dissociation energy is 4.00ev (37% of the experimental one 10.95ev). The ionization energy of the NO molecule is obtained by taking the difference of the respective ground state energies of NO and NO⁺. The calculated ionization energy is 7.48ev (81% of the experimental one 9.25ev⁷).

TABLE XVI. Wave Functions for Ground and First Excited ${}^{1}\Sigma^{+}$ States of NO⁺ TABLE XVII. Wave Function for $1\Sigma^{-}$ State of NO+

F	irst Excited ¹ Σ ⁺ Stat	es of NO+		Lowest 15-
	Ground ${}^{1}\Sigma^{+}$	First Excited ${}^{1}\Sigma^{+}$	2 5 6	-0.0756 0.9581 0.1937
1	0.9273	-0.2051	8 10 ₂	$0.1641 \\ 0.0018$
2	-0.0952	-0,0993	10^{2}_{5}	-0.0016
3	0.0454	0.0988	$111 \\ 11_2$	0.0090
4-1	0.1937	0.0698	$\frac{12_{1}}{12_{2}}$	$0.0162 \\ 0.0012$
42	0.1236	-0.1854	14	0.0253
5	0.1640	0.6963	17 18	0.0012
6	-0.0209	-0.3427	20	-0.0477
7	0.0998	0.5262	energy in au	-128.487
8	-0.0152	-0.0520	TADIE	57530
9	0.0177	-0.0204	TABLE Wave Fur	XVIII.
101	0.0281	0.0460	${}^{3}\Sigma^{+}$ State	of NO ⁺
103	-0.0013	-0.0384		
104	0.0304	0.0070		Lowest ${}^{3}\Sigma^{+}$
111	0.1550	0.0763	4.04	-0 0149
11_{2}	0.0132	0.0194	5	0.9537
- 12 ₁	-0.0594	-0.0345	6 7	-0,2056 -0,0469
12_{2}	-0.0067	-0.0038	8	0.0216
13	-0.0512	0.0155	101	-0.0143
14	0.0132	0.0054	10_{4} $10_{5'}$	-0.0124 -0.1055
16 1	-0.0199	-0.0021	$10_{7'}$	0,0759
16_{2}	-0.0201	0.0064	$109 \\ 111$	0.1276
17	0.0038	0.0462	11_{2} 11_{3}	0.0173 0.0061
18	-0.0063	-0.0007	12_{1}	-0.0627
19	-0.0692	0.0537	12_{2} 12_{3}	-0.0057
20	0.0094	0.0181	$16_{3'}$ 17	-0.0135 -0.0624
21	0.0170	-0.0105	18 20	$0.0249 \\ 0.0488$
energy	in au -128.598	-128.323	energy in au	-128,404

386

TABLE	XIX.
Wave Fun	ction for
$^{3}\Sigma$ – State	of NO^+

TABLE XXI. Wave Function for ³∏ State of NO⁺

³∑ - State	of NO+
	Lowest ³ <i>S</i> -
41	0.2016
$4_{2'}$	-0.0164
5	0.9537
б	-0.0815
8	0.0023
10_{2}	0.0715
10_{3}	-0.1142
1061	0.0743
10 ₈ ,	-0.0567
11_{1}	0.0734
11_{2}	0.0160
11_{3}	0.0089
12_{1}	-0.0554
12_{2}	-0.0023
12_{3}	-0.0019
16 ₁	-0.0245
16 _{2'}	0.0076
17	-0.0572
18	0.0123
19	0.0425
20	0.0370
21	-0.0005
energy in au	-128.303

TABLE XX. Wave Function for ${}^{1}\Pi$ State of NO⁺

	Lowest 1∏
1	0.9495
2	-0.0558
3 ₁	-0.0131
3 ₂	-0.0828
4	-0.1607
5 1	0.2024
5_{2}	-0.0813
6	-0.0329
7	0.0177
8	-0.0567
9 ₁	-0,0522
9 ₂	-0.0767
10	-0.0062
111	0.0029
11_{2}	-0.0094
12	0,0386
13	-0.0001
14	0,0018
15	0.0008
16	-0.0007
energy in au	-128,176

