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Abstract Two points on non-abelian gauge fields are presented in this note. One
point is that there are conserved axial vector currents, besides the well-known conse-
rved vector currents, with the same transformation property of global group. The other
is that the self-forces of non-abelian gauge fields always vanish. These two results
hold gauge-invariantly. Further remarks are also presented.

§ 1 Introduction

The non-abelian gauge fields" ™ (or Yang-Mills fields) A¢ and tensor fields GZ are
not gauge invariant quantities. Besides, non-abelian gauge fields have the charges and
are self-interacting and therefore Maxwell equations for non-abelian gauge fields are
non-linear equations and the superposition principle must be abandoned. Up to the
present day no one has succeeded in obtaining of the exact classical solutions of
non-abelian gauge field Maxwell equations®~ ©. Of course the Lagrangian is gauge
invariant, but even the Hamiltonian is not gauge invariant. When we define the obser-
vables are gauge invariant quantities, the observables are the integrals 7 (defined in
eq. (64)) and 74 (defined in eq. (63)), Lorentz forces K, (defined in eq. (36)), Poynting
vectors (defined in eq. (58)), Maxwell stress tensors (defined in egs. (59) and (60)), free
field energy densities (defined in eq. (61)), and the quantities b J&J¢ (J¢ are defined in eq.
(8)) and b G4 GE,. The following quantities are not the observables: the fields A%,
the field strengths G¢,, Lorentz forces K., and K% (defined in egs. (37), ‘and (35),
respectively), and various currents J¢, ]7‘}, ]Nﬁ, and J24 (defined in egs. (8), (18), (9) and
(19), respectively).

In this note it will be shown that there are conserved axial vector currents, besides
the well-known conserved vector currents, with the same transformation property of
global group. It will also be shown that the self-forces of non-abelian gauge, fields
always vanish, which are the sum of electric Lorentz forces and magnetic Lorentz forces
(defined in § 4, eq. (35)). These two results hold gauge-invariantly.

Some notations are explained in § 2. Axial vector currents are defined and disc-
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ussed in § 3. Magnetic Lorentz forces are defined and the self-forces of non-abelian
gauge fields are discussed in § 4. The contents in § 3 and § 4 are gauge independent

ones. Lorentz condition is used solely in § 5. In § 5 the Hamiltonian, Poynting vectors,
Maxwell stress tensors, and energy-momentum conservation expressions are referred.

§ 2 Notations

We consider a fermion field ¢ with internal degrees of freedom (a, b, ¢ : internal
indices). The generator of internal symmetry group is F¢ and f%°¢ is the structure
constant of the group. Yang and Mills introduced gauge fields AZ (A, x, v:Lorentz
indices) which must accompany the fermion field ¢”. We consider the gauge transfor-
mation

(f = ugu™, ux) = expi {F%* (x)} (1)
Gauge fields are transformed as

(A2 = Af + AL + & e (2)

(GLY = Giw + f*°Gh 8w, (3)

where G2, = 9,A4¢% — 3,A% + gf***A2A¢ and g is the coupling constant.Covariant
derivatives are

D,= 9,— 1gAg (F* ] . (4)
Because

D, (F°Gf,) = 8,F*Ga, — igAl (F®, F*) G&,
= oF°Gh, + gALf**F°GE = 3,F°GE, + g AtF°Gy,

D,Gg = 3,G% + gf**°AbGS, are covariant derivatives of G4, tensor field. But D,A¢

= A + g***ALAS are not covariant derivatives of A¢ fields and are merely mathe-
matical symbols. Covariant derivatives of fermion field ¢ are

Dug = aup — 1AL (F @) = 3,4 — igAgA%. (5)
The gauge invariant Lagrangian density is
1 a a - I
L=— v GiGh — ¢yD, o — gmy. (6)

The equations of motion are



A Note on Non-Abelian Gauge Fields 29

7, (8, — 18A*AJ) ¢ + m¢y = 0 (7)
a.Gh + g ALGh = Ji, (8)
where J¢ = ig¢y,A°¢. The fermion currents J¢ are not conserved. 9.J¢ = —&**°ALli

#+ (0. When we define total vector currents
Jo = Jg — gfcALGs, = Jo + Jg, (9)

then they are conserved 8,J¢ = 0 and T¢ = / d*xJ? = / d*x9,G¢, are independent of
time and Lorentz scalars.

