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Abstract For positive real numbers p and q satisfying 1/p+1/q> 1, it is known
that if f (u) and g(u) have finite mean variations of orders p and q respectively, then
an integral

∫ t
s f (u)dg(u) exists in the Riemann sense. The present paper extends this

Stieltjes integration theory, discussed by L. C. Young, to the case where f (u) and
g(u) are measurable processes. Moreover, path-by-path piecewise-linear functions
are constructed via Riemann-Stieltjes sums for measurable processes, and conver-
gence theorems on such functions are derived.
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1 Introduction

For real-valued functions f (u) and g(u) defined on a closed interval [s, t], f is said
to be Stieltjes integrable in the Riemann sense with respect to g if the pair ( f ,g) satisfies
the following: there exists a real value A such that for any ε > 0, there exists δ > 0 for
which every finite partition Δ = {s= t0 < t1 < · · · < tn = t} of [s, t] with |Δ| ≤ δ along
with real numbers ξi ∈ [ti−1, ti] (1≤ i≤ n) satisfies∣∣∣A− n

∑
i=1

f (ξi)(g(ti)−g(ti−1))
∣∣∣≤ ε,

where |Δ| denotes the mesh of the partition Δ. The constant A is denoted by
∫ t
s f (u)dg(u)

and called the Riemann-Stieltjes integral of f with respect to g over the interval [s, t].
A function g(u) of bounded variation on [s, t] is associated with a real Borel measure

on [s, t], and the Riemann-Stieltjes integral
∫ t
s f (u)dg(u) is treated in the framework of

measure theory. However, the measure-theoretic argument cannot be applied when g(u)
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has unbounded variation. L.C.Young [4] discusses Stieltjes integrability for functions
of unbounded variation. For 1< p< ∞, define

Vp( f ) := sup
Δ

(
n

∑
i=1

| f (ti)− f (ti−1)|p
) 1

p

,

where Δ = {s = t0 < t1 < · · · < tn = t} and the supremum on the right hand side is
taken over all finite partitions of [s, t]. f is said to be of bounded variation of order p if
Vp( f ) is finite (See [1]). Suppose that real positive numbers p and q satisfy the relation
1/p+1/q> 1 and that f and g are of bounded variation of orders p and q, respectively.
L.C.Young [4] states that if f and g have no common discontinuities, then f is Stieltjes
integrable in the Riemann sense with respect to g.
Throughout this paper, a measure space (Ω,F ,P) and an interval [0,T ] (0< T < ∞)

are fixed. For anF -measurable real-valued function X defined on (Ω,F ,P), the nota-
tion E[X ] is used to denote the integral

∫
ΩXdP, whenever it exists, and is occasionally

referred to as the expectation of X . A measurable process on [0,T ]×Ω is a measurable
function with respect to B([0,T ])×F . The aim of the present paper is to extend the
Stieltjes integrals discussed by L.C.Young to integrals with respect to a pair (X ,Y ) of
measurable processes, to yield Young-type integrals.
Let p,q,α,β be positive real numbers satisfying 1/p+1/q= 1, α,β ≤ 1 and α +

β < 2. Assuming that Xu ∈ Lp(Ω,F ,P) and Yu ∈ Lq(Ω,F ,P) for u ∈ [0,T ], the notion
of mean variations of orders (p,α) and ((p,α);(q,β )), denoted by Vα

p (X ; [s, t]) and

Vα,β
p,q (X ,Y ; [s, t]) respectively, is introduced in Section 3. Namely, we define

Vα
p (X ; [s, t]) := sup

Δ

(
n

∑
k=1

E[|Xtk −Xtk−1 |p]α
) 1

α p

;

Vα,β
p,q (X ,Y ; [s, t]) := sup

Δ

(
n

∑
k=1

E[|Xtk −Xtk−1 |p]α
) 1

α p
(

n

∑
k=1

E[|Ytk −Ytk−1 |q]β
) 1

βq

,

where Δ = {s= t0 < t1 < · · ·< tn = t}. One example of a measurable process with finite
mean variation of order (2,α) is an additive functional of energy zero of a symmetric
Markov processes. Also considered in Section 3 are Riemann-Stieltjes approximating
sums:

FΔ(X ,Y ) :=
n

∑
�=1

Xt�(Yt� −Yt�−1) and Fξ
Δ(X ,Y ) =

n

∑
k=1

Xξk
(
Ytk −Ytk−1

)
,

where ξk ∈ [tk−1, tk] (1 ≤ k ≤ n). Using inequalities obtained in Section 2, which are
extensions of Youngʼs inequalities ([4]) from a measure-theoretic viewpoint, some im-
portant estimates on Riemann-Stieltjes approximating sums for measurable processes
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are derived in Section 3. These estimates are essential in obtaining the main results of
this paper (Theorems A and B).
Consider the following conditions:

(A.1) Vα
p (X ; [0,T ]) < +∞, Vβ

q (Y ; [0,T ]) < +∞.
(A.2) At least one of the functions (u,v) �→ E[|Yu−Yv|q] and (u,v) �→ E[|Xu−Xv|p]

is jointly continuous on [0,T ]× [0,T ].
(A.3) The function (u,v) �→ E[|Xu−Xv|p] is jointly continuous on [0,T ]× [0,T ],

sup
0≤u≤T

|Xu| and sup
0≤v,u≤T
|u−v|≤δ

|Yu−Yv| areF−measurable, and

E

[
sup
0≤u≤T

∣∣Xu∣∣p] < ∞, lim
δ→0

E

[
sup
0≤u,v≤T
|u−v|≤δ

∣∣Yu−Yv∣∣q] = 0.

Theorem A in Section 4 establishes that under certain conditions on measurable pro-
cesses, Riemann-Stieltjes approximating sums over a given interval [0, t] converge in
the L1-norm as the mesh of the partition for the sum tends to zero. This result is stated
in Nakao [3], but without a proof there.

Theorem A. Let p,q,α,β be positive real numbers satisfying 1/p+ 1/q = 1, α,β ≤
1, α + β < 2. Let X = (Xu),Y = (Yu) be measurable processes on [0,T ]× Ω such
that Xu ∈ Lp(Ω,F ,P), Yu ∈ Lq(Ω,F ,P) (0 ≤ u ≤ T ). Suppose that the pair (X ,Y )
satisfies conditions (A.1) and (A.2). Then for any t ∈ (0,T ], there exists a unique F -
measurable, integrable real-valued function H depending on t for which the following
holds: for any ε > 0 there exists δ = δ (ε) > 0 such that

|Δ| ≤ δ =⇒ E[|H−Fξ
Δ(X ,Y )|] ≤ ε,

where Δ = {0 = t0 < · · · < tn = t} is a finite partition of the interval [0, t] and ξ =
{ξk}nk=1 with ξk ∈ [tk−1, tk].

In Section 5, a path-by-path piecewise-linear process, denoted by Fξ
Δ(X ,Y )(Δ, t), is

constructed via Riemann-Stieltjes approximating sums. Theorem B shows that under
stronger conditions on measurable processes than those assumed in Theorem A, such
piecewise-linear processes converge uniformly in L1 as the mesh of the partition goes
to zero.

Theorem B. Let p,q,α,β be positive real numbers satisfying 1/p+ 1/q = 1, α <

1, β = 1. Let X = (Xu),Y = (Yu) be measurable processes on [0,T ]× Ω such that
Xu ∈ Lp(Ω,F ,P), Yu ∈ Lq(Ω,F ,P) (0≤ u≤ T ). Suppose that the pair (X ,Y ) satisfies
conditions (A.1) and (A.3). Then there exists a unique measurable process I(= It) on
[0,T ]×Ω for which the following hold:
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(1) I·(ω) is continuous on [0,T ] for each ω ∈ Ω and E

[
sup
0≤t≤T

∣∣It∣∣] < ∞.

(2) For any ε > 0, there exists δ = δ (ε) > 0 such that

|Δ| ≤ δ =⇒ E

[
sup
0≤t≤T

∣∣∣Fξ
Δ(X ,Y )(Δ; t)− It

∣∣∣]≤ ε,

where Δ = {0 = t0 < · · · < tn = t} is a finite partition of the interval [0, t] and ξ =
{ξk}nk=1 with ξk ∈ [tk−1, tk].

Furthermore, it is established that the limiting continuous processes in Theorem B
can be regarded as a measurable process whose value at a given time t coincides with the
limiting integrable function (depending on t) obtained in Theorem A. Construction of
integrals with respect to additive functionals of energy zero, with the help of the theory
of Dirichlet spaces, is provided in Nakao [2].

