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Introduction.

Y. Matsushima and A. Morimoto (5] solved the problem raised by J. P. Serre:
Owing to them, every complex analytic fibre bundle whose base and fibre are both
Stein manifolds is a Stein manifold if it’s structure group is connected. Replacing
“Stein” with “weakly 1-complete” in this problem, we shall investigate some
situations in which complex analytic fibre bundles form weakly 1-complete manifolds.

In §1 we shall see that every complex analytic principal fibre bundle over a Stein
manifold with connected structure group is weakly 1-complete. This fact was already
announced in H. Kazama [2]). Moreover he studied strong g-completeness of complex
abelian Lie groups in (3], and of complex Lie groups in (4]. He obtained stronger
result in case of abelian groups. We are to be assured that just the same result as in
case of abelian groups is valid even in general case.

In §2 we shall give a condition for holomorphic vector bundles to make weakly
l1-complete manifolds. It is clear that closed submanifold of a weakly 1l-complete
manifold is also weakly 1-complete. Therefore we may well start with the assumption
that the base space is weakly 1-complete, since it can be regarded as the 0O-section.
We shall see that a holomorphic vector bundle over a weakly 1-complete manifold is
weakly 1-complete, if it is weakly negative in the sense of S. Nakano (7).

This note is a rewrite of master’s thesis of the author. He would like to express his
cordial gratitude to Professors E. Sakai and C. Watanabe under whom he studied in the
last two years.

80. Preliminaries.
A complex manifold M is said to be weakly 1-complete if there exists a real-valued

function ¢ of class C* on M with the following two properties :
(1) For any real number ¢, {x ¢ M| olx) < ¢} is a relatively compact subset of M.
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' (2) The Levi Form L(g) of ¢ is positive semi-definite.

Replacing the condition (2) with the following (3), we call M a strongly q-complete
manifold :

(3) L(g) has at least n-g+1 positive eigenvalues, where # denotes the complex
dimension of M.

Namely, a complex manifold which admits a smooth plurisubharmonic (or strongly
g-pseudoconvex) function ¢ diverging to oo at the boundary is called a weakly
l-complete (or strongly g-complete) manifold with the exhausting function ¢.

0.1. Lemma 1. Let f be a holomorphic function on a connected complex Lie group.
If f is bounded, then f is a constant. Moreover a bounded plurisubharmonic function on a
connected complex abelian Lie group is reduced to a constant.

Proof. Sinc;e the exponential mapping is a holomorphic mapping of the complex
number field into the Lie group for every left-invariant vector field, it is clear by Liou-
ville’s theorem that f is constant on any l-parameter subgroup. Therefore f is con-
stant in some neighbourhood of the unit element. By the uniqueness of analytic continu-
ation, f is reduced to a constant.

We can prove similarly the second half, observing that the complex number field
admits no bounded subharmonic function except for constants and that abelian Lie
group is entirely covered with I-parameter subgroups.

0.2. The two complex Lie subgroups K, and G°.

Let G be a complex Lie group, and K be the maximal compact subgroup of G.
The Lie algebras of G, K are denoted by g, ¥ respectively. We consider the complex
Lie subgroup K, corresponding to the complex Lie subalgebra  ~n,/—1 . Since the
components of the adjoint representation of G are holomorphic on G and bounded on
K,, the above lemma concludes that K, is an abelian group contained in the center of
G, which is nothing else but the kernel of the adjoint representation.

K, is independent of the choice of K, for maximal compact subgroups are mutually
conjugate (Iwasawa [1]). It is easy to see that K, is a characteristic subgroup of G, i.e.
every holomorphic automorphism of G leaves K, invariant.

A. Morimoto (6] introduced a subset G° of G as follows:

G* = {x e G| flx) = fle) for all fe O(G)} ,

where ¢ denotes the unit element of G, and @ (G) the ring of all holomorphic functions
on G. He proved
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TuroreM 1. The following assertions hold -

(1) G° s a complex Lie subgroup closed in G and contained in the center of G. G° s
a characteristic subgroup of G.