	Lowest 3 ₁₁
1	0.9302
2	0.0168
31	0.1587
3_2	-0.1118
33	-0.0249
4	-0.1693
5 1	0.0475
5_{2}	-0.1915
5_{3}	0.1083
6	-0.0390
7	0.0281
8	-0.0615
9 ₁	0.0402
9 ₂	-0.0197
9 ₃	-0.0808
10	0.0019
11 ₁	0.0062
11_{2}	-0.0055
11_{3}	0.0090
12	0.0389
13	0.0244
14	0.0024
15	-0.0047
10	-0.0004
energy in au	-128.224

TABLE XXII. Wave Functions for

¹ \varDelta States of NO⁺

	Lowest 11
1	0.9694
2	-0.0940
3	0.1223
4	0.0548
5	0.0410
6	-0.0159
7	0.0559
81	0.0731
82	0.0040
9 <u>1</u>	0.0929
9 ₂	0.0027
10 ₁	-0.0883
10_{2}	-0.0032
111	0.0441
11_{2}	0.0007
12	-0.0626
13	0.0151
14	-0.0165
15 .	-0.0123
energy in au	-128.295

TABLE Wave Fu ³ ⊿ Stat	2 XXIII. unction for e of NO ⁺	TABLE XXIV.	pergies
	Lowest 3 1	Relative to the Gro	und
1 2	0.9650 0.0424	$1\Sigma^+$ State of NO+ i	in ev
3 4 7	$-0.0065 \\ -0.1574 \\ 0.0575$	calc	•
81 82 83	$0.1164 \\ 0.0153 \\ 0.0090$	¹ П 11.48	
91 92	$-0.0872 \\ 0.0049$	³ П 10.17	
9_{3}^{-} 101	$0.0056 \\ 0.0957$	1 <i>∑</i> + 9.96	
10_{2}^{-} 10_{3}^{-}	$0.0068 \\ 0.0032$	1 ₄ 8.24	
11_1 11_2	$-0.0576 \\ -0.0027$	3 <i>∑</i> - 8.03	
11_3 12	-0.0025 -0.0630	³ <u>/</u> 6.88	
$13 \\ 14$	-0.0128 0.0098	3 ₂ + 5.28	
15 energy in au	0.0218 -128.345	1 <i>2</i> - 3.02	

6. Dipole Moment

The dipole moments for the ground ${}^{2}\Pi$, first excited ${}^{2}\Pi$, and lowest ${}^{4}\Pi$ states of the No molecule as well as for the ground ${}^{4}\Sigma^{+}$ state of the NO⁺ ion are calculated by using various wave functions. The molecular orbital integrals (MO|z| MO) used are shown in Table XXV. All the values shown in this table are the

TABLE	XXV.
-------	------

Molecular Integrals Used in Calculating Dipole Moment, Gradient of the Electric Field, and Oscillator Strength in Atomic Units

		z_N^{a}	$(3\cos^2\theta_N-1)/r_N^{3\ b})$			$x \pm \mathrm{iy}$
1σ	1σ	2.17271	0.19531	5σ	$1\pi^{\mp}$	0.36707
2σ	2σ	0.00055	-0.00109	5σ	$2\pi^{\mp}$	0.21132
3σ	3σ	1.43840	0.29961	6σ	$1\pi^{\mp}$	0.00277
4σ	4σ	1.20300	0.01504	6 <i>o</i>	2π ⁺	0.37033
5σ	5σ	0.61362	0.91263			
6 <i>o</i>	бσ	1.00141	1.56198			
$1\pi\pm$	$1\pi^{\pm}$	1.42023	-0.20209			
$2\pi\pm$	$2\pi^{\pm}$	0.74267	-0.69767			
3σ	4σ	-0.77313	-0.03377			
3σ	5σ	0.05389	-0.37445			
3σ	бσ	-0.19335	0.26130			
4σ	5σ	-1.34825	0.01145			
4σ	6σ	-0.17272	-0.14126			
5σ	6o	0.96834	-1.21997			
$1\pi\pm$	$2\pi\pm$	-1.31204	-0.51920			

Table XXV

Foot Notes

a) Brion, Moser, and Yamazaki, reference 1.

b) Lefèbvre-Brion and Moser, reference 3.

