A Note on Yang-Mills Field

Masatoshi Yamazaki
Department of Physics, Kanazawa University
(Received April 30, 1976)

Abstract

A result of an attempt to obtain a solution of Yang-Mills field equation is presented under both a gauge condition $p A_{z}^{a}=\mathrm{qA}_{0}^{a}$, where p and q are numerical constants, and a condition $\left(p \partial_{z}+q \partial_{c t}\right) X^{a}=0$, where X^{a} is arbitrary physical quantity.

§ 1 Introduction

Many people are now searching after exact classical solutions of the equation for nonabelian gauge field ${ }^{1,2(2) 33}$. In this note we present preliminary results for this attempt, namely limited results under severe constraints. The equations we shall investigate are

$$
\begin{align*}
& D \nu G_{\mu \nu}^{a}=J_{\mu}^{a} \tag{1}\\
& \varepsilon_{\mu \nu \lambda \rho} D \nu G_{\lambda,}^{a}=0, \tag{2}
\end{align*}
$$

where D_{ν} denotes covariant derivative, $G_{\mu \nu}^{a}$ field strength of field A_{μ}^{a}, and J_{μ}^{a} fermion current.

Throughout this note we shall fix the gauge with

$$
\begin{equation*}
p A_{z}^{a}=q A_{0}^{a} \quad\left(A_{4}^{a}=i A_{0}^{a}\right), \tag{3}
\end{equation*}
$$

where p and q are numerical constants. Also throughout this note we shall assume a condition

$$
\begin{equation*}
\left(p \frac{\partial}{\partial z}+q \frac{1}{c} \frac{\partial}{\partial t}\right) X^{a}=0 \tag{4}
\end{equation*}
$$

where X^{a} is any arbitrary quantity. Eq.(4) is consitstent with the gauge condition eq.(3). Eq.(4) shows any quantity is function of ($q z-p c t$). We intend to have a solution of eqs. (1) and (2) under two conditions that a) $J_{x}^{a}, J_{y,}^{a}, \widetilde{J}_{x}^{a}$ and $\widetilde{J_{y}^{a}}\left(\widetilde{J_{\mu}^{a}}\right.$ will be defined in eq.(8)) always vanishes, respectively, for $Q=(p / q)^{2}-1=0$ case, and J_{r}^{a} and \widetilde{J}_{r}^{a} always vanishes, respectively, for $Q \neq 0$ case, and b) field A_{μ}^{a} and field strength $G_{\mu \nu}^{a}$ vanishes when x and y (or r) becomes infinitely remote, respectively. Here x, y, and z are cartesian coordinates and r, θ, z are cylindrical coordinates $(x=r \cos \theta, y=r \sin \theta)$. We shall obtain a set of eqs.(14), (15) and (16) of which only a special situation will be
considered. To get a solution of eqs.(14), (15) and (16) under lighter constraint is a future problem.

§ 2 General Equations

Under two conditions eqs.(3) and (4) we obtain following eqs.(5) \sim (13).

$$
\begin{array}{ll}
p H_{x}^{a}=-q E_{y}^{a}, & E_{z}^{a}=0 \tag{5}\\
p H_{y}^{a}=q E_{x}^{a} &
\end{array}
$$

where $G_{23}^{a}=H_{x}^{a} \quad$ (cyclic) and $G_{i 4}^{a}=-i E_{i}^{a} 。$

$$
\begin{align*}
J_{x}^{a} & =D_{y} H_{z}^{a}+Q D_{z} H_{y}^{a} \\
J_{y}^{a} & =-D_{x} H_{z}^{a}-Q D_{z} H_{x}^{a} \\
J_{z}^{a} & =D_{x} H_{y}^{a}-D_{y} H_{x}^{a} \tag{6}\\
c \rho^{a} & =(p / q) J_{z}^{a}
\end{align*}
$$

where $Q=(p / q)^{2}-1$ and $J_{\mu}^{a}=\left(J_{x}^{a}, J_{y}^{a}, J_{z}^{a}, i c \rho^{a}\right)$.

