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Abstract Let (X ,d) be a complete separable metric space without isolated points.
Let { f n}n∈NNN∗ and { f n}n∈ZZZ be the dynamical systems defined by a continuous map
f : X → X and a homeomorphism f : X → X respectively, where NNN∗ = NNN∪{0}. We
show that if the dynamical system { f n}n∈ZZZ is topologically transitive, both { f n}n∈NNN∗

and { f−n}n∈NNN∗ are topologically transitive. Moreover, we show that if the dynami-
cal system { f n}n∈ZZZ is topologically transitive and has sensitive dependence on initial
conditions, at least one of the dynamical system { f n}n∈NNN∗ and { f−n}n∈NNN∗ have sen-
sitive dependence on initial conditions.
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1 Introduction

Let (X ,d) be a metric space and f a continuous map from X to X . Let us consider the
dynamical system { f n}n∈NNN∗ defined by f . Here f n denotes the n times composite map of
f , and the parameter n runs over the set of all nonnegative integers NNN∗ = NNN ∪{0}. The
dynamical system { f n}n∈NNN∗ is said to be topologically transitive if for any nonempty
open setsU and V there is an integer k ≥ 1 such that f k(U)∩V is nonempty. Also, the
dynamical system { f n}n∈NNN∗ is said to have sensitive dependence on initial conditions if
there exists a constant δ > 0 such that, for any x ∈ X and for any neighborhoodU of x
with �U ≥ 2, there exist a point y ∈U and an integer n≥ 0 satisfying d( f n(x), f n(y)) >

δ , where �U is the number of elements of the setU .
These two properties play an important role in the theory of chaos. In fact, Devaney

[4] defined the dynamical system { f n}n∈NNN∗ to be chaotic if it is topologically transitive
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and has sensitive dependence on initial conditions, and the periodic points of f are
dense in X . The pioneering work by Li and Yorke [5] asserts that the dynamical system
defined by a continuous map f on an interval is chaotic in this sense if f has three
periodic points. Furthermore, J. Banks et al. [2] showed that if a continuous map f is
topologically transitive and has dense periodic points, then f has sensitive dependence
on initial conditions.
If the given map f is a homeomorphism, these two properties are defined also for

dynamical system { f n}n∈ZZZ , where the parameter n runs over the set of all integers ZZZ.
However, the relationship between these properties for { f n}n∈NNN∗ and { f n}n∈ZZZ has not
been well understood. The aim of this paper is to clarify this problem. We show that
if the dynamical system { f n}n∈ZZZ defined by a homeomorphism f is topologically tran-
sitive, then both { f n}n∈NNN∗ and { f−n}n∈NNN∗ are topologically transitive (Theorem 4.1).
Moreover, we show that if the dynamical system { f n}n∈ZZZ is topologically transitive and
has sensitive dependence on initial conditions, then at least one of the dynamical sys-
tems { f n}n∈NNN∗ and { f−n}n∈NNN∗ has sensitive dependence on initial conditions (Theorem
4.2). The idea of their proofs is to give new characterizations of topological transitivity
and sensitive dependence on initial conditions, which constitutes the main part of the
paper.
The paper is organized as follows. In section 2, we introduce new characterizations

for topological transitivity of { f n}n∈NNN∗ and { f n}n∈ZZZ . They are based on the use of the
class of upper semicontinuous and f -subinvariant (resp. f -invariant) functions, which
we denote by Γs and Γ respectively (Definitions 2.2 and 2.4). We prove that the dynam-
ical system { f n}n∈NNN∗ is topologically transitive if and only if any γ ∈ Γs has a minimum
and the set Mγ := {x ∈ X | γ(x) = minγ} is dense in X , where minγ = miny∈X γ(y)
(Theorem 2.2). We can also prove a characterization of the topological transitivity of
the dynamical system { f n}n∈ZZZ by using the class of functions Γ (Theorem 2.4).
In section 3, we discuss the sensitive dependence on initial conditions for { f n}n∈NNN∗

and { f−n}n∈NNN∗ . We construct some functions r+ ∈ Γs and r ∈ Γ, and use them to prove
that δ > 0 in the definition of sensitive dependence on initial conditions can be taken to
be dependent on x ∈ X if both { f n}n∈NNN∗ and { f n}n∈ZZZ have sensitive dependence on ini-
tial conditions (Theorem 3.1, Theorem 3.2). In section 4, we prove the main theorems
(Theorem 4.1 and Theorem 4.2). We hope to construct an example of a homeomor-
phism f on a complete separable metric space (X ,d) without isolated points such that
dynamical systems { f n}n∈NNN∗ and { f−n}n∈ZZZ are topologically transitive, but that either
{ f n}n∈NNN∗ or { f−n}n∈NNN∗ has sensitive dependence on initial conditions. It is a future
problem to construct such examples.
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2 Topological transitivity in dynamical systems

(1) Topological transitivity in discrete dynamical systems with the param-
eter NNN∗ = NNN∪{0}

Let (X ,d) be a metric space and f a continuous map from X to X . In this section
we consider the dynamical system { f n}n∈NNN∗ defined by a continuous map f in (X ,d),
where the parameter runs over the set of all nonnegative integers N∗ = NNN ∪{0}. For
x∈ X , the set {x, f (x), f 2(x), · · ·} is called a positive orbit of f and denoted byO+( f ;x),
furthermore the set { f (x), f 2(x), · · ·} is denoted by O′

+( f ;x). Also, we denote by D+

the set of points x ∈ X for which O+( f ;x) is dense in X .