State		Case	calc.	obs.
Ground	$^{2}\Pi$	SCF	0.27D(N-O+)	0.16D
		d	0.49	
		с	0.80	
		e	0.50	
First		d	0.75D(N-O+)	
Excited	² Π	e	0.80	
Lowest	4 <i>∏</i>	C	0.85D(N-O+)	
Ground	1 <u></u> 2 +	Single	$2.15D(N^{-}O^{+})$	
(NO^{+})		config.		
		CI	2.70	

TABLE XXVI. Dipole Moment

computed ones. These are taken from reference 1 and 3. The results are collected in Table XXVI. The observed dipole moment for the ground ${}^{2}\Pi$ state of the NO molecule is 0.16D (sign unknown)⁸).

7. Oscillator Strength

The oscillator strength f_{kl} with respect to the transition from a state k to an energetically higher state lis expressed, in atomic units, as

$$f_{kl} = \frac{2}{3} |\langle \Psi_k| \sum_i \mathbf{r}_i |\Psi_l \rangle|^2 (\Delta E)_{kl},$$

where $(\varDelta E)_{kl} = E_l - E_k$.

This method of calculation is called the dipole length method. The oscillator strengths from the ground ${}^{2}\Pi$ state to the first excited ${}^{2}\Pi$, lowest ${}^{2}\Sigma^{+}$, lowest ${}^{2}\Sigma^{-}$, and lowest ${}^{2}\Delta$ states are calculated. The molecular integrals used are shown in Table XXV. The wave functions "d" in Table VII are used in this section as the wave functions for the ground and first excited ${}^{2}\Pi$ states. The results are listed in Table XXVII.

k	l	$<\!\!k \sum\limits_i r_i l\!\!>$	$(\varDelta E)_{kl}$	f_{kl}
Ground ² ∏	First Excited ² II	-0.1261	0.247	0.0026
Ground 2Π	Lowest $^{2}\Sigma^{+}$	-0.1419	0.351	0.0057
Ground 2Π	Lowest 2Σ –	-0.2339	0.357	0.0130
Ground 2Π	Lowest 2Δ	-0.2153	0.302	0.0093
Ground ² Π Ground ² Π Ground ² Π	Lowest $2\Sigma^+$ Lowest $2\Sigma^-$ Lowest 2Δ	-0.1419 -0.2339 -0.2153	0.351 0.357 0.302	0.005 0.013 0.009

TABLE XXVII. Oscillator Strength

8. Gradient of Electric Field at Nitrogen Nucleus

The gradient of the electric field at nitrogen nucleus is given by the relation

$$q = q(\text{nuclear}) - q(\text{electronic}) = (2Z/R^3) - \langle \Psi \mid \Sigma (3\cos^2\theta_{Ni} - 1)/r_{Ni}^3 \mid \Psi \rangle.$$

Z is the nuclear chage of oxygen, and R is the internuclear distance. The gradients q's for the ground ${}^{2}\Pi$, first excited ${}^{2}\Pi$, lowest ${}^{4}\Pi$ states of the No molecule as well as for the ground ${}^{1}\Sigma^{+}$ state of the NO⁺ ion are calculatted. The molecular integrals used are shown in Table XXV. The results are listed in Table XXVIII. The experimental value⁹) of eqQ for the ground ${}^{2}\Pi$ state of NO is -1.75 Mc/sec. The calculated gradient q=0.60au leads to $Q(N^{14})=-0.001\times 10^{-24}$ cm².

negative value of Q is in contradiction with the hypothesis proposed by Moskowski and Towens¹⁰) that positive Q should be associated with an odd-odd nucleus.