$$
\begin{align*}
& \widetilde{\widetilde{J}}_{x}^{a}=-g f^{a b c}\left(A_{y}^{b} H_{z}^{c}+Q A_{z}^{b} H_{y}^{c}\right) \\
& \widetilde{\widetilde{J}}_{y}^{a}=g f^{a b c}\left(A_{x}^{b} H_{z}^{c}+Q A_{z}^{b} H_{x}^{c}\right) \\
& \widetilde{\widetilde{J}}_{z}^{a}=g f^{a b c}\left(A_{y}^{b} H_{x}^{c}-A_{x}^{b} H_{y}^{c}\right) \tag{7}\\
& {\widetilde{\widetilde{ल}^{a}}}^{a}=(p / q) \widetilde{\widetilde{J}}_{z}^{a},
\end{align*}
$$

where $\widetilde{\widetilde{J}}^{a}=-g f^{a b c} A_{\imath}^{b} G_{\rho \mu}^{c}$.

$$
\begin{align*}
& \widetilde{J}_{x}^{a}=\partial_{y} H_{z}^{a}+Q \partial_{z} H_{y}^{a} \\
& \widetilde{J}_{y}^{a}=-\partial_{x} H_{z}^{a}-Q \partial_{z} H_{x}^{a} \\
& \widetilde{J}_{z}^{a}=\partial_{x} H_{y}^{a}-\partial_{y} H_{x}^{a} \tag{8}\\
& c \widetilde{\rho}^{a}=(p / q) \widetilde{J}_{z}^{a},
\end{align*}
$$

where $\widetilde{J}_{\mu}^{a}=J_{\mu}^{a}+\widetilde{\widetilde{J}}_{\mu}$:

$$
\begin{align*}
J_{x}^{a \mathrm{~A}} & =0 \\
J_{y}^{a \mathrm{~A}} & =0 \\
J_{z}^{a \mathrm{~A}} & =(p / q) c \rho^{a A} \tag{9}\\
c \rho^{a A} & =-g f^{a b c}\left(A_{x}^{b} H_{x}^{c}+A_{y}^{b} H_{y}^{c}+A_{z}^{b} H_{z}^{c}\right),
\end{align*}
$$

where $J_{\mu}^{a A}=-(1 / 2) \epsilon_{\mu \nu \nu \rho} g f^{a b c} A_{\nu}^{b} G_{\lambda \rho}^{c}\left(\right.$ with $\left.\epsilon_{1234}=1\right)$.

$$
\begin{align*}
& K_{x}=Q H_{y}^{a}\left(D_{x} H_{y}^{a}-D_{y} H_{x}^{a}\right)-Q H_{z}^{a} D_{z} H_{x}^{a}-H_{z}^{a} D_{x} H_{z}^{a} \\
& K_{y}=\ddot{Q} H_{x}^{a}\left(D_{y} H_{x}^{a}-D_{x} H_{y}^{a}\right)-Q H_{z}^{a} D_{z} H_{y}^{a}-H_{z}^{a} D_{y} H_{z}^{a} \\
& K_{z}=Q H_{y}^{a} D_{z} H_{y}^{a}+Q H_{x}^{a} D_{z} H_{x}^{a}+H_{y}^{a} D_{y} H_{z}^{a}+H_{x}^{a} D_{x} H_{z}^{a} \tag{10}\\
& K_{0}=(p / q) K_{z},
\end{align*}
$$

where $K_{\mu}=G_{\mu \nu}^{a} J_{\nu}^{a}=\left(K_{x}, K_{\nu}, K_{z}, i K_{0}\right)$.

$$
\begin{align*}
& K_{x}^{\mathrm{A}}=-\widetilde{\widetilde{K}}_{x}=-Q(q / p) H_{x}^{a} J_{z}^{a \mathrm{~A}} \\
& K_{y}^{\mathrm{A}}=-\widetilde{\widetilde{K}}_{y}=-Q(q / p) H_{y}^{a} J_{z}^{a \mathrm{~A}} \\
& K_{z}^{\mathrm{A}}=-\widetilde{\widetilde{K}}_{z}=(q / p) H_{z}^{a} J_{z}^{a \mathrm{~A}} \tag{11}\\
& K_{0}^{\mathrm{A}}=-\widetilde{\widetilde{K}}_{0}=H_{z}^{a} J_{z}^{a \mathrm{~A}},
\end{align*}
$$

where $\widetilde{\widetilde{K}}_{\mu}=G_{\mu \nu \nu}^{a} \widetilde{\widetilde{J}}_{\nu}^{a}$ and $K_{\mu}^{\mathrm{A}}=-(1 / 2)_{\varepsilon \mu \nu \lambda \rho} G_{\lambda \rho}^{a} J_{\nu}^{a \mathrm{~A}}$.