2 Extension of Youngʼs inequalities

In this section we discuss the Youngʼs inequalities appearing in [4] in terms of mea-
surable functions. We need the following condition on positive real numbers p,q,α,β :

1/p+1/q= 1, α,β ≤ 1, α +β < 2. (2.1)

Lemma 2.1. Let p,q,α,β be positive real numbers satisfying condition (2.1). Let
X1,X2, . . . ,Xn ∈ Lp(Ω,F ,P), Y1,Y2, . . . ,Yn ∈ Lq(Ω,F ,P). Then there exists a positive
integer k (1≤ k ≤ n) such that

E[|XkYk|] ≤
(
1
n

) 1
α p+

1
βq

{
n

∑
i=1

E[|Xi|p]α
} 1

α p

×
{

n

∑
i=1

E[|Yi|q]β
} 1

βq

. (2.2)

Proof. Take a positive integer k (1≤ k≤ n) for which E[|XkYk|] = min
1≤ j≤n

E[|XjYj|]. Using
Hölderʼs inequality and the well-known inequality on arithmetic and geometric means,

E[|XkYk|] ≤
{
E[|X1|p]

1
p · · ·E[|Xn|p]

1
p E[|Y1|q]

1
q · · ·E[|Yn|q]

1
q

} 1
n

=
(
{E[|X1|p]α · · ·E[|Xn|p]α}

1
n

) 1
α p

({
E[|Y1|q]β · · ·E[|Yn|q]β

} 1
n

) 1
βq

≤
(
E[|X1|p]α + · · ·+E[|Xn|p]α

n

) 1
α p

(
E[|Y1|q]β + · · ·+E[|Yn|q]β

n

) 1
βq

,

thereby completing the proof.
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Let Q denote an operation which replaces some [ , ]ʼs by [ + ]ʼs in a family X :=
(X1,X2, . . . ,Xn) of measurable functions. For convenience, we write

QX= X(1) =
(
X (1)
1 ,X (1)

2 , . . . ,X (1)
m

)
.

Note that m≤ n and each X (1)
j is a sum of some consecutive Xiʼs.

Definition 2.2. For positive real numers p,q,α,β satisfying condition (2.1), the
((p,α);(q,β ))-th mean variation of a pair (X,Y) =

(
(X1,X2, . . . ,Xn), (Y1,Y2, . . . ,Yn)

)
of two families of measurable functions is defined by

Vα,β
p,q (X,Y) :=max

Q

(
m

∑
j=1
E[|X (1)

j |p]α
) 1

α p
(

m

∑
j=1
E[|Y (1)

j |q]β
) 1

βq

where Q on the right-hand side runs over all operations stated above.

Lemma 2.1 yields the following important inequality on mean variations.

Lemma 2.3. Let p,q,α,β be positive real numbers satisfying condition (2.1). Let
X1,X2, . . . ,Xn ∈ Lp(Ω,F ,P), Y1,Y2, . . . ,Yn ∈ Lq(Ω,F ,P). Then

E

[∣∣∣∣∣ ∑
1≤i≤i′≤n

XiYi′

∣∣∣∣∣
]
≤

{
1+ζ

( 1
α p

+
1

βq
)}

Vα,β
p,q (X,Y), (2.3)

where ζ (s) = ∑∞
n=1 n

−s.

Proof. It is obvious that 1/(α p)+1/(βq)> 1. By Lemma 2.1 applied to (X2,X3, . . . ,Xn)
and (Y1,Y2, . . . ,Yn−1), there exists a positive integer d (1≤ d ≤ n−1) such that

E [|Xd+1Yd|] ≤
(

1
n−1

) 1
α p+

1
βq

{
n−1
∑
r=1

E[|Xr+1|p]α
} 1

α p
{
n−1
∑
r=1

E[|Yr|q]β
} 1

βq

.

Consider the operation Qd which replaces the d-th [ , ] of X = (X1,X2, . . . ,Xn) and
Y= (Y1,Y2, . . . ,Yn) with [ + ]. Then the two families

QdX= X(1) =
(
X (1)
1 ,X (1)

2 , . . . ,X (1)
n−1

)
, QdY= Y(1) =

(
Y (1)
1 ,Y (1)

2 , . . . ,Y (1)
n−1

)
satisfy

X (1)
j ,Y (1)

j =

⎧⎨⎩
Xj,Yj (1≤ j ≤ d−1)
Xd +Xd+1,Yd +Yd+1 ( j = d)
Xj+1,Yj+1 (d+1≤ j ≤ n−1) ,
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from which it follows that

∑
1≤ j≤n−1

(X (1)
1 + · · ·+X (1)

j )Y (1)
j = Xd+1Yd + ∑

1≤i≤n
(X1+ · · ·+Xi)Yi.