(2)  The factor group G/ G® is a Stein manifold. If N is a normal complex Lie subgrowup
such that G/ N is a Stein manifold, then N>G°.

(3) G is connected and all holomorphic functions on G° are necessarily constant.

As for the relation between the two central characteristic subgroups K, and G° of
G, K,C G® is clear from the above lemma. When does it occur that K, = G A.
Morimoto answered as follows :

THEOREM 2. The following conditions are mutually equivalent
1) G is holomorphically convex. .

2) G° is compact.

3) K, = G°

4) K, is closed in G.

The Lie groups without non-constant holomorphic functions, such as G°, are called
(H. C)-groups. We see that an (H. C)-group is necessarily abelian, considering it’s
adjoint representation. Of course all compact groups are (H. C)-groups, while (H.
C)-groups are not always compact. In fact, A. Morimoto constructed an (H. C)-group of
arbitrary dimension 7z =2, which contains no complex torus of positive dimension. This
construction contains simultaneously such an example that K,+ G° since G°(=G) is not
compact.

§1. Complex analytic principal fibre bundles over a Stein manifold.

1.1. A function on an (H. C)-group.

Let G be an (H. C)-group of dimension ». Since every (H. C)-group is abelian, G is
isomorphic to C"*/ I" for some discrete subgroup I" of €. Let I" be generated by vectors
d,, +--, ds linearly independent over R. Then the generators span C” over C, or other-
wise G contains a complex line as a direct product factor. Therefore after suitable
change of coordinates we may put

I = <el) ety €y Uy, oo, uq>, (q: Zn—'s),

where e, denotes the i—th unit vector of C” for 7=1, 2, .., n. Let K be the maximal
compact subgroup of G and ¥ the Lie algebra of K. Then

T =<ey, v, en, Uy, o, Ugp

= <el) ) em \/“:1_Im Uy, =, ’\/_:I_Im uq>R-
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From this representation of f , we can see easily,
tnv—=11t =ddm u,, -, Im uy)c.
Let us choose suitable vectors vy, -+, v,_, in R” such that
Ch= ey, €ny /=1 Imuy, oo, V=1 Im g, /=1 vy, =+, /=1 0, Dp.
Then there exists a non-degenerate real (%, »)-matrix (a?) such that
e; = i alIm u; + Eqa{*q v
J=1 J=1
Every point (2!, -+, 2") ¢ C™ has the following representation :
(24, =, 27) = ilxiei + /=1 il ilyia{f Im %,
i= j=1 i=
- n-q9 n o
+ /-1 P 2 y'altv,
where z! = x* + /—1yifori =1,2, -, n.
Let us consider the following mapping :
Cn3 (21) oo Zn),__)( él yia}-»—q’ el ilyiariz) € Rn~q.

This mapping can be regarded as defined on G because it is I'-invariant. Let us denote
this mapping by ¢ : G—>R" % Itis clear that ¢ satisfies the conditions of the follow-
ing lemma :

LemMa 2. Let G be an (H. C)-group of dimension n, and ¥ be the Lie algebra of the
maximal compact subgroup of G. If the complex dimension of ¥ v/ —1%t is q, there exists
a mapping ¢ + G——>R™ 9, satisfying the following conditions:

(1) @ s a homomorphism of G into the additive group R™ .

(2) For any real number ¢, {x ¢ G| || ox) | <c} is a relatively compact subset of G,
where | o | is the Euclidean norm of R" .

(3) If we choose a suitable system (z7) of local coordinates of G, (8 ¢/ 3z*, +++, ¢/ 32™)
is a matrix of maximal rank, whose entries ave all constants independent of coordinate

neighbourhoods.  Especially, all the dervivatives of second orvder of ¢ with respect to these
coordinates vanish.

1.2. Principal fibre bundles over a Stein manifold.
The aim of this section is to prove the following theorem.

TuroreM 3. Let P(B, G) be a complex analytic principal fibve bundle over a Stein
manifold B with connected structure group G. Let G° denote the (H. C)-subgroup of G
introduced by A. Movimoto, and K°, ¥° the maximal compact subgroup of G°,__it_’s Lie
algebra, respectively. Let K be the complex Lie subgroup corresponding to t° nv =1 £,
and q denote the complex dimension of Kj.