Definition 2.1. Let (X ,d) be a metric space and f a continuous map from X to X . The
dynamical system { f n}n∈NNN∗ is said to be topologically transitive if for any nonempty
open setsU and V there is an integer k ≥ 1 such that f k(U)∩V is nonempty.

Theorem 2.1 ([1]). Let (X ,d) be a complete separable metric space and f a continuous
map from X to X. The following three conditions are mutually equivalent.

(1) The dynamical system { f n}n∈NNN∗ is topologically transitive.
(2) There is a point x ∈ X such that the orbit O′

+( f ;x) is dense in X.
(3) The set {x ∈ X | O′

+( f ;x) = X} is dense in X.
In particular if X has no isolated points, then the above three conditions are also mutu-
ally equivalent to the following (4) or (5).

(4) There is a point x ∈ X such that the positive orbit O+( f ;x) is dense in X.
(5) The set {x ∈ X | O+( f ;x) = X} is dense in X.

If we assume only that X is a topological space, Theorem 2.1([1]) is proved by using
Baireʼs category theorem ([6]), axiom of separation, second axiom of countability. Let
X be a topological space and Xn (n ∈ NNN) an arbitrary sequence of closed sets of X . The
space X is called Baire space or X satisfies Baireʼs category theorem if at least one of the
Xn has an inner point provided that

⋃∞
n=1Xn has an inner point. If (X ,d) is a complete

metric space, X is a Baire space and Baireʼs category theorem holds in X . Moreover
if X is a Baire space and Y is an open subset of X , then Y is also a Baire space as a
subspace ([3]). Theorem 2.1 is well known and characterizes the topological transitivity
by the existence of an x ∈ X such that the orbit O+( f ;x) is dense in X . Theorem 2.2
below gives a new characterization of topological transitivity in dynamical systems.

Definition 2.2. Let (X ,d) be a metric space, γ a function from X to [0,∞), and f a
continuous map from X to X . γ is said to be f -subinvariant (resp. f -superinvariant) if
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γ(x) ≤ γ( f (x)) (resp. γ(x) ≥ γ( f (x))) holds for any x ∈ X . The class of functions γ is
defined as follows:

Γs =
def
{γ : X → [0,∞) | γ is f -subinvariant, upper semicontinuous}

By using this class of functions, we give a necessary and sufficient condition for the
dynamical system { f n}n∈NNN∗ to be topologically transitive.

Theorem 2.2. Let (X ,d) be a complete separable metric space without isolated points
and f a continuous map from X to X. Then the following two conditions are mutually
equivalent.

(1) The dynamical system { f n}n∈NNN∗ is topologically transitive.
(2) For any γ ∈ Γs, it has a minimum and the set Mγ := {x ∈ X | γ(x) = minγ} is

dense in X, where minγ =miny∈X γ(y).

Moreover when the condition (1) or (2) holds, we find D+ =
⋂

γ∈Γs Mγ .

To show Theorem 2.2, we prepare three Lemmas: Lemma 2.1,Lemma 2.2,Lemma
2.3.

Lemma 2.1. Let (X ,d) be a complete metric space without isolated points. Assume
that the dynamical system { f n}n∈NNN∗ is topologically transitive. Then for any γ ∈ Γs, it
has a minimum and the set Mγ := {x ∈ X | γ(x) = minγ} is dense in X. Furthermore
the inclusion relation D+ ⊂Mγ holds for any γ ∈ Γs.

Proof. Set m= infx∈X γ(x). Obviously, m< ∞ and m≥ 0. Set

Xn =
{
x ∈ X

∣∣∣∣ γ(x) ≥ m+
1
n

}
(n≥ 1).

Xn is a closed set. We assume that γ does not have a minimum. It is clear X =
⋃∞
n=1Xn.

From Baireʼs category theorem, there exists a nonempty open set O such that O ⊂ Xn0
for some n0 ∈ NNN. Since there is an x0 ∈ X such that the orbit O+( f ;x0) is dense in X
from Theorem 2.1, there is l ≥ 0 satisfying f l(x0) ∈ O. Also, we have

m+
1
n0

≤ γ( f l(x0)) ≤ γ( f k(x0)) for k ≥ l.

Because X has no isolated points, { f l(x0), f l+1(x0), · · ·} is dense subset of X . From this
and the upper semicontinuity of γ ,

γ(x) ≥ m+
1
n0

(x ∈ X).
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So we have m ≥ m+ 1
n0
. This is a contradiction and therefore γ has a minimum. To

show that Mγ is dense in X , it is sufficient to prove the inclusion relation D+ ⊂ Mγ .
We assume that there exists x1 ∈ D+ such that x1 /∈ Mγ . It is clear that m < γ(x1) ≤
γ( f (x1)) ≤ γ( f 2(x1)) ≤ · · ·. The denseness of O+( f ;x1) and the upper semicontinuity
of γ yield γ(x) ≥ γ(x1) > m for any x ∈ X . This is a contradiction to the fact that m is
minimum of γ . Therefore we have that D+ ⊂Mγ . �

Lemma 2.2. Let (X ,d) be a complete separable metric space, f a continuous map from
X to X, and {Un} a countable basis of X which is nonempty for n≥ 1. We define a set
F(n)
m and a map κ : X → [0,∞) as follows:

F(n)
m := f−m(Uc

n ) (m≥ 0 , n≥ 1),
κ(x) :=

∞

∑
n=1

1
3n

·
∞

∏
m=0

111
F(n)
m

(x) (x ∈ X).

Then κ ∈ Γs and Mκ = D+.

Proof. Since F(n)
m (m ≥ 0 , n ≥ 1) is a closed set of X , its indicator function 111

F(n)
m

(x) :
X → [0,1] is upper semicontinuous. Also

∞

∏
m=0

111
F(n)
m

(x) = lim
k→∞

k

∏
m=0

111
F(n)
m

(x)

is upper semicontinuous function. Set a function gn(x) as follows:

gn(x) :=
∞

∏
m=0

111
F(n)
m

(x).