$$
\begin{align*}
& \theta_{4 x}^{\mathrm{G}}=-i(p / q) H_{x}^{a} H_{z}^{a} \\
& \theta_{4 y}^{\mathrm{G}}=-i(p / q) H_{y}^{a} H_{z}^{a} \tag{12}\\
& \theta_{4 z}^{\mathrm{G}}=i(p / q)\left\{\left(H_{x}^{a}\right)^{2}+\left(H_{y}^{a}\right)^{2}\right\}
\end{align*}
$$

and

$$
\left.\left.-\theta_{i j}^{\mathrm{G}}=T_{i j}=\left(\begin{array}{ll}
(-Q / 2)\left\{\left(H_{x}^{a}\right)^{2}-\left(H_{y}^{a}\right)^{2}\right\} & -(1 / 2)\left(H_{z}^{a}\right)^{2},-Q H_{x}^{a} H_{y}^{a}, H_{x}^{a} H_{z}^{a} \tag{13}\\
-Q H_{y}^{a} H_{x}^{a},(Q / 2)\left\{\left(H_{x}^{a}\right)^{2}-\left(H_{y}^{a}\right)^{2}\right\} & -(1 / 2)\left(H_{z}^{a}\right)^{2}, H_{y}^{a} H_{z}^{a} \\
H_{z}^{a} H_{x}^{a}, H_{z}^{a} H_{y}^{a},(-1 / 2) & \left\{(p / q)^{2}+1\right\}
\end{array}\right\}\left(H_{x}^{a}\right)^{2}+\left(H_{y}^{a}\right)^{2}\right\}+(1 / 2)\left(H_{z}^{a}\right)^{2}\right\}, ~,
$$

where $\theta_{\mu \nu}^{\mathrm{G}}$ denotes symmetrized energy-momentum tensor of field A_{μ}^{a}.
We intend to have a solution when $J_{x}^{a}, J_{y}^{a}, \widetilde{J}_{x}^{a}$ and \widetilde{J}_{y}^{a} vanishes, respectively, for $Q=0$ case, and J_{r}^{a} and \widetilde{J}_{r}^{a} vanishes, respectively, for $Q \neq O$ case. Axial currents $J_{x}^{a \mathrm{~A}}$ and $J_{y}^{a \mathrm{~A}}$ already vanishes, respectively, as shown in eq.(9). Then we have following three sets of
equation which the field strength H_{x}^{a}, H_{y}^{a}, and H_{z}^{a} (or $H_{r}^{a}, H_{\theta}^{a}$, and H_{z}^{a}) must satisfy.

$$
\begin{align*}
& \partial_{y} H_{z}^{a}=0 \text { and } \partial_{x} H_{z}^{a}=0 \text { for } Q=0 \\
& \partial_{\theta} H_{z}^{a}+Q \partial_{z} H_{\theta}^{a}=0 \text { for } Q \neq 0 \tag{14}\\
& f^{a b c} A_{y}^{b} H_{z}^{c}=0 \text { and } f^{a b c} A_{x}^{b} H_{z}^{c}=0 \text { for } Q=0 \\
& f^{a b c}\left(A_{\theta}^{b} H_{z}^{c}+Q A_{z}^{b} H_{\theta}^{c}\right)=0 \text { for } Q \neq 0 \tag{15}\\
& \partial_{x} H_{x}^{a}+\partial_{y} H_{y}^{a}+\partial_{z} H_{z}^{a}=-g f^{a b c}\left(A_{x}^{b} H_{x}^{c}+A_{y}^{b} H_{y}^{c}+A_{z}^{b} H_{z}^{c}\right) \\
& \partial_{x} H_{y}^{a}-\partial_{y} H_{x}^{a}=J_{z}^{a}-g f^{a b c}\left(A_{x}^{b} H_{y}^{c}-A_{y}^{b} H_{x}^{c}\right) \tag{16}
\end{align*}
$$

In the first place we treat $Q=0$ case and in the next $Q \neq 0$ case.