9. Spin-Orbit Coupling Constant

The spin-orbit coupling operator is expressed as

$$\Xi = \sum_{i} \xi_{i} \boldsymbol{l}_{i} \cdot \boldsymbol{s}_{i} = A \Lambda M,$$

where i denotes the coordinates of the i-th electron, and

$$\xi_i = \frac{1}{2m^2c^2} \frac{1}{r_i} \frac{dU}{dr_i}$$

,	ΤA	BLE	XXVII.		
Gradient	of	the	Electric	Field	at
N	litr	ogen	Nucleus	5	

State		case	calc.
Ground	2 <i>∏</i>	SCF	0.226au
		d	0.602
		С	0.581
		е	0.598
First		d	0.722
Excited	2Π	е	0.910
Lowest	4Π	С	0.929
Ground (NO ⁺)	1 <u>></u> +	Single Config.	-0.476
		CI	0.199

with U being the potential energy of the *i*-th electron at a point r_i . In the Russell-Saunders case the effective spin-orbit coupling term is AAM and this coupling constant A can be expressed by means of (MO | ξ | MO.) We calculated the spin-orbit coupling constants for the ground ${}^{2}\Pi$, first excited ${}^{2}\Pi$, and lowest ${}^{4}\Pi$ states. The matrix elements of the spin-orbit coupling operator $\sum_{i} \xi_i l_i \cdot s_i$ for the ${}^{2}\Pi$ state of NO are shown in Table XXIX. As $\frac{dU}{dr_i}$ falls off very rapidly with r_i

TABLE XXIX. Matrix Elements of the Spin-Orbit Coupling Operator for ${}^{2}\Pi$ State of NO

<0 2	3 0>	$(1/2)(2\pi \xi 2\pi)$	<13 5	113>	$(-1/2)(1\pi \xi 1\pi)$
1	1	$(1/2)(1\pi \xi 1\pi)$	14	14	$(-1/2)(1\pi \xi 1\pi)$
2_{1}	2 ₁	$(-1/2)(2\pi \xi 2\pi)$	17	17	$(-1/2)(1\pi \xi 1\pi)$
2_2	2_{2}	$(1/2)(2\pi \xi 2\pi) - (1/3)(1\pi \xi 1\pi)$	20	20	$(1/2)(2\pi \xi 2\pi)$
3	3	$(1/2)(2\pi \xi 2\pi)$	21	21	$(1/2)(1\pi \xi 1\pi)$
4_1	4 1	$(-1/2)(2\pi \xi 2\pi)$	22_{1}	22_{1}	$(-1/2)(2\pi \xi 2\pi)$
4_2	4_2	$(1/6)(2\pi \xi 2\pi)$	0	1	$(1/2)(1\pi \xi 2\pi)$
5	5	$(1/2)(1\pi \xi 1\pi)$	3	5	$(1/2)(1\pi \xi 2\pi)$
61	6 1	$(1/2)(2\pi \xi 2\pi)$	20	21	$(1/2)(1\pi \xi 2\pi)$
6_2	6_2	$(-1/6)(2\pi \xi 2\pi)$	3	21	$(-1/2\sqrt{2})(1\pi \xi 2\pi)$
7_1	7_{1}	$(1/2)(1\pi \xi 1\pi)$	3	2_{2}	$(-1/2\sqrt{6})(1\pi \xi 2\pi)$
7_2	7_{2}	$(-1/6)(1\pi \xi 1\pi)$	5	41	$(-1/2\sqrt{2})(1\pi \xi 2\pi)$
8 ₁	81	$(-1/2)(2\pi \xi 2\pi)$	5	4_{2}	$(1/2\sqrt{6})(1\pi \xi 2\pi)$
8_2	8_2	$(1/2)(2\pi \xi 2\pi) - (1/3)(1\pi \xi 1\pi)$	0	2_{1}	$(1/2\sqrt{2})(1\pi \xi 2\pi)$
84	84	$(1/2)(2\pi \xi 2\pi) - (1/9)(1\pi \xi 1\pi)$	0	2_{2}	$(1/2\sqrt{6})(1\pi \xi 2\pi)$
8_{5}	85	$(-5/8)(1\pi \xi 1\pi)$	1	4_{1}	$(1/2\sqrt{2})(1\pi \xi 2\pi)$
9 ₁	9 ₁	$(1/2)(2\pi \xi 2\pi)$	1	4_{2}	$(-1/2\sqrt{6})(1\pi \xi 2\pi)$
101	10_1	$(-1/2)(2\pi \xi 2\pi)$	2_{2}	4_{2}	$(-1/3)(1\pi \xi 2\pi)$
10_2	10_2	$(1/6)(2\pi \xi 2\pi)$	61	7_1	$(1/2)(1\pi \xi 2\pi)$
12	12	$(-1/2)(2\pi \xi 2\pi)$	62	7_{2}	$(-1/6)(1\pi \xi 2\pi)$