§ 3 Conserved Axial Vector Currents JeA

Maxwell equations for non-abelian gauge fields are
D.Gi = Jk (10)
ﬁﬁw,mDuG‘Alp =0, 11
where D,G$, = 3,Gf, + g**ALGY,. Eq. (11) are gauge-Bianchi identities. In egs. (10)

and (11) covariant derivatives D, for non-abelian gauge fields play the roles of deri-
vatives 9, for electromagnetic fields. But we have Gg + D.A¢ — D A% When we

use the notation G§, = H¢ (cyclic) and G¢, = — iE¢, Maxwell equations (10) and (11)
are

rot E* = — L -0 g* — gf** A4* x E° + gf*°ASH® (12)

rot H* = £ -0 B* + J° — g 4° x H® — g ALE° (13)

div E¢ = cp® — gf**“ A% g€ (14)

div H* = — gfeec At He, (15)
We have

Ee = — grad A3 — L -0 A° + gr*°AgA° | (16)

H® = rot 4% + %gf“””A” x A°, an

where A2 = (A%, A% = (A9, iA9). Egs. (12)~(15) contains explicitly gauge fields A
and therefore each term of egs. (12)~(15) is not gauge covariant. Of course the equation
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itself is gauge covariant.

We define both vector currents (electric currents) J¢ and axial vector currents
(magnetic currents) J¢4 as

Jé = — gl ALGE = (%, ict?)
— (__ gfabcAb X Hc — gfabcAgEc’ — igf‘”’cAb-EC)
= 5’usz - ],flz

(18)
Jth = = (1/2) e, 8 ALGE, =(iJ*, — co)

= (i x (gf**°A® x E° — gf*°ASH®), gf*** A**H")

= (1/2) e, ,GY,, (19)

where 1,5, = 1. Currents /¢ and /¢4 are not gauge covariant. They are transformed
as

JoY = J2 + foeoon — f2 (3,0u?) Gy

(20)

UgAY = JEA 4 T84 00° — eumo /2 (8,00°) GF, . @1)
Maxwell equations (10) and (11) can be written as
a _ __ i d a __ ydA
rot B¢ = T 57 H J (22)
rot H =L 0 _pe 4 jo y Ja (23)
¢ Jt

div E* = cp* + ¢3° (24)
div H® = cp*4 . (25)

The axial vector currents (magnetic currents) /24 are, together with the well-known

conserved currents J (= J¢ + J3), conserved currents.

3,Ji=0 (26)

Oulit = 0 (27)

The conservation, of axial currents Ji4 is due to Jacobi identity of the structure

constant f%%¢ of gauge group. The quantities J& a.Js ajﬁ’, 8#73 and 9,/24 are trans-
formed as follows :

gy = Jg + fecjse0r (28)

(@) = aJi + F2°QJD) 6 — o (8.00°) J¢ (29)
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@J2Y = 32 + F (3.J2) 6u® + F°° (8,00%) J° (30)
@J2Y = aJe + 1 (3.J2) ouf (31)
@J3AY = 9, /54 + f°°° (3,/24) bof. (32)

Because the quantities 5;ij and g,/¢4 are gauge covariant, egs. (26) and (27) are gauge
invariant.

@Jy =ali=0 (33)
@34y = g.J4 = 0. 34)
§ 4 Vanishing Self-Force K, + K#
We assume and define the magnetic Lorentz force as
Kit = = (1/2) £, GL T4
= (cp*AH® — J*4 X E*iJ°4+H"). (35)

The minus sign in front of ¢ symbol (&.5.= 1) in eq. (35) is necessary in conformity
with the definition of the axial vector currents /?4 in eq. (19). We denote usual Lorentz

forces K, and K, as

K, =3 GLJ; = (co®E* +J° x H° iJ*~ E°) (36)
K, = 3G T: | (37)

They are transformed as

(K.) = K | . (38)
Ky = K. — f2°G3 G% (3,00°) (39)
(KDY = Ki + % (1/2) epny G (1) 2130 G (3,00 (40)