We will show κ(x) is upper semicontinuous. For any x0 ∈ X ,ε > 0, there is an N ∈ NNN
such that ∑∞

n=N+1
1
3n < ε . Hence we have

κ(x) <
N

∑
n=1

1
3n

·gn(x)+ ε for any x ∈ X .

Because ∑N
n=1

1
3n · gn(x) is upper semicontinuous at x0, there exists an open neighbor-

hoodU of x0 satisfying the following inequality.

N

∑
n=1

1
3n

·gn(x) <
N

∑
n=1

1
3n

·gn(x0)+ ε for x ∈U.

From this,

κ(x) <
N

∑
n=1

1
3n

·gn(x)+ ε

≤ κ(x0)+2ε (x ∈U).
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So we see that κ is upper semicontinuous. Obviously 111
F(n)
m

( f (x)) = 111
F(n)
m+1

(x), thus

κ( f (x)) =
∞

∑
n=1

1
3n

·
∞

∏
m=0

111
F(n)
m

( f (x))

≥
∞

∑
n=1

1
3n

·
∞

∏
m=0

111
F(n)
m

(x) = κ(x).

Therefore we have κ ∈ Γs. Moreover, the following equivalent relations hold.

x ∈Mκ ⇐⇒ κ(x) = 0

⇐⇒
∞

∑
n=1

1
3n

·
∞

∏
m=0

111
F(n)
m

(x) = 0

⇐⇒
∞

∏
m=0

111
F(n)
m

(x) = 0 for n≥ 1

⇐⇒ ∀n≥ 1 , ∃m= m(n) ≥ 0 , s.t. f m(x) ∈Un
⇐⇒ O+( f ;x) = X

⇐⇒ x ∈ D+

Consequently,Mκ = D+. �

Lemma 2.3. Let (X ,d) be a complete separable metric space without isolated points
and f a continuous map from X to X. Assume that for any γ ∈ Γs, it has a minimum
and the set Mγ := {x ∈ X | γ(x) = minγ} is dense in X. Then the dynamical system
{ f n}n∈NNN∗ is topologically transitive.

Proof. Let κ : X → [0,∞) be a function defined on Lemma 2.2. Since we know κ ∈ Γs
from Lemma 2.2, κ has a minimum and the setMκ := {x∈X | κ(x) =minκ} is dense in
X . Put minκ = a. Clearly a≥ 0. We assume a> 0. There is a unique α1,α2, · · · ∈ {0,1}
such that a = ∑∞

n=1
αn
3n . Put l = min{n ∈ NNN | αn = 1}. Mκ is contained by Uc

l , which
impliesUl ∩Mκ = /0. This contradicts to the denseness of Mκ in X . Therefore we have
a= 0. From Lemma 2.2,Mκ =D+. SinceMκ is dense in X , D+ is dense in X . It follows
from Theorem 2.1 that the dynamical system { f n}n∈NNN∗ is topologically transitive. �

Proof of Theorem 2.2. By Lemma 2.1, (1) implies (2) and the inclusion relation D+ ⊂⋂
γ∈Γs Mγ holds. Lemma 2.3 shows that (2) implies (1). Furthermore, since κ ∈ Γs and

Mκ = D+, we have the inclusion
⋂

γ∈Γs Mγ ⊂ D+. �
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(2) Topological transitivity in discrete dynamical system with the parame-
ter ZZZ

Let (X ,d) be a metric space and f a homeomorphism from X to X . We consider the
case when the parameter runs over the set of all integers ZZZ. The set {· · · f−2(x), f−1(x),x}
is called a negative orbit of f , and is denoted by O−( f ;x).
Also {· · · , f−2(x), f−1(x),x, f (x), f 2(x) · · ·} is called an orbit of f and is denoted by

O( f ;x). Obviously O+( f−1;x) = O−( f ;x). We denote by D and D− the sets of points
x ∈ X for which O( f ;x) and O−( f ;x) are dense in X respectively.

Definition 2.3. Let (X ,d) be a metric space and f a homeomorphism from X to X . The
dynamical system { f n}n∈ZZZ is topologically transitive if for any nonempty open sets U
and V there exists an integer n ∈ ZZZ such that f n(U)∩V is nonempty.

The following Theorem 2.3 is well known.

Theorem 2.3([1]). Let (X ,d) be a complete separable metric space and f a homeomor-
phism from X to X. Then the following three conditions are mutually equivalent.

(1) The dynamical system { f n}n∈ZZZ is topologically transitive.
(2) There is a point x ∈ X such that the orbit O( f ;x) is dense in X.
(3) The set {x ∈ X | O( f ;x) = X} is dense in X.

Definition 2.4. Let γ be a function from X to [0,∞). γ is said to be f -invariant if
γ(x) = γ( f (x)) holds for any x ∈ X . We define the class Γ of functions γ as follows:

Γ =
def
{γ : X → [0,∞) | γ is f -invariant, upper semicontinuous}

Theorem 2.4. Let (X ,d) be a complete separable metric space and f a homeomorphism
from X to X. Then the following two conditions are mutually equivalent.

(1) The dynamical system { f n}n∈ZZZ is topologically transitive.
(2) For any γ ∈ Γ, it has a minimum and the set Mγ := {x∈ X | γ(x) =minγ} is dense

in X.

Moreover if the condition (1) or (2) holds, then D=
⋂

γ∈ΓMγ holds.