$$
\S 3 \quad Q=0 \text { Case }
$$

From eqs.(14) field strength H_{z}^{a} is independent of coordinates x and y. We impose the boundary condition that field and field strength must vanish when coordinate x and y becomes infinitely remote, respectively. Therefore H_{z}^{a} must vanish everywhere. Eqs.(15) are satisfied when $Q=0$ and $H_{z}^{a}=0$. Eqs.(16) become

$$
\begin{align*}
& \partial_{x} H_{x}^{a}+\partial_{y} H_{y}^{a}=-g f^{a b c}\left(A_{x}^{b} H_{x}^{c}+A_{y}^{b} H_{y}^{c}\right) \\
& \partial_{x} H_{y}^{a}-\partial_{y} H_{x}^{a}=J_{z}^{a}-g f^{a b c}\left(A_{x}^{b} H_{y}^{c}-A_{y}^{b} H_{x}^{c}\right) . \tag{17}
\end{align*}
$$

When the internal symmetry group is $S U(2)$ and after we transform eqs.(17), we obtain a equation identical in form with Euler's equation of motion for rigid body, where $H_{x(y)}^{a}$, $A_{x(y)}^{a}$, and J_{z}^{a} is identified, respectively, with angular momentum, angular velocity, and moment of external force in internal isospace. From eqs.(17) we obtain

$$
\begin{align*}
& (1 / 2) \partial_{x}\left\{\left(H_{x}^{a}\right)^{2}-\left(H_{y}^{a}\right)^{2}\right\}+\partial_{y}\left(H_{x}^{a} H_{y}^{a}\right)=-H_{y}^{a} J_{z}^{a} \tag{18}\\
& (-1 / 2) \partial_{y}\left\{\left(H_{x}^{a}\right)^{2}-\left(H_{y}^{a}\right)^{2}\right\}+\partial_{x}\left(H_{x}^{a} H_{y}^{a}\right)=H_{x}^{a} J_{z}^{a}
\end{align*}
$$

where summations about indices a are understood. Eqs.(18) correspond with the space part of expression for energy-momentum conservation. If we restrict our gauge group to be $S U(2)$, we obtain from $H_{z}^{a}=O^{3}$)

$$
\begin{align*}
& A_{x}^{a}=(-2 / g) \varepsilon^{a b c} \phi^{b} \partial_{x} \phi^{c} \\
& A_{y}^{a}=(-2 / g) \varepsilon^{a b c} \phi^{b} \partial_{y} \phi^{c} . \tag{19}
\end{align*}
$$

It is difficult to obtain a general solution of eqs.(18) for given and assumed form of J_{z}^{a} function. So we consider a special case with axial symmetry (all derivatives with respect to θ vanish.). Eqs.(18) become

$$
\begin{equation*}
H_{\theta}^{a}(1 / r) \partial_{r}\left(r H_{\theta}^{a}\right)=H_{\theta}^{a} J_{z}^{a} \tag{20}
\end{equation*}
$$

But we have $(1 / r) \partial_{r}\left(r H_{\theta}^{a}\right) \neq J_{z}^{a}$. Also we obtain

$$
\begin{equation*}
A_{\theta}^{a}=O \text { and } H_{r}^{a}=0 \tag{21}
\end{equation*}
$$

All components of Lorentz force K_{μ} vanish when $Q=0$ and $H_{z}^{a}=0$. Fields A_{r}^{a} and A_{z}^{a} satisfy a relation

$$
\begin{equation*}
H_{\theta}^{a}=\partial_{z} A_{r}^{a}-\partial_{r} A_{z}^{a}+g f^{a b c} A_{z}^{b} A_{r}^{c} \tag{22}
\end{equation*}
$$

The $Q=O$ case corresponds to the situation where all quantities move toward z-axis with light velocity.

$$
\S 4 \quad Q \neq 0 \text { Case }
$$

In this section we consider the case $Q=(p / q)^{2}-1 \neq 0$. Eqs.(14) and (15) become more complicated ones when $Q \neq 0$. So we solely treat special situation where all derivatives with respect to coordinate z vanish. This is the situation where all derivatives with respect to time t vanish, too. Then we obtain from eqs.(14)

$$
\begin{equation*}
\partial_{\theta} H_{z}^{a}=0 \tag{23}
\end{equation*}
$$

We have only one eq.(23) in general as compared with two eqs.(14) for $Q=O$ case, because of conservation of total vector current. So $\partial_{r} H_{z}^{a} \neq 0$ in general. We can not have vanishing H_{z}^{a} in general in contrast with $Q=0$ case. But we are now treating a situation where all $\partial_{z}=0$. In this situation only we can assume $\partial_{r} H_{z}^{a}=0$ without conflict with conservation of total vector current. This is an ad hoc assumption. Then, as in the preceding section, H_{z}^{a} must vanish everywhere. So eq.(15) gives

$$
\begin{equation*}
f^{a b c} A_{z}^{b} H_{\theta}^{c}=0 \tag{24}
\end{equation*}
$$