$< 9_1$	$z 8_1 >$	$(-1/2\sqrt{2})(1\pi \xi 2\pi)$	< 12 3	113>	$(-1/2)(1\pi \xi 2\pi)$
9 1	8_{2}	$(-1/2\sqrt{6})(1\pi \xi 2\pi)$	2 1	2_{2}	$(-1/\sqrt{12})[(2\pi \xi 2\pi) + (1\pi \xi 1\pi)]$
61	81	$(1/2\sqrt{2})(1\pi \xi 2\pi)$	4 1	4_{2}	$(1/\sqrt{3})(1\pi \xi 1\pi)$
б1	8_{2}	$(1/2\sqrt{6})(1\pi \xi 2\pi)$	10_1	10_2	$(1/\sqrt{3})(1\pi \xi 1\pi)$
7_1	10_1	$(1/2\sqrt{2})(1\pi \xi 2\pi)$	8 ₁	82	$(-1/\sqrt{12})[(2\pi \xi 2\pi)+(1\pi \xi 1\pi)]$
7_1	10_{2}	$(-1/2\sqrt{6})(1\pi \xi 2\pi)$	84	85	$(-\sqrt{2}/9)(1\pi \xi 1\pi)$
82	10_{2}	$(-1/3)(1\pi \xi 2\pi)$	2_1	4_{2}	$(1/\sqrt{12})(1\pi \xi 2\pi)$
20	22_{1}	$(1/2\sqrt{2})(1\pi \xi 2\pi)$	2_{2}	4_{1}	$(-1/\sqrt{12})(1\pi \xi 2\pi)$
6_2	83	$(-1/2\sqrt{2})(1\pi \xi 2\pi)$	8 1	10_2	$(1/\sqrt{12})(1\pi \xi 2\pi)$
62	84	$(-1/6\sqrt{6})(1\pi \xi 2\pi)$	8_{2}	101	$(-1/\sqrt{12})(1\pi \xi 2\pi)$
62	85	$(-1/3\sqrt{3})(1\pi \xi 2\pi)$			

we can neglect the two center atomic integrals. For the one center atomic integrals we used the values which was estimated by Ishiguro¹¹ from the atomic spectral data. Those are:

 $(2p\pi_N |\xi| 2p\pi_N) = 73.3 \text{cm}^{-1}, (2p\pi_o |\xi| 2p\pi_o) = 151 \text{cm}^{-1}.$

The results are collected in Table XXX.