Then, the total space P is weakly 1-complete and strongly (g+ 1)-complete.
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Proof. The total space P can be regarded as a principal fibre bundle with structure
group G° over P, which stands for a principal fibre bundle over B with structure group
G/G°. Since G/G° is a Stein manifold by Theorem 1, the conclusion of Matsushima-
~Morimoto (5] affirms that P, is a Stein manifold.

Accordingly, we have only to prove for a principal fibre bundle whose structure
group is an (H. C)-group and whose base is a Stein manifold. We replace P(B, G) with
P(M, G°) anew, where the base M(=PF,) is a Stein manifold.

Let us take a locally finite open covering {U,} ;.4 of M such that P is trivial on
each U,. Suppose that P is defined by 1-cocycle

e/w: U/\nU/_(—>G0, (/{,/LZGA)
We denote by #, ¢ the complex dimension of G°, K9 respectively. Let
¢: GO > Rn-q

be a function satisfying the conditions of Lemma 2. Then the composition {poe,,} is
also l-cocycle, since ¢ is a homomorphism. Therefore {¢goe,,} can be reduced to a

coboundary of some O-cochain {71} , if we use a partition of unity subordinate
to {U,} . Namely, there exist functions
7, Uy— R, (A e 4),
such that
Qe =77, A, e e 4).
Let us consider the mapping on each P| U, defined as follows,
Uy x G (p, §)— 7, (0) + ol&) € R,
Since ¢ is a homomorphism, this mapping is well defined globally on P, and will be
denoted by @ : P—— R™ 9.
As Stein manifolds are characterized to be strongly 1-complete, there exists a

strongly pseudoconvex function  on M which diverges to oo at the boundary of M.

Let » : P—— M be the canonical projection. Using a function f(x) = v/1+ | x|, we
put

(/;:)(oq/'oﬂ,'-f—fo@,

where y is a function y : R— R, (x, ¥/, ¥” > 0) suitably chosen later.
Then the Levi form L(¢) of ¢ is as follows, where (wj) is local coordinates of M
on U,, and (2*) of G° satisfying Lemma 2.

Lp=Lgoegon+ 5 5 YL _FV gy gme

b =1 ox' qwy owh
B (2 s+ 3 )
i,j=1ax"axf< 8wxd + 2 oz dz
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Considering a compact refinement if necessary, we may assume that (y/); and their
partial derivative in the above formula are all bounded on each coordinate neighbour-
hood. Besides, the partial derivatives of first order of f are all bounded. Therefore, if
we choose suitably a function y in the well known way, the sum of the first and second
terms is positive definite on every U,. The third term is non-negative since the Hessian
of f is positive definite everywhere. Consequently, L(¢) is positive semi-definite. Now
let us estimate the rank of L(¢). Since (8¢/8z', -, 9¢/32") is a matrix of maximal
rank, we can verify that L(¢) degenerates by ¢ from the maximal rank.

It is clear that {¢ < ¢} is a relatively compact subset of P for any real ¢, if we
observe boundedness of 7.

Thus we have proved that P(B, G) is weakly l-complete and strongly
(g +1)-complete with the exhausting function ¢.

A complex Lie group can be regarded as a principal fibre bundle with structure
group G° over G/G°, which is a Stein manifold by Theorem 1. Therefore we obtain

CoroLLaRY. Every complex Lie group G is strongly (¢+ 1)-complete with an
exhausting plurisubharmonic function, where ¢ denotes the complex dimension of K§.

ReMARK. This corollary guarantees the existence of a plurisubharmonic function ¢
on a complex Lie group G such that rank L(¢) = codim K. On the other hand, rank
L(¢) < codim K,, since ¢ is constant on K, because of Lemma 1. Consequently, it
follows that K, = K§. This fact is proved more directly, for we can find out a
maximal compact subgroup K° of G° such that (G°D>) K°D K,.