To show Theorem 2.4, we prepare three lemmas: Lemma 2.4, Lemma 2.5, Lemma
2.6.
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Lemma 2.4. Let (X ,d) be a complete separable metric space and f a homeomorphism
from X to X. Suppose that the dynamical system { f n}n∈ZZZ is topologically transitive.
Then for any γ ∈ Γ, it has a minimum and the set Mγ := {x ∈ X | γ(x) =minγ} is dense
in X. Also, the inclusion D⊂Mγ holds.

Lemma 2.5. Let (X ,d) be a complete separable metric space, f a homeomorphism
from X to X and {Un} a countable basis of X which is nonempty for any n ≥ 1. We

define a set F(n)
m and a map κ : X → [0,∞) as follows:

F(n)
m := f−m(Uc

n ) (m ∈ ZZZ,n ∈ NNN),

κ(x) :=
∞

∑
n=1

1
3n

·
∞

∏
m=−∞

111
F(n)
m

(x) (x ∈ X).

Then κ ∈ Γ and Mκ = D.

Lemma 2.6. Let (X ,d) be a complete separable metric space and f a homeomorphism
from X to X. Suppose that for any γ ∈ Γ, it has a minimum and the set Mγ := {x ∈
X | γ(x) = minγ} is dense in X. Then the dynamical system { f n}n∈ZZZ is topologically
transitive.

We can show Lemma 2.4, Lemma 2.5, Lemma 2.6 in the same way as Lemma 2.1,
Lemma 2.2, Lemma 2.3.

Proof of Theorem 2.4. By Lemma 2.4, (1) implies (2) and the inclusionD+ ⊂Mγ holds.
By Lemma 2.6, (2) implies (1). Furthermore, since κ ∈ Γ and Mκ = D, the inclusion
D⊂ ⋂

γ∈ΓMγ holds. �

3 Sensitive dependence on initial conditions in dynamical sys-
tems

(1) Sensitive dependence on initial conditions with the parameter NNN∗ =
NNN∪{0}

Let (X ,d) be a metric space. Sensitive dependence on initial conditions is the
property characterized by the metric d. In Theorem 3.1 we show that the constant δ > 0
in the definition can be taken to be dependent on x∈ X . First we introduce the definition
of sensitive dependence on initial conditions.
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Definition 3.1. Let (X ,d) be a metric space, f a continuous map from X to X , and
{ f n}n∈NNN∗ the dynamical system defined by the continuous map f . The dynamical sys-
tem { f n}n∈NNN∗ is said to have sensitive dependence on initial conditions if there exists a
constant δ > 0 such that for any x ∈ X and any open neighborhoodU of x with �U ≥ 2,
there exist a point y∈U and a nonnegative integer n≥ 0 satisfying d( f n(x), f n(y)) > δ .

In what follows, we use the notation a∧b and a∨b to denote min{a,b} andmax{a,b}
respectively.

Definition 3.2. For x ∈ X and an ε > 0, the numbers r+(ε,x) and r+(x) are defined as
follows:

r+(ε,x) =
def

sup
n≥0

sup
y,y′∈Bε (x)

d( f n(y),dn(y′))∧1

r+(x) =
def

lim
ε↓0

r+(ε,x)

= lim
ε↓0

(
sup
n≥0

sup
y,y′∈Bε (x)

d( f n(y),dn(y′))∧1
)

,

where Bε(x) is the open ball at x ∈ X with radius ε > 0.

Remark. If x ∈ X is an isolated point, there is an ε0 > 0 such that Bε0(x) = {x}. Hence
r+(ε,x) = 0 for any 0< ε ≤ ε0, so r+(x) = 0.

Theorem 3.1. Let (X ,d) be a metric space and f a continuous map from X to X. As-
sume that the dynamical system { f n}n∈NNN∗ is topologically transitive. Then the following
two conditions are mutually equivalent.

(1) The dynamical system { f n}n∈NNN∗ has sensitive dependence on initial conditions.

(2) There exists δ = δ (x) > 0 for any x ∈ X satisfying the following conditions: for
any open neighborhoodU of x with �U ≥ 2, there are a nonnegative integer n≥ 0
and a point y ∈U such that d( f n(x), f n(y)) > δ (x).

To prove this theorem, we give some Lemmas: Lemma 3.1, Lemma 3.2. Lemma 3.1
and Lemma 3.2 show that r+ is the function which characterizes sensitive dependence
on initial conditions.

Lemma 3.1. Let (X ,d) be a metric space and f a continuous map from X to X. Then
r+ is upper semicontinuous.
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Proof. For any given x0 ∈ X and any ε > 0, there exists ε0 > 0 such that r+(ε0,x0) ≤
r+(x0)+ε . For any x ∈ Bε0(x0) there is an ε1 > 0 satisfying Bε1(x)⊂ Bε0(x0), hence, r+
is upper semicontinuous. �

Lamma 3.2. Let (X ,d) be a metric space and f a continuous map from X to X. Then
r+ is f -subinvariant. Furthermore, if f is an open map, r+ is f -invariant.

Proof. For any x ∈ X and any ε > 0, f−1(Bε( f (x))) is an open neighborhood of x. So
there exists an ε1 > 0 satisfying Bε1(x) ⊂ f−1(Bε( f (x))). The following inequalities
hold for any ε ′ > 0 with 0< ε ′ ≤ ε1.

r+(x) ≤ r+(ε ′,x)

≤ 2ε ′ ∨
(
sup
n≥1

sup
y,y′∈Bε ′ (x)

d( f n(y), f n(y′))∧1
)

≤ 2ε ′ ∨
(
sup
n≥1

sup
y,y′∈ f−1(Bε ( f (x)))

d( f n(y), f n(y′))∧1
)

≤ 2ε ′ ∨
(
sup
n≥0

sup
y,y′∈Bε ( f (x))

d( f n(y), f n(y′))∧1
)

= 2ε ′ ∨ r+(ε, f (x)).