Hence, ∣∣∣∣∣ ∑
1≤i≤i′≤n

XiYi′

∣∣∣∣∣≤ |Xd+1Yd|+
∣∣∣∣∣ ∑
1≤ j≤ j′≤n−1

X (1)
j Y (1)

j′

∣∣∣∣∣ .
Taking expectations on both sides,

E

[ ∣∣∣∣∣ ∑
1≤i≤i′≤n

XiYi′

∣∣∣∣∣
]

≤ E [|Xd+1Yd | ]+E

[ ∣∣∣∣∣ ∑
1≤ j≤ j′≤n−1

X (1)
j Y (1)

j′

∣∣∣∣∣
]

≤ (n−1)−( 1
α p+

1
βq )

(
n−1
∑
r=1

E[|Xr+1|p]α
) 1

α p
(
n−1
∑
r=1

E[|Yr|q]β
) 1

βq

+E

[∣∣∣∣∣ ∑
1≤ j≤ j′≤n−1

X (1)
j Y (1)

j′

∣∣∣∣∣
]

≤ (n−1)−( 1
α p+

1
βq )Vα,β

p,q (X,Y)+E

[ ∣∣∣∣∣ ∑
1≤ j≤ j′≤n−1

X (1)
j Y (1)

j′

∣∣∣∣∣
]

.

Next, apply Lemma 2.1 to
(
X (1)
2 ,X (1)

3 , . . . ,X (1)
n−1

)
and

(
Y (1)
1 ,Y (1)

2 , . . . ,Y (1)
n−2

)
, and take

a positive integer e (1≤ e≤ n−2) for which

E
[∣∣∣X (1)

e+1Y
(1)
e

∣∣∣]≤ (
1

n−2
) 1

α p+
1

βq
{
n−2
∑
s=1

E[|X (1)
s+1|p]α

} 1
α p

{
n−2
∑
s=1

E[|Y (1)
s |q]β

} 1
βq

.

Consider the operation Qe which replaces the e-th [ , ] of X(1) =
(
X (1)
1 ,X (1)

2 , . . . ,X (1)
n−1

)
and Y(1) =

(
Y (1)
1 ,Y (1)

2 , . . . ,Y (1)
n−1

)
with [ + ]. Then the two families

QeX(1) = X(2) =
(
X (2)
1 ,X (2)

2 , . . . ,X (2)
n−2

)
, QeY(1) = Y(2) =

(
Y (2)
1 ,Y (2)

2 , . . . ,Y (2)
n−2

)
satisfy

X (2)
k ,Y (2)

k =

⎧⎪⎨⎪⎩
X (1)
k ,Y (1)

k (1≤ k ≤ e−1)
X (1)
e +X (1)

e+1,Y
(1)
e +Y (1)

e+1 (k = e)
X (1)
k+1,Y

(1)
k+1 (e+1≤ k ≤ n−2) .
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Hence,

∑
1≤k≤n−2

(X (2)
1 + · · ·+X (2)

k )Y (2)
k = X (1)

e+1Y
(1)
e + ∑

1≤ j≤n−1
(X (1)
1 + · · ·+X (1)

j )Y (1)
j .

Therefore, ∣∣∣∣∣ ∑
1≤ j≤ j′≤n−1

X (1)
j Y (1)

j′

∣∣∣∣∣≤ ∣∣∣X (1)
e+1Y

(1)
e

∣∣∣+ ∣∣∣∣∣ ∑
1≤k≤k′≤n−2

X (2)
k Y (2)

k′

∣∣∣∣∣ .
Taking expectations,

E

[ ∣∣∣∣∣ ∑
1≤ j≤ j′≤n−1

X (1)
j Y (1)

j′

∣∣∣∣∣
]

≤ (n−2)−( 1
α p+

1
βq )Vα,β

p,q

(
X(1),Y(1)

)
+E

[ ∣∣∣∣∣ ∑
1≤k≤k′≤n−2

X (2)
k Y (2)

k′

∣∣∣∣∣
]

≤ (n−2)−( 1
α p+

1
βq )Vα,β

p,q (X,Y)+E

[ ∣∣∣∣∣ ∑
1≤k≤k′≤n−2

X (2)
k Y (2)

k′

∣∣∣∣∣
]

.

Repetition of the same procedure leads to the desired inequality:

E

[ ∣∣∣∣∣ ∑
1≤i≤i′≤n

XiYi′

∣∣∣∣∣
]
≤

{
(n−1)−( 1

α p+
1

βq ) +(n−2)−( 1
α p+

1
βq ) + · · ·+1

}
×Vα,β

p,q (X,Y)+E
[∣∣∣X (n−1)

1 Y (n−1)
1

∣∣∣]
≤

{
1+ζ

( 1
α p

+
1

βq
)}

Vα,β
p,q (X,Y),

where X (n−1)
1 = X1+X2+ · · ·+Xn and Y

(n−1)
1 = Y1+Y2+ · · ·+Yn.

3 Inequalities on mean variations of measurable processes

In this section we establish several inequalities which are employed in deriving
Theorems A and B in the subsequent sections. A measurable process X = (Xu) =
X(u,ω)(u ∈ [0,T ]) is a real-valued function defined on [0,T ]×Ω which isB([0,T ])×
F -measurable.