TABLE XXX. Spin-Orbit Coupling Constant

State		case	calc.	obs.
Ground	2 <i>∏</i>	d	130.0cm-1	123,8cm-1 9)
		e	130.0	
First	9 77	d	1.2	
Excited	- 11	е	- 2.0	
Lowest	4∏	a	- 38.4	
		b	- 38.5	
		С	- 37.1	

10. Discussion and Summary

In the present calculations on the energies and wave functions for various symmetry states of the NO molecule and the NO⁺ ion, the effective nuclear charges are chosen as $Z_{1N}=6.7$, $Z_{2N}=1.95$, $Z_{10}=7.7$, and $Z_{20}=2.275$, as Slater's rule²) indicates. The values of the effective nuclear charge Z should be determined, in principle, to make the total energies of the electron

system (molecule and separated atoms) in the various states minima. Values given by Slater's rule are used in the present calculations because of the situation of the computational facilities. Values used for the effective nuclear charges are nearly the best values for the case of NO molecule, while a little deviated from the best values for the case of the NO⁺ ion, as we can see in Table XXXI¹²).

The calculated dissociation energies accounted for 38% of the experimental one for the case of the NO molecule, and 37% of the experimental one for the case of the NO⁺ ion. The dissociation energy D_e is obtained by subtracting the energy E of the molecule from the energy E_{∞} of the separated atoms in their ground states $D_e = E_{\infty} - E$, where the quantities E and E_{∞} should be minimized with respect to variation of the effective nuclear charges Z's respectively. The effective nuclear charges used are nearly the best ones for the state of the separa-

	(calc.	aha 18)
	present Z's	best Z' s12)	005.137
N (s ² p ³ 4S ⁰)	-54.265	-54.269	-54.611
$N^+(s^2 p^2 {}^3P)$	-53.782	-53.810	-54.076
O (s ² p ⁴ ³ P)	-74.533	-74.540	-75.109
$O^+(s^2 p^3 4S^0)$	-74.185	-74.226	-74.609
N $(s^2 p^3 4S^0) + O (s^2 p^4 3P)$	-128.798	-128.809	-129.720
N (s ² p ³ $^{4}S^{0}$)+O ⁺ (s ² p ³ $^{4}S^{0}$)	-128.451	-128.495	-129.220

TABLE XXXI. Calculated and Empirical Energies of Atomic States in au

ted atoms $N(^4S)+O(^3P)$, therefore the calculated dissociation energy for the NO molecule may be the lower limit to the true value. The discrepancy of the calculated ionization energy 7.48ev of the NO molecule and the dissociation enrgy 4.00 ev of the NO⁺ ion from the experimental Values 9.25ev and 10.95ev, respectively, is mainly due to the fact that the empirical separation between the states $N(^4S)$ $+O(^3P)$ and $N(^4S)+O^+(^4S)$ is 13.602ev¹³), whereas the calculated separation is 8.54ev (9.44ev if the best $Z's^{12}$) are used for each of the states). We can see evidence of a very difficult situation arising in this type of non-empirical molecular calculation. The dissociation energy is the difference between two large figures, and the errors of our calculation may be of the same order as the dissociation energy.

In order to obtain more accurate wave functions than those shown in the present paper, first we should include M shell orbitals in the calculation, and secondly we should use different values for each of the effective nuclear charges of the 1π molecular orbital and the 2π molecular orbital. The first improvement is particularly effective on the wave functions for the Σ^{\pm} states and A state of the NO molecule, and the second improvement particularly on the wave functions for the Π state of the NO molecule. The energies of these states will be depressed somewhat, and will approach to the true values.

The dipole moment and the gradients of the electric field depend upon the structure of inner electrons as well as upon the structure of valence electrons. The spin-orbit coupling constant is determined by the structure of π -electrons (valence electrons), because the spin-orbit coupling opeator contains L_z . Compared with dipole moment and the gradient of the electric field, some oscillator strengths $({}^{2}\Pi \rightarrow {}^{2}\Sigma^{+}, {}^{2}\Sigma^{-}, {}^{2}\Delta)$ do not to a large extent depend upon the structure of inner electrons. The wave functions obtained in the present calculations take account of the correlation of valence electrons to larger extents than the correlation of inner electrons.