Letting ε ′ ↓ 0, we have r+(x) ≤ r+(ε, f (x)). Next letting ε ↓ 0, we have r+(x) ≤
r+( f (x)). Thus r+ is f -subinvariant. Suppose that f is an open map. Then, f (Bε(x)) is
an open neighborhood of f (x) for any x ∈ X and ε > 0. Since the relation

sup
y,y′∈ f (Bε (x))

d( f n(y), f n(y′))∧1= sup
z,z′∈Bε (x)

d( f n+1(z), f n+1(z′))∧1

holds for arbitrary n≥ 0, we have

sup
n≥0

sup
y,y′∈ f (Bε (x))

d( f n(y), f n(y′))∧1 = sup
n≥1

sup
z,z′∈Bε (x)

d( f n(z), f n(z′))∧1

≤ sup
n≥0

sup
z,z′∈Bε (x)

d( f n(z), f n(z′))∧1.

Therefore

r+( f (x)) ≤ sup
n≥0

sup
y,y′∈ f (Bε (x))

d( f n(y), f n(y′))∧1

≤ r+(ε,x).

Let ε ↓ 0. Then r+ is f -invariant. �
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Proof of Theorem 3.1. From triangle inequality, the inequalities

sup
y∈Bε (x)

d( f n(x), f n(y))∧1 ≤ sup
y,y′∈Bε (x)

d( f n(y), f n(y′))∧1

≤ 2 sup
y∈Bε (x)

d( f n(x), f n(y))∧1

hold for any n ≥ 0. From these inequalities, we can see that the conditions (1) and (2)
of Theorem 3.1 are equivalent to the following (1′) and (2′) respectively.

(1′) There exists a constant δ ′ > 0 satisfying r+(ε,x) > δ ′ for any x ∈ X and any
ε > 0.

(2′) For any x∈ X , there exists a constant δ ′(x) > 0 satisfying r+(ε ,x) > δ ′(x) for any
ε > 0.

Furthermore, the conditions (1′) and (2′) are equivalent to the following (1′′) and (2′′)
respectively.

(1′′) There exists a δ ′′ > 0 satisfying r+(x) > δ ′′ for any x ∈ X .
(2′′) r+(x) > 0 for any x ∈ X .

Lemma 3.1 and Lemma 3.2 imply that r+ is upper semicontinuous and f -subinvariant
and hence r+ ∈ Γs. Since r+ has a minimum from Lemma 2.1, we see that (2′′) implies
(1′′). The converse is trivial. �

(2) Sensitive dependence on initial conditions with the parameter ZZZ

We discuss sensitive dependence on initial conditions when the parameter of the
dynamical system { f n}n∈ZZZ runs over ZZZ. Theorem 3.2 below says that Theorem 3.1 also
holds in the case when f is a homeomorphism. First we introduce the definition of
sensitive dependence on initial conditions in the case when the parameter runs over ZZZ.

Definition 3.3. Let (X ,d) be a metric space, f a homeomorphism from X to X , and
{ f n}n∈ZZZ the dynamical system defined by f . The dynamical system { f n}n∈ZZZ is said to
have sensitive dependence on initial conditions if there exists a constant δ > 0 such that
for any x ∈ X and any open neighborhoodU of x with �U ≥ 2, there exist a point y ∈U
and an integer n ∈ ZZZ satisfying d( f n(x), f n(y)) > δ .

Definition 3.4. For x ∈ X and an ε > 0, the numbers r(ε,x) and r(x) are defined as
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follows:

r(ε,x) =
def

sup
n∈ZZZ

sup
y,y′∈Bε (x)

d( f n(y), f n(y′))∧1,

r(x) =
def

lim
ε↓0

r(ε ,x)

= lim
ε↓0

(
sup
n∈ZZZ

sup
y,y′∈Bε (x)

d( f n(y), f n(y′))∧1
)

.

Theorem 3.2. Let (X ,d) be a metric space, f a homeomorphism from X to X, and
{ f n}n∈ZZZ the dynamical system defined by f . Suppose that { f n}n∈ZZZ is topologically
transitive. Then the following two conditions are mutually equivalent.

(1) The dynamical system { f n}n∈ZZZ has sensitive dependence on initial conditions.
(2) For any x ∈ X there exists a constant δ = δ (x) > 0 satisfying the following condi-

tions: for any open neighborhood U of x with �U ≥ 2, there are an integer n ∈ ZZZ
and a point y ∈U such that d( f n(x), f n(y)) > δ (x).

To show Theorem 3.2, we will give some Lemmas: Lemma 3.3, Lemma 3.4.

Lemma 3.3. Let (X ,d) be a metric space and f a homeomorphism from X to X. Then
r(x) is upper semicontinuous.

Lemma 3.3 is shown in the same way as Lemma 3.1.

Lemma 3.4. Let (X ,d) be a metric space and f a homeomorphism from X to X. Then
r(x) is f -invariant.

Proof. Since f is a homeomorphism, f−1(Bε( f (x))) is an open neighborhood of x for
any x∈ X and an ε > 0. There exists an ε1 > 0 satisfying Bε1(x)⊂ f−1(Bε( f (x))). Then

r(x) ≤ r(ε1,x)
≤ sup

n∈ZZZ
sup

y,y′∈ f−1(Bε ( f (x)))
d( f n(y), f n(y′))∧1

= sup
n∈ZZZ

sup
z,z′∈Bε ( f (x))

d( f n(y), f n(y′))∧1

= r(ε, f (x)).