H. Kazama (2], (4) proved that P(B, G) (or G) is a strongly (dim G°-+1)-complete
manifold with plurisubharmonic exhausting function. Moreover, according to his paper
(3}, if G is commutative, then K, = KJ and G admits a plurisubharmonic function ¢
such that rank L(¢) = codim K,.

The result which holds good in case of abelian groups is established even in general
case by our theorem.

It would be clear that our result is the precisest one concerning to strong
g-completeness with respect to plurisubharmonic functions.

§2. Holomorphic vector bundles.

Let x : E—— M be a holomorphic vector bundle over a complex manifold M of
dimension m, with fibre C". We suppose M weakly 1-complete, by reason mentioned in
the introduction. We take an open covering {U;} of M such that E is trivial on each
U,. Let E be defined by 1-cocycle

€5 . Uir\ Uj—) GL("; C)r
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in such a way that (p;, &) e U; x C" and (p;, &) ¢ U; x C™ are identified if and only if
D: =b; & =e (D)) &.

We introduce an Hermitian metric %2 on the fibres of £. This is represented on
each U; as a positive definite Hermitian matrix :

hi: Ui —_—> GL(”, C),

whose (A, x)-component will be denoted by % ,;.

The g-connection § with respect to the metric % is defined locally by §; = 2378k .0n
each U;. This is an (»n, »)-matrix whose entries are differential forms of type (1, 0).
The (A, 1)-component is as follows ;

oin= 3, 5 0P Lo gz,
where (z9) is the local coordinates on U.,.

The curvature form is given by 6, = /—1 96, whose (A, w@)-component is as

follows :

0tu= /-1 /;g—leiaﬂaﬁdzg/\dz_iﬁ,

o A 70 ahi,u? 6‘h,pi _ azh'z‘ui
6ues = 33 hY (h" 2% oz8 ~ 0zfozf

The following definition is due to S. Nakano (7).

DEFINITION. A holomorphic vector bundle is said to be positive (or weakly negative)
if there exists a fibre metric % such that the (mn, mn)-matrix

Hi = (Hiﬁuaﬁ), Hz‘?,ua,ﬁ = él hz‘/IT/ Qéuaﬁ,

is positive definite (or negative semi-definite) everywhere.
Let M be weakly l-complete with the exhausting function ¢. We consider the
function ¢ on E defined by

¢ = @omr + h.

Of course {x ¢ E| ¢(x) < ¢} is a relatively compact subset of E for any ¢ ¢ R. Let us ° ‘

seek a condition under which the Levi form of ¢ is positive semi-definite. Denoting by
(29), (£4) the local coordinates of base, fibre respectively, we can compute (where the
subscript 7 is omitted for simplicity) ;

Fo Fe Fha

02028 020z 8 + ,\Z,, 0z 0z 8 §16%

o _ s ohiz o, P _ s, bz 2
0EF | % 0@t oZhag | % ozf o
I pz
OEAOEH ’

_ =, Ohuz Qhov & huv
HTz,ua,@ - % h® 02% 9zB 929928 °
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By these preperations we can write

L(y) = azéfg SraasF 92° dzh — E E Hypet & dzodz P

L3 he (z ohiz ey gy +2h1dg*>

(74

<ﬂ,u %hpﬂ el + % hpud5“>

The last term is non-negative since %2~! is a positive definite Hermitian matrix,
needless to say of the first term. Therefore L(¢) is positive semi-definite, if only H; is
negative semi-definite matrix. Thus, we obtain

THEOREM 4. A holomorphic vector bundle over a weakly 1-complete manifold is weakly
1 —complete, if it is weakly negative in the sense of S. Nakano.

Suppose that r: E—— M be a holomorphic vector bundle over a Stein manifold M.
Using a strongly pseudoconvex function on M diverging to oo at the boundary of M, we
can introduce on the fibres of £ a Hermitian metric, such that E is negative with
respect to this metric. Therefore we can construct on E, in the same way as the above,
strongly pseudoconvex function diverging to oo at the boundary.

We can prove similarly that every holomorphic vector bundle over a strongly
g-complete manifold is strongly g-complete.
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