Lorentz force K, is gauge invariant and Lorentz forces I?,l, and K4 are not gauge
covariant (and of course not gauge invariant). But we have

(K. + KAY = K. + K4 . (41)
After some calculations we have

za(cpaA H® _JzzA % Ea) - [Ea(C?aEa + 7(1 % Ha)] (42)
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S HY) = — (S MFE?) 43)

namely, K 4 = K, 44)
Therefore we have

(Ru + KAy = K. + K4 = 0. (45)

Eq. (44) states the self-force of non-abelian gauge fields always vanishes. Furthermore
eq. (41) shows this statement is gauge invariant.

§ 5 Further Remarks

Up to here we have not fixed the gauge. From now on we fix the gauge by Lorentz
condition 9,42 = 0. The quantity 9,A¢ is transformed as

(AL = B.AZ + [ (3,AD) 8u° + fAa008 + L 0 6w (46)
Parameter 6u? (x) for gauge transformation must satisfy

O Sw® + g**°A%3,00° = Dudude® = 0. 47)
We consider the Lagrangian density

L= -1 a6 - L@an @49 - gDy — Ime. (48)
Maxwell equations are

D,Ggy = Ji + a.x° (49)

DGg + DG4 + D.G§, = 0, (50)
where y* = 3,A% We have

Ox* + gf**°A2a,x° = D,o,x* = 0 (51)
We consider the subsidiary condition

x*=0 (52)

¥ =0, (53)
then we recover the expression (10). Canonical conjugate momenta I1% are

0E = (1/ic) (Gha — uax®). (54)

The Hamiltonian density is
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H = ‘é‘ c2(lme|® — g + érotl A% + dc (I*VA¢ — T§div4“®)
+dydip + gmg + clligf*CALAS
+ AL ALAS + o (et ALA) P~ AR (55)
Adding divergence term —ic div (1*A§), we have
4 H = A? (5:G%, + gf**cAbGS; — J9) + terms without A§ and 9;A¢.

We have fy; = — (8H/ 649 = — (9;G%4 + gf*cAbGS, — J%. Taking account of subsi-

diary condition (53), we obtain

H=Lcne+ Lirotas |* + Grag + gmy

— ASJS + BAZCALAS + L (g ALASY. (56)
Gauge fields A satisfy (when 9,4% = 0)
OAg + gf*cALs,As = — J2. (57)

From symmetrized energy-momentum tensors g,, we obtain the expressions for
momentum density 6% and Maxwell stress tensor density 4% (= — TS) for non-a-

]

belian gauge fields as

0% = i (B® x H9), (58)
Th=-0%=E+ H'— LB~ L He (59)
TG = — 98 = E¢E¢ + H$HY, etc. . (60)

The energy and momentum conservation is expressed by

div(B* x H) + L -2~ L(|E*|* + | B*|?) = —Je-E* (61)
div 76 — L -0 (B* x H*) = ¢f'E* + J* x H". (62)

They are identical (except internal index «) with the expressions for electromagnetic
field.

§ 6 Summary

We have obtained one kind of integrals

Tei= f dixfeh = f % (3:G% + 2,68 + 368h) = fdsx divHe,  (63)
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besides the well known integrals
7o = [aa = f PxaGey = i f *xdivE®. 64)

They are independent of time and Lorentz scalars. The conservation of the quantities
T4 is due to kinematical origins (Jacobi identities).

We have also shown that the self-force of non-abelian gauge fields always vanishes.

The above two results are gauge invariant. We have assumed the magnetic Lorentz
force defined in eq. (35), without which the self force neither be gauge invariant (and
therefore not the observable) nor vanishes. In § 5 we have used Lorentz condition. Eq.
(47) contains the fields A¢ and so it is rather not clear how to fix the gauge by Lorentz
condition. As referred in § 1 Introduction it is very difficult to obtain the exact clas-
sical solutions (even the classical ones!) of Maxwell equations of non-abelian gauge
fields. Such problems still remain to challenge us.

The author would like to express his thanks to the members of Physics Department
of Kanazawa University for their useful discussions.
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