As shown in Tables XXVIII and XXVI, the values calculated from the wave functions obtained in the present calculations are much different from the experimental values for the gradient of the electric field at nitrogen nucleus, and also

different, though not so much as compared with the ones for q's, for the dipole moment. These facts may give us the feeling that the wave function which gives the better value for the energy is not always the one which is satisfactory for the description of some other molecular quantities. The calculated value of the spin-orbit coupling constant for the 2Π ground state of the NO molecule is in good agreement with experiment, as shown in Table XXX. The work in progress shows that, as well known by the experiment, the equilibrium internuclear distance of the first excited 2II state of the NO molecule is much different from that of the ground ${}^{2}\Pi$ state. So the calculated value $1.2 \sim 2.0 \text{ cm}^{-1}$, which is shown in Table XXX, for the spin-orbit coupling constant of the first excited ${}^{2}\Pi$ state may not be directly compared with the experiment. This will be reported in the future paper. The agreement of the calculated values with the experimental ones is rather satisfactory for the case of the vertical excitation energies of the NO molecule, as we see in Table XV. So we may have the same order of reliance upon the calculated values, shown in Table XXIV, for the vertical excitation energies of the NO⁺ ion, of which the experimental data seem to be lacking. Recently Broida and Peyson⁶) gave the experimental value 4.7ev for the vertical ${}^{2}\Pi$ $(ground)-4\Pi$ transition of the NO molecule. The present calculated value is 5.82ev. The agreement is rather satisfactory. Concerning the $4\Sigma^{-}$ state of the NO molecule, Ogawa¹⁴) has given the experimental value 1.47ev for the $4\pi - 4\Sigma$ transition. This value 1.47ev may be compared with the present calculated value 0.63ev for the $4\Pi - 4\Sigma^{-}$ interval. The calculated lowest vertical excitation energy relative to the ground state ${}^{1}\Sigma^{+}$ of the NO⁺ ion is 3.02 ev and the calculated dissociation energy of the NO^+ ion is 4.00ev. So we can say that there exists at least one bound excited state, which has ${}^{1}\Sigma^{-}$ symmetry, for the NO⁺ ion. Experimentally the cxcited state of the NO⁺ ion has not definitely been studied.

The wave functions for some of various symmetry states can be written to a certain extent by a single configurational wave function, as shown in the tables of the wave functions. So we can say the present calculations show that the SCF orbitals for the ground state are satisfactory for simple description of excited states. Quantities concerning the first excited ${}^{2}\Pi$ state and the lowest ${}^{4}\Pi$ state of the NO molecule, as well as those concerning the ground ${}^{2}\Pi$ state the NO molecule and the ground ${}^{1}\Sigma^{+}$ state of the NO⁺ ion, are calculated particularly in detail. The energy level of the lowest ${}^{4}\Pi$ state. There is a state of the NO molecule with ${}^{4}\Sigma^{-}$ symmetry, the level of which is 0.27ev lower tan that of the first excited ${}^{2}\Pi$ state.

According to Mulliken's definition¹⁵), atomic populations are calculated in order to obtain a useful insight for the wave functions for various states. They are shown in Table XXXII.

393

M. YAMAZAKI

	$2s_N$	$2p\sigma_N$	$2\mathrm{p}\pi_N$	$2s_0$	$2p\sigma_0$	$2 p \pi_0$	1π	2π
Ground 2∏	1.83	1.05	2.10	1.92	1.20	2.90	3.87	1.13
first evcited 277	1.83	1.05	1.77	1.92	1.20	3.23	3.00	2.00
4Π	1.83	1.05	2.36	1.92	1.20	2.64	2.98	2.02
$^{2}\Sigma^{+}$	1.67	0.62	2.75	1.87	0.84	3,25	3.88	2.12
2 2 -	1.67	0.61	2.73	1.88	0.84	3.27	3.94	2.06
$^{4}\Sigma^{+}$	1.67	0.61	3.00	1.88	0.84	3.00	3.00	3.00
4 <u>5</u> -	1.67	0.61	2.73	1.88	0.84	3.27	3.94	2.06
2 <u>1</u>	1.68	0.60	2,74	1.88	0.84	3.26	3.90	2.10
4 ⊿	1.67	0.62	3.00	1.88	0.83	3.00	3.00	3.00
1 <u>2</u> +	1.83	1.05	1,48	1.92	1.20	2,52	3.80	0.20
1 <u>2</u> -	1.83	1.05	1.75	1.92	1.20	2.25	2.87	1.13
3 ∑ +	1.83	1.05	1.74	1.92	1.20	2.26	2.89	1.11
3 <u>2</u> -	1.83	1.05	1.74	1.92	1.20	2.26	2.91	1.09
1 <i>П</i>	1.67	0.61	2.12	1.88	0.84	2.88	3.82	1.18
3∏	1.67	0.61	2.13	1.88	0.84	2.87	3.78	1.22
14	1.83	1.05	1.73	1.92	1.20	2.27	2.95	1.05
з Д	1.83	1.05	1.74	1.92	1.20	2.26	2.91	1.09