Letting ε ↓ 0, we see that r(x) is f -subinvariant. We show the converse inequality. For
any x ∈ X and any ε > 0 given, f (Bε(x)) is an open neighborhood of f (x) and there is
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ε ′ > 0 satisfying Bε ′( f (x)) ⊂ f (Bε(x)). Then

r( f (x)) ≤ r(ε ′, f (x))
≤ sup

n∈ZZZ
sup

y,y′∈Bε ′ ( f (Bε (x)))
d( f n(y), f n(y′))∧1

= sup
n∈ZZZ

sup
z,z′∈Bε (x)

d( f n( f−1(z)), f n( f−1(z′)))∧1

= r(ε,x).

Hence r(x) is f -invariant. �

Proof of Theorem 3.2. From triangle inequality, the inequalities

sup
y∈Bε (x)

d( f n(x), f n(y))∧1 ≤ sup
y,y′∈Bε (x)

d( f n(y), f n(y′))∧1

≤ 2 sup
y∈Bε (x)

d( f n(x), f n(y))∧1

hold for n∈ ZZZ. By these inequalities, we see in the same way as in the proof of Theorem
3.1 that conditions (1) and (2) of Theorem 3.2 are equivalent to the following conditions
(1′′) and (2′′) respectively.

(1′′) There is a δ ′′ > 0 such that r(x) > δ ′′ for any x ∈ X .
(2′′) r(x) > 0 for any x ∈ X .
Lemma 3.3 and Lemma 3.4 yield r ∈ Γ. Since r has a minimum from Lemma 2.4, (2′′)
implies (1′′). The converse is trivial. �

4 Applications of new characterizations to topological transi-
tivity

In this final section, we apply the new characterization of topological transitivity in
the previous sections to prove the main results.

Theorem 4.1. Let (X ,d) be a complete separable metric space without isolated points
and f a homeomorphism from X to X. Suppose that the dynamical system { f n}n∈ZZZ
defined by f is topologically transitive. Then both { f n}n∈NNN∗ and { f−n}n∈NNN∗ are topo-
logically transitive. Furthermore, D+∩D− is dense in X.

To prove this theorem, we need the following Lemma 4.1 and Lemma 4.2.
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Lemma 4.1. Let (X ,d) be a complete separable metric space without isolated points,
f a homeomorphism from X to X, and γ+,γ− upper semicontinuous functions from X to
[0,∞). Suppose that the dynamical system { f n}n∈ZZZ is topologically transitive and that
γ+ is f -subinvariant, γ− is f -superinvariant. If infγ+ = infγ− = 0, then γ+ ∧ γ− has a
minimum 0.

Proof. inf(γ+∧ γ−) = 0 is trivial from infγ+ = infγ− = 0. Let l ∈ NNN. We set

Al :=
{
x ∈ X

∣∣∣∣ γ+(x)∧ γ−(x) ≥ inf(γ+∧ γ−)+
1
l

}
.

Al is closed set. Suppose that γ+ ∧ γ− does not have a minimum. It is clear that X
is represented as a countable union of Al . From Baireʼs category theorem, there are
a nonempty open set O and l0 ∈ NNN with O ⊂ Al0 . We now put A := Al0 and a = 1

l0
.

Since the dynamical system { f n}n∈ZZZ is topologically transitive, Theorem 2.3 yields that
D is dense in X . Let x0 ∈ D. Since X has no isolated points, we can see that the set
{n ∈ ZZZ | f n(x0) ∈ A} is infinite by �{n ∈ ZZZ | f n(x0) ∈ O} = ∞ and the inclusion A⊃ O.
When the set {n ∈ ZZZ | f n(x0) ∈ A} is unbounded from above, there is an m ∈ {n ∈

ZZZ | f n(x0) ∈ A} satisfying n≤ m for any integer n ∈ ZZZ. Thus γ−( f n(x0)) ≥ a for n ∈ ZZZ.
a ≤ limγ−(yn) ≤ γ−(y) holds for any y ∈ X because of the upper semicontinuity of γ
and the denseness of O( f ;x0). Therefore we found a ≤ γ−(y) for any y ∈ X . This is a
contradiction to infγ− = 0. When the set {n∈ ZZZ | f n(x0)∈ A} is unbounded from below,
there is an m ∈ {n ∈ ZZZ | f n(x0) ∈ A} satisfying n≥ m for any integer n ∈ ZZZ, hence, we
can see a ≤ γ+( f m(x0)) ≤ γ+( f n(x0)). We have that γ+(x) ≥ a holds for any x ∈ X in
the same way. This contradicts to infγ+ = 0. Therefore γ+∧ γ− has a minimum 0. �

Lemma 4.2. Let X be a complete separable metric space without isolated points and f
a continuous map from X to X. Moreover let γ+ , γ− be upper semicontinuous functions
from X to [0,∞) such that γ+ is f -subinvariant and γ− is f -superinvariant. Suppose
that the dynamical system { f n}n∈NNN∗ is topologically transitive. Then γ+ ∨ γ− has a
minimum. Furthermore, if f is a homeomorphism from X to X, then min(γ+ ∨ γ−) =
minγ+∨minγ− holds.

Proof. Put a := inf(γ+∨ γ−), and

Bn :=
{
x ∈ X

∣∣∣∣ γ+∨ γ−(x) ≥ a+
1
n

}
.