In the present section we have also eqs.(17), (18) and (19). Now we confront eqs.(18) with additional constraint eqs.(24), as compared with $Q=0$ case. Here also we treat a special case with axial symmetry. Then we have eqs.(20), (21), (22) and further eq.(24). Component K_{θ}, K_{z}, and K_{0} of Lorentz force acting on fermion vanishes, respectively, and sole non-vanishing component K_{r} becomes

$$
\begin{equation*}
K_{r}=Q H_{\theta}^{a}(I / r) \partial_{r}\left(r H_{\theta}^{a}\right)=Q H_{\theta}^{a} J_{z}^{a} \tag{25}
\end{equation*}
$$

Lorentz force K_{r} is negative when $Q<0, H_{\theta}^{a}>0$, and $J_{z}^{a}>0$.
In summary we have the following nonvanishing quantities when $Q \neq 0, \partial_{z}=0, \partial_{t}=0$, $\partial_{\theta}=0$ and $\partial_{r} H_{z}^{a}=0:$

$$
\begin{aligned}
& A_{r}^{a}, A_{z}^{a}, A_{0}^{a}=(p / q) A_{z}^{a}, H_{\theta}^{a}, \text { and } \mathrm{E}_{r}^{a}=(p / q) H_{\theta}^{a} \\
& J_{z}^{a}=(q / p) c \rho^{a}=(1 / r) D_{r}\left(r H_{\theta}^{a}\right)
\end{aligned}
$$

$$
\begin{align*}
& \widetilde{J}_{z}^{a}=(q / p) c \widetilde{\rho}^{a}=-g f^{a b c} A_{r}^{b} H_{\theta}^{c} \\
& \widetilde{J}_{z}^{a}=(q / p) c \widetilde{\rho}^{a}=(1 / r) \partial_{r}\left(r H_{\theta}^{a}\right) \tag{26}\\
& K_{r}=Q H_{\theta}^{a} J_{z}^{a} \\
& \theta_{4 z}^{G}=i(p / q)\left(H_{\theta}^{a}\right)^{2} \\
& T_{r r}=-T_{\theta \theta}=(Q / 2)\left(H_{\theta}^{a}\right)^{2} \quad \text { and } \\
& \left.T^{z z}=\overline{(}-1 / 2\right)(Q+2)\left(H_{\theta}^{a}\right)^{2} .
\end{align*}
$$

In addition we have a relation $f^{a b c} A_{z}^{b} H_{\theta}^{c}=0$. Axial current and Lorentz forces acting on boson vanish.

$$
J_{\mu}^{a \mathrm{~A}}=0 \text { and } K_{\mu}^{\mathrm{A}}=-\widetilde{\widetilde{K}}_{\mu}=0
$$

§ 5 Remarks

We suppose our $Q \neq 0$ case represent a model of hadron which is infinitely long in z-direction. In order to have a closed string instead of an infinitely long one, we must have a solution of eqs.(14), (15) and (16) without the constraint $\partial_{\theta}=0$ and $\partial_{z}=0$ (or $\partial_{t}=0$). In our $Q \neq 0$ case Lorentz force $K_{r}\left(K_{r}<0\right)$ balances the pressure P due to many pairs of quark and antiquark which exist inside of and outside of the cylindrical surface of our string. We have following relations :

$$
\begin{equation*}
\mathbb{K}=\nabla P, \mathbb{H}^{a} \cdot \nabla P=0, \text { and } \mathbb{J}^{a} \cdot \nabla P=0 \tag{27}
\end{equation*}
$$

We are now trying to have a solution of eqs.(14), (15) and (16) under. less severe constraints than those done in this note, -a solution which may also have, we hope, the property shown in eqs.(27)-.

The author would like to express his thanks to the members of Physics Department of Kanazawa University for their useful discussions and to Mrs. M. Toiya for her typewriting.

References

1) C. N. Yang and R. L. Mills, Phys. Rev. 96 (1954) 191
2) J. Ishida and A. Hosoya, Lett. Nuovo Cim. 13 (1975) 237
3) M. Hirayama, J. Ishida and T. Kawabe, Preprint Toyama-20 March, 1976