TABLE XXXII. Atomic Population^{a),15)}

a) There are slight immigrations of electron between σ and π orbital due to Cl. The amount of immigrated electron is at most~0.01 These immigrations of electron are neglected in making this table.

We started the present full configuration interaction calculation to see how the results are improved by this type of calculation. It turned out that the improvement is rather not much compared with human labours involved in finding the matrix elements of 10th-20th-degree matrices. The single determinantal wave functions for various states, which are made by the SCF orbitals for the ground state, seem to be satisfactory for simple description of these states, though one should not state definitely conclusions from the results of a single calculation on one molecule. We are now working to obtain the potential curves, including the M shell orbitals in the calculation, for various states of the NO molecule and the NO⁺ ion.

Acknowledgements

The author is indebted to Prof. K. Hijikata for use of his IBM 650 Programs. He expresses his sincere thanks to Prof. C. C. Lin for his kind hospitality. Conversion from integral values over atomic orbitals to over molecular orbitals and diagonalizations of energy matrices were performed by IBM 650 at University of Oklahoma. He also expresses his hearty thanks to Profs. K. Niira and K. Takayanagi for their encouragements and advices throughout this work. This work was supported by the Air Force Research Center, Air Research and Development Command, U. S. A. F..

References

- 1) H. Brion, C. Moser, and M. Yamazaki, J. Chem. Phys. 30(1959) 673.
- 2) J. C. Slater, Phys. Rev. 36 (1930) 57.
- M. Yamazaki, M. Sakamoto, K. Hijikata, and C. C. Lin, J. Chem. Phys. 34 (1961) 1926. Concerning similar calculations, see: H. Lefèbvre-Brion and C. Moser, Phys. Rev. 118 (1960) 675; C. C. Lin, K. Hijikata, and M. Sakamoto, J. Chem. Phys. 33 (1960) 878.
- 4) L. H Sutcliffe and A. D. Walsh, Proc. Phys. Soc. (London) A66 (1953) 209.
- 5) E. Miescher, Helv. Phys. Acta, 29 (1956) 401.
- 6) H. P. Broida and M. Peyson; J. Chem. Phys. 32 (1960) 1068.
- 7) R. Watanabe, J. Chem. Phys. 25 (1956) 965.
- 8) C. A. Burrus and J. D. Graybeal, Phys. Rev. 109 (1958) 1553.
- 9) J. J. Gallagher and C. M. Johnson, Phys. Rev. 103 (1956) 1727.
- 10) S. A. Moszkowski and C. H. Townes, Phys. Rev. 93 (1954) 306.
- E. Ishiguro, Quarterly Progress Report, SSMPG, Massachusetts Institute of Technology, October 15 (1958) 61.
- 12) A. C. Hurley, Proc. Roy, Soc. A249 (1959) 402.
- 13) O. E. Moore, Atomic Energy Levels, National Bureau of Standard Circular 467 (1949).
- 14) Ogawa, Science of Light 3 (1954) 39
- 15) R. S. Mulliken, J. Chem. Phys. 23 (1955) 1833.