Bn is a closed set. Suppose that γ+∨γ− does not have a minimum, then X is represented
as a countable union of Bn. From Baireʼs category theorem, there exists an n0 ∈ NNN such
that Bn0 has an inner point. Thus there are a real number b ∈ (a,∞) and a nonempty
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open set O with O⊂ {x ∈ X | γ+(x)∨γ−(x)≥ b}. For any x ∈D+ there is a nonnegative
number n(x) ≥ 0, which depends on x, satisfying f n(x)(x) ∈ O from the definition of
D+. Hence we can see that γ+( f n(x)(x)) ≥ b or γ−( f n(x)(x)) ≥ b.
First, we consider the case when there exists a point x∈D+ satisfying γ+( f n(x)(x))≥

b. Since γ+ is f -subinvariant, γ+( f m(x)) ≥ b for m≥ n(x). Since the set { f m(x) | m≥
n(x)} is dense in X and the previous inequality, γ+(y) ≥ b for any y ∈ X . Thus we
have γ+ ∨ γ−(y) ≥ b for any y ∈ X . This contradicts to b > a. Secondly, we consider
the case when γ−( f n(x)(x)) ≥ b holds for any x ∈ D+. Since γ− is f -superinvariant, the
inequalities b ≤ γ−( f n(x)(x)) ≤ γ−(x) holds for any x ∈ D+. Hence these inequalities
and the definition of D+ lead to the fact that the inequality γ−(y) ≥ b holds for any
y ∈ X . Thus γ+ ∨ γ−(y) ≥ b for any y ∈ X . This also contradicts to b > a. Therefore
γ+∨ γ− has a minimum.
We assume that f is a homeomorphism and put a := min(γ+ ∨ γ−). Since the dy-

namical system { f n}n∈NNN∗ is topologically transitive, the dynamical system { f−n}n∈NNN∗

is also topologically transitive. Thus, γ+ has a minimum from Lemma 2.1 and γ− also
has a minimum since γ− is f−1-subinvariant.
Put a+ := minγ+ and a− := minγ−. Suppose that a > a+ ∨ a−. First, we consider

the case when a+ ≥ a−. Clearly a > a+. From Lemma 2.1, the inclusion D+ ⊂ {x ∈
X | γ+(x) = a+} holds. Hence γ−(x) ≥ a for any x ∈ D+ and therefore we can see that
γ−(y) ≥ a for any y ∈ X . This contradicts to a > a+ ∨ a−. Secondly, when the case
a+ < a− holds, we have a contradiction in the same way.
We have a≤ a+∨a−, the converse a≥ a+∨a− is trivial, hence, a= a+∨a−. �

Proof of Theorem 4.1. Let {Un} be a countable basis of X which is nonempty for any
integer n≥ 1. We define a set F(n)

m and maps κ+(x), κ−(x), κ(x) (x ∈ X) as follows.

F(n)
m := f−m(Uc

n ) (m ∈ ZZZ , n≥ 1)
κ+(x) :=

∞

∑
n=1

1
3n

·
∞

∏
m=0

111
F(n)
m

(x) (x ∈ X)

κ−(x) :=
∞

∑
n=1

1
3n

·
0

∏
m=−∞

111
F(n)
m

(x) (x ∈ X)

κ(x) :=
∞

∑
n=1

1
3n

·
∞

∏
m=−∞

111
F(n)
m

(x) (x ∈ X)

By Lemma 2.5, we have D= {x ∈ X | κ(x) = 0}. From the inequalities

κ−( f (x)) =
∞

∑
n=1

1
3n

·
0

∏
m=−∞

111
F(n)
m

( f (x))

≤
∞

∑
n=1

1
3n

·
0

∏
m=−∞

111
F(n)
m

(x) = κ−(x)
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and Lemma 2.2, κ+ and κ− are f -subinvariant, f -superinvariant respectively and they
are upper semicontinuous. Also,

lim
l→∞

κ+( f−l(x)) = lim
l→∞

∞

∑
n=1

1
3n

·
∞

∏
m=0

111
F(n)
m

( f−l(x))

= lim
l→∞

∞

∑
n=1

1
3n

·
∞

∏
m=0

111
F(n)
m−l

(x)

= lim
l→∞

∞

∑
n=1

1
3n

·
∞

∏
p=−l

111
F(n)
p

(x)

=
∞

∑
n=1

1
3n

·
∞

∏
p=−∞

111
F(n)
p

(x)

= κ(x).

Thus κ(x) = liml→∞ κ+( f−l(x)) = 0 holds for x ∈D. From this, infκ+ ≤ 0 holds. Since
κ+ ≥ 0, we see that infκ+ = 0. In the same way, we can show that infκ− = 0 and
therefore κ+ ∧κ− has a minimum 0 from Lemma 4.1. Hence there exists a point x̄ ∈ X
such that κ+(x̄)∧κ−(x̄) = 0.
If κ+(x̄) = 0, the dynamical system { f n}n∈NNN∗ is topologically transitive. Hence the

dynamical system { f−n}n∈NNN∗ is also topologically transitive from the definition.
If κ−(x̄) = 0, the dynamical system { f−n}n∈NNN∗ is topologically transitive. Hence the

dynamical system { f n}n∈NNN∗ is also topologically transitive.
Also, since D+ = {x ∈ X | κ+(x) = 0} and D− = {x ∈ X | κ−(x) = 0} are shown,

minκ+(x) = 0 and minκ−(x) = 0. Since min(κ+ ∨ κ−) = minκ+ ∨minκ− = 0 from
Lemma 4.2, there exists a point x̃ ∈ X such that κ+(x̃) = 0 and κ−(x̃) = 0. Hence
there is a point x̃ ∈ D+ ∩D−, which implies that D+ ∩D− is nonempty. Since x̃ ∈ D+,
f l(x̃) ∈ D+ holds for any integer l ∈ ZZZ. In the same way, since x̃ ∈ D−, f l(x̃) ∈ D−
holds for any integer l ∈ ZZZ. Thus f l(x̃) ∈ D+ ∩D− for any integer l ∈ ZZZ and therefore
we have that D+∩D− is dense in X . �

Theorem 4.2. Let (X ,d) be a complete separable metric space without isolated points
and f a homeomorphism from X to X. Consider the dynamical system { f n}n∈ZZZ defined
by f . Suppose that { f n}n∈ZZZ is topologically transitive and has sensitive dependence on
initial conditions. Then at least one of the dynamical systems { f n}n∈NNN∗ and { f−n}n∈NNN∗

have sensitive dependence on initial conditions.