Definition 3.1. Let 0< α ≤ 1, 1< p< ∞. Let X = (Xu) be a measurable process with
Xu ∈ Lp(Ω,F ,P) (u ∈ [0,T ]). The mean variation of X over an interval [s, t] (⊂ [0,T ])
of order (p,α) is defined by

Vα
p (X ; [s, t]) := sup

Δ

(
n

∑
k=1

E[|Xtk −Xtk−1 |p]α
) 1

α p

,
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where the supremum is taken over all finite partitions Δ = {s = t0 < t1 < · · · < tn = t}
of the interval [s, t].

Definition 3.2. Let p,q,α,β be positive real numbers satisfying condition (2.1). Let
X =(Xu) andY =(Yu) be measurable processes with Xu ∈Lp(Ω,F ,P),Yu ∈Lq(Ω,F ,P)
(u ∈ [0,T ]). The mean variation of the pair (X ,Y ) over an interval [s, t] (⊂ [0,T ]) of
order ((p,α);(q,β )) is defined by

Vα,β
p,q (X ,Y ; [s, t]) := sup

Δ

(
n

∑
k=1

E[|Xtk −Xtk−1 |p]α
) 1

α p
(

n

∑
k=1

E[|Ytk −Ytk−1 |q]β
) 1

βq

,

where the supremum is taken over all finite partitions Δ = {s = t0 < t1 < · · · < tn = t}
of the interval [s, t].

Remark 3.3. By the above definition, the following inequality holds:

Vα,β
p,q (X ,Y ; [s, t]) ≤ Vα

p (X ; [s, t])Vβ
q (Y ; [s, t]).

Moreover, for α ′ > α ,

Vα
p (X ; [s, t]) < ∞ =⇒ Vα ′

p (X ; [s, t]) < ∞.

The next lemma provides a basic inequality on mean variations of measurable pro-
cesses.

Lemma 3.4. Let p,q,α,β be positive real numbers satisfying condition (2.1). Let X =
(Xu) andY =(Yu) be measurable processes with Xu ∈Lp(Ω,F ,P) andYu ∈Lq(Ω,F ,P)
(u ∈ [0,T ]). Then for any real numbers 0≤ s< t < r ≤ T ,

Vα,β
p,q (X ,Y ; [s, t])+Vα,β

p,q (X ,Y ; [t,r]) ≤ Vα,β
p,q (X ,Y ; [s,r]) . (3.1)

Proof. Fix a finite partition Δ = {s = t0 < t1 < · · · < tm = t < tm+1 < · · · < tn = r} of
the interval [s,r]. Noting 1/α,1/β ≥ 1 and using the Hölderʼs inequality,

(
m

∑
�=1

E[|Xt� −Xt�−1 |p]α
) 1

α p
(

m

∑
�=1

E[|Yt� −Yt�−1 |q]β
) 1

βq

+

(
n

∑
�=m+1

E[|Xt� −Xt�−1 |p]α
) 1

α p
(

n

∑
�=m+1

E[|Yt� −Yt�−1 |q]β
) 1

βq
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≤
⎧⎨⎩

(
m

∑
�=1

E[|Xt� −Xt�−1 |p]α
) 1

α

+

(
n

∑
�=m+1

E[|Xt� −Xt�−1 |p]α
) 1

α
⎫⎬⎭

1
p

×
⎧⎨⎩

(
m

∑
�=1

E[|Yt� −Yt�−1 |q]β
) 1

β

+

(
n

∑
�=m+1

E[|Yt� −Yt�−1 |q]β
) 1

β
⎫⎬⎭

1
q

.

≤
(

n

∑
�=1

E[|Xt� −Xt�−1 |p]α
) 1

α p
(

n

∑
�=1

E[|Yt� −Yt�−1 |q]β
) 1

βq

≤ Vα,β
p,q (X ,Y ; [s,r]) .

The desired result follows immediately upon taking the supremum over Δ.

The Riemann-Stieltjes approximating sum of a pair (X ,Y ) of measurable processes
over a partition Δ = {s= t0 < t1 < · · · < tn = t} of [s, t] is defined to be

FΔ(X ,Y ) :=
n

∑
�=1

Xt�(Yt� −Yt�−1) = ∑
1≤�≤m≤n

Δ�XΔmY +Xs(Yt −Ys), (3.2)

where Δ�X = Xt� −Xt�−1 and ΔmY = Ytm −Ytm−1 . (3.2) can be rewritten as

FΔ(X ,Y ) = Xt(Yt −Ys)+ ∑
1≤m≤�≤n

(−Δ�XΔmY )+
n

∑
�=1

Δ�XΔ�Y. (3.3)

Applying Lemma 2.3 to X= (Δ1X ,Δ2X , . . . ,ΔnX) and Y= (Δ1Y,Δ2Y, . . . ,ΔnY ),

E

[∣∣ ∑
1≤�≤m≤n

Δ�XΔmY
∣∣]≤

{
1+ζ

( 1
α p

+
1

βq
)}
Vα,β
p,q (X,Y).

By the obvious inequality Vα,β
p,q (X,Y) ≤ Vα,β

p,q (X ,Y ; [s, t]) ,

E

[∣∣ ∑
1≤�≤m≤n

Δ�XΔmY
∣∣]≤

{
1+ζ

( 1
α p

+
1

βq
)}
Vα,β
p,q (X ,Y ; [s, t]) . (3.4)

Therefore, it follows from (3.2) that

E [|FΔ(X ,Y )−Xs(Yt −Ys)|] ≤
{
1+ζ

( 1
α p

+
1

βq
)}

Vα,β
p,q (X ,Y ; [s, t]) . (3.5)

Similarly, (3.3) and (3.4) together with the Hölderʼs inequality yield

E [|FΔ(X ,Y )−Xt(Yt −Ys)|] ≤
{
2+ζ

( 1
α p

+
1

βq
)}

Vα,β
p,q (X ,Y ; [s, t]) . (3.6)

Lemma 3.5 generalizes the inequalities (3.5) and (3.6).
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Lemma 3.5. Let p,q,α,β be positive real numbers satisfying condition (2.1). Let X =
(Xu) andY =(Yu) be measurable processes with Xu ∈Lp(Ω,F ,P) andYu ∈Lq(Ω,F ,P)
(u∈ [0,T ]). Let Δ = {s= t0 < t1 < · · ·< t j = ξ < t j+1 < · · ·< tn = t} be a finite partition
of an interval [s, t]. Then

E
[∣∣FΔ(X ,Y )−Xξ (Yt−Ys)

∣∣]≤{
2+ζ (

1
α p

+
1

βq
)
}
Vα,β
p,q (X ,Y ; [s, t]) . (3.7)

Proof. By the equalities (3.2) and (3.3),

|FΔ(X ,Y )−Xξ (Yt−Ys)| (3.8)

≤
∣∣∣∣∣ j

∑
�=1

Xt�(Yt� −Yt�−1)−Xξ (Yξ −Ys)
∣∣∣∣∣+

∣∣∣∣∣ n

∑
�= j+1

Xt�(Yt� −Yt�−1)−Xξ (Yt−Yξ )

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
1≤m≤�≤ j

Δ�XΔmY

∣∣∣∣∣+
∣∣∣∣∣ j

∑
�=1

Δ�XΔ�Y

∣∣∣∣∣+
∣∣∣∣∣ ∑
j+1≤�≤m≤n

Δ�XΔmY

∣∣∣∣∣ .
The Hölderʼs inequality yields

E

[∣∣∣∣∣ j

∑
�=1

Δ�XΔ�Y

∣∣∣∣∣
]
≤ Vα,β

p,q (X ,Y ; [s,ξ ]) .

Hence, taking expectations in (3.8) and using Lemma 3.4 and the inequality (3.4),

E
[∣∣FΔ(X ,Y )−Xξ (Yt−Ys)

∣∣]
≤

{
1+ζ (

1
α p

+
1

βq
)
}{

Vα,β
p,q (X ,Y ; [s,ξ ])+Vα,β

p,q (X ,Y ; [ξ , t])
}

+Vα,β
p,q (X ,Y ; [s,ξ ])

≤
{
2+ζ (

1
α p

+
1

βq
)
}
Vα,β
p,q (X ,Y ; [s, t]) ,

which completes the proof.

Given a finite partition Δ = {s= t0 < t1 < · · ·< tn = t} and real numbers ξ = {ξk}nk=1
such that tk−1 ≤ ξk ≤ tk (1≤ k ≤ n), ξ is said to accompany the partition Δ. Define

Fξ
Δ(X ,Y ) :=

n

∑
k=1

Xξk
(
Ytk −Ytk−1

)
.

Lemma 3.6. Let p,q,α,β be positive real numbers satisfying condition (2.1). Let X =
(Xu) andY =(Yu) be measurable processes with Xu ∈Lp(Ω,F ,P) andYu ∈Lq(Ω,F ,P)
(u ∈ [0,T ]). Let Δ = {s = t0 < t1 < · · · < tn = t} be a finite partition of an interval
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[s, t] which is accompanied by real numbers ξ = {ξk}nk=1. Let Δ̂ be the finite partition
constructed by adding ξkʼs to Δ. Let Δ̃ be an arbitrary refinement of Δ̂. Then

E
[∣∣FΔ̃(X ,Y )−Fξ

Δ (X ,Y )
∣∣]≤{

2+ζ
( 1

α p
+
1

βq
)}

∑
k

Vα,β
p,q (X ,Y ; [tk−1, tk]) (3.9)

≤
{
2+ζ

( 1
α p

+
1

βq
)}

Vα,β
p,q (X ,Y ; [s, t]) .

Proof. Using the inequality (3.7) to the interval [tk−1, tk],

E
[∣∣∣FΔ̃(X ,Y )

∣∣
[tk−1,tk]

−Xξk(Ytk −Ytk−1)
∣∣∣]

≤
{
2+ζ

( 1
α p

+
1

βq
)}

Vα,β
p,q (X ,Y ; [tk−1, tk]) ,

where FΔ̃(X ,Y )
∣∣
[tk−1,tk]

denotes the restriction of FΔ̃(X ,Y ) to the interval [tk−1, tk]. Sum-
ming over k and applying Lemma 3.4, the desired inequality (3.9) follows.

An important corollary of Lemma 3.6 is the following estimate on the Riemann-
Stieltjes approximating sums with respect to two partitions.

Corollary 3.7. Let p,q,α,β be positive real numbers satisfying condition (2.1). Let
Δ = {s= t0 < t1 < · · · < tn = t} and Δ′ = {s= t ′0 < t1 < · · · < t ′n′ = t} be two partitions
of the same interval [s, t] accompanied by real numbers ξ = {ξk}nk=1 and ξ ′ = {ξ ′

�}n
′

�=1,
respectively. Then

E
[∣∣Fξ

Δ (X ,Y )−Fξ ′
Δ′ (X ,Y )

∣∣] (3.10)

≤
{
2+ζ

( 1
α p

+
1

βq
)}

×
(

∑
k

Vα,β
p,q (X ,Y ; [tk−1, tk]) + ∑

�

Vα,β
p,q

(
X ,Y ; [t ′�−1, t

′
�]
))

≤ 2
{
2+ζ (

1
α p

+
1

βq
)
}
Vα,β
p,q (X ,Y ; [s, t]) .

4 Young-type integrals constructed via measurable processes
and their convergence theorems

In this section we discusses the existence of Young-type integrals with respect to
measurable processes, followed by consideration of convergence results of such inte-
grals.
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First, let p,q be positive real numbers satisfying 1 < p,q < ∞. Let X = (Xu) =
X(u,ω),Y = (Yu) = Y (u,ω) be measurable processes defined on [0,T ]×Ω such that
Xu ∈ Lp(Ω,F ,P), Yu ∈ Lq(Ω,F ,P) (u ∈ [0,T ]). For convenience, set

σ(u,v) := E[|Xu−Xv|p] (u,v ∈ [0,T ]),

γ(u,v) := E[|Yu−Yv|q] (u,v ∈ [0,T ]),

Osc σ(δ ) := sup
|u−v|<δ
0≤u,v≤T

σ(u,v) (0< δ ≤ T )

Osc γ(δ ) := sup
|u−v|<δ
0≤u,v≤T

γ(u,v) (0< δ ≤ T )

Lemma 4.1. Let α > 0 and 1< p< ∞. Suppose that X = (Xu) is a measurable process
on [0,T ]×Ω with Vα

p (X ; [0,T ]) < ∞ and that σ(u,v) is continuous on [0,T ]× [0,T ].
Then for any 0≤ s< t ≤ T and α ′ > α ,

Vα ′
p (X ; [s, t]) ≤ Vα

p (X ; [s, t])
α
α ′ Osc σ(t− s)

α′−α
α′ p . (4.1)

Proof. Any finite partition Δ = {s= t0 < t1 < · · · < tn = t} of the interval [s, t] satisfies
the inequality

∑
k

E
[∣∣Xtk −Xtk−1

∣∣p]α ′
≤ Osc σ(t− s)(α ′−α) ∑

k

E
[∣∣Xtk −Xtk−1

∣∣p]α
,

which yields(
∑
k

E
[∣∣Xtk −Xtk−1

∣∣p]α ′
) 1

α ′ p
≤ Osc σ(t− s)

α′−α
α ′ p Vα

p (X ; [s, t])
α
α′ .

The inequality (4.1) follows immediately upon taking the supremum over Δ.

A similar discussion establishes the following:

Lemma 4.2. Let β > 0 and 1< q< ∞. Suppose that Y = (Yu) is a measurable process
on [0,T ]×Ω with Vβ

q (Y ; [0,T ]) < ∞ and that γ(u,v) is continuous on [0,T ]× [0,T ].
Then for any 0≤ s< t ≤ T and β ′ > β ,

Vβ ′
q (Y ; [s, t]) ≤ Vβ

q (Y ; [s, t])
β
β ′ Osc γ(t− s)

β ′−β
β ′q . (4.2)

The next lemma states that, given a finite partition Δ = {s= t0 < t1 < · · ·< tn = t} of
an interval [s, t], the sum of the mean variations over the intervals [tk−1, tk] is dominated
by the mean variation over the whole interval [s, t].
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Lemma 4.3. Let p,q,α,β be positive real numbers satisfying condition (2.1). Let α ′,β ′

be real numbers such that α ′ > α, β ′ > β , 1/(α ′p)+1/(βq) > 1, 1/(α p)+1/(β ′q) >

1. Suppose that X = (Xu), Y = (Yu) are measurable processes on [0,T ]×Ω such that
Xu ∈ Lp(Ω,F ,P), Yu ∈ Lq(Ω,F ,P) (0≤ u≤ T ). Then for any 0≤ s= t0 < t1 < · · · <
tn = t ≤ T ,

n

∑
k=1

Vα
p (X ; [tk−1, tk])

α
α′ Vβ

q (Y ; [tk−1, tk]) ≤ Vα
p (X ; [s, t])

α
α′ Vβ

q (Y ; [s, t]) , (4.3)

n

∑
k=1

Vα
p (X ; [tk−1, tk])Vβ

q (Y ; [tk−1, tk])
β
β ′ ≤ Vα

p (X ; [s, t])Vβ
q (Y ; [s, t])

β
β ′ . (4.4)

Proof. By the Hölderʼs inequality,

n

∑
k=1

Vα
p (X ; [tk−1, tk])

α
α ′ Vβ

q (Y ; [tk−1, tk])

=
n

∑
k=1

{
Vα
p (X ; [tk−1, tk])α p} 1

α ′ p
{
Vβ
q (Y ; [tk−1, tk])βq} 1

βq

≤
(

n

∑
k=1

Vα
p (X ; [tk−1, tk])α p

) 1
α ′ p

(
n

∑
k=1

Vβ
q (Y ; [tk−1, tk])βq

) 1
βq

≤ Vα
p (X ; [s, t])

α
α′ Vβ

q (Y ; [s, t]) ,

yielding (4.3). A similar argument yields the inequality (4.4).

Let p,q,α,β ,X ,Y be as in Lemma 4.3. Consider the following conditions (A.1) and
(A.2):

(A.1) Vα
p (X ; [0,T ]) < ∞ and Vβ

q (Y ; [0,T ]) < ∞.
(A.2) At least one of σ(u,v) and γ(u,v) is jointly continuous on [0,T ]× [0,T ].

The next theorem establishes the Cauchy condition for Riemann-Stieltjes approxi-
mating sums, which plays an essential role in defining Young-type integrals with respect
to measurable processes.

Theorem 4.4. Let p,q,α,β be positive real numbers satisfying condition (2.1). Let
X = (Xu),Y = (Yu) be measurable processes on [0,T ]×Ω such that Xu ∈ Lp(Ω,F ,P),
Yu ∈ Lq(Ω,F ,P) (0 ≤ u ≤ T ). Suppose that the pair (X ,Y ) satisfies conditions (A.1)
and (A.2). Fix 0< t ≤ T . Then for any ε > 0, there exists δ = δ (ε) > 0 for which

|Δ|, |Δ′| ≤ δ =⇒ E
[∣∣∣Fξ

Δ(X ,Y )−Fξ ′
Δ′(X ,Y )

∣∣∣]≤ ε, (4.5)

where Δ and Δ′ are finite partitions of the interval [0, t] which are accompanied by real
numbers ξ and ξ ′ , respectively.



14 Young-type integrals with respect to measurable processes

Remark 4.5. The positive real number δ = δ (ε) appearing in Theorem 4.4 is deter-
mined by Vα

p (X ; [0, t]), Vβ
q (Y ; [0, t]) along with Osc σ(δ ) if σ(u,v) is jointly continuous,

or along with Osc γ(δ ) if γ(u,v) is jointly continuous.

Proof. Let Δ = {0= t0< · · ·< tn = t} and Δ′ = {0= t ′0< · · ·< t ′n′ = t}. Noting condition
(A.2), assume that γ(u,v) is jointly continuous [0,T ]× [0,T ]. Take β ′ satisfying