This theorem is the main result in this paper. To show Theorem 4.2, we prepare three
lemmas: Lemma 4.3, Lemma 4.4, Lemma 4.5.
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Lemma 4.3. Let (X ,d) be a complete separable metric space without isolated points, f
a continuous map from X to X, and { f n}n∈NNN∗ the dynamical system defined by f . Sup-
pose that { f n}n∈NNN∗ is topologically transitive. Then the inclusion D+ ⊂{x∈X | r+(x) =
minr+} holds. Moreover if minr+ = 0, then D+ = {x ∈ X | r+(x) = 0} holds.

Proof. We know r+ is in Γs from Lemma 3.1, Lemma 3.2. Theorem 2.2 yields that
D+ ⊂ {x ∈ X | r+(x) = minr+}. Suppose that r+ has a minimum 0 at x ∈ X , then
r+(x) = 0. We will show {x ∈ X | r+(x) = 0} ⊂ D+ := {x ∈ X | O+( f ;x) = X}. We
assumeO+( f ;x) �= X . There are a point y∈ X and a constant δ > 0 such thatO+( f ;x)∩
Bδ (y) is empty. The equality r+(x) = 0 leads to the existense of an ε > 0 satisfying
r+(ε,x) < δ

2 . Since the dynamical system { f n}n∈NNN∗ is topologically transitive, there
are a point x′ ∈ Bε(x) and a nonnegative integer n ≥ 0 such that f n(x′) ∈ B δ

2
(y). The

inequalities d( f n(x), f n(x′)) < δ
2 and d( f

n(x′), f n(y)) < δ
2 imply that f

n(x) ∈ Bδ (y).
This contradicts to the fact that O+( f ;x)∩ Bδ (y) is empty and therefore we see the
inclusion {x ∈ X | r+(x) = 0} ⊂ D+. �

Lemma 4.4. Let (X ,d) be a complete separable metric space without isolated points, f
a continuous map from X to X, and { f n}n∈NNN∗ the dynamical system defind by f . Suppose
that { f n}n∈ZZZ is topologically transitive. Then minr+ = 0 if and only if { f n}n∈NNN∗ does
not have sensitive dependence on initial conditions.

This lemma follows from the definition of sensitive dependence on initial conditions.

Definition 4.1. For x ∈ X and an ε > 0, we define the numbers r−(ε,x) and r−(x) as
follows:

r−(ε,x) =
def

sup
n≤0

sup
y,y′∈Bε (x)

d( f n(y), f n(y′))∧1

= sup
n≥0

sup
y,y′∈Bε (x)

d(( f−1)n(y),( f−1)n(y′))∧1,

r−(x) =
def

lim
ε↓0

r−(ε,x).

Lemma 4.5. Let (X ,d) be a complete separable metric space without isolated points,
f a homeomorphism from X to X, and { f n}n∈ZZZ the dynamical system defined by f .
Suppose that { f n}n∈ZZZ is topologically transitive and has sensitive dependence on initial
conditions. Moreover assume minr+ = 0. Then minr− > 0 and

D− ⊂ D+ = {x ∈ X | r+(x) = 0} ⊂ {x ∈ X | r−(x) =minr−}
hold, where D− = {x ∈ X | O−( f ;x) = X}.
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Proof. Theorem 4.1 shows that the dynamical systems { f n}n∈NNN∗ and { f−n}n∈NNN∗ de-
fined by continuous maps f and f−1 are topologically transitive. From Lemma 3.1 and
Lemma 3.2, r+ and r− are upper semicontinuous and f -invariant. By applying Lemma
2.1 for continuous maps f and f−1, we see that each r+ and r− has a minimum and that
the relations D+ ⊂ {x ∈ X | r+(x) = 0} and D− ⊂ {x ∈ X | r−(x) =minr−} hold. Sup-
pose that minr− = 0. From Theorem 4.1, the set D+ ∩D− is nonempty. It is clear that
r+(x) = 0 and r−(x) = 0 for x ∈D+∩D−. This implies that r(x) = 0, which contradicts
to the fact that { f n}n∈ZZZ has sensitive dependence on initial conditions. Therefore we
have minr− > 0.
Let x ∈ D−. r+(x) = r+( f−n(x)) holds for any integer n ≥ 1. Since r+ is upper

semicontinuous and O−( f ;x) is dense in X , r+(y) ≥ r+(x) holds for any y ∈ X . Hence
we have r+(x) = minr+ = 0 and therefore the relation D− ⊂ {x ∈ X | r+(x) = 0} =
D+ follows from Lemma 4.3. Moreover it follows from Lemma 2.1 that D+ ⊂ {x ∈
X | r−(x) =minr−}. �

Proof of Theorem 4.2. If minr+ > 0, the dynamical system { f n}n∈NNN∗ has sensitive
dependence on initial conditions from Lemma 4.4. Suppose minr+ = 0, then minr− > 0
by Lemma 4.5, hence the dynamical system { f−n}n∈NNN∗ has sensitive dependence on
initial conditions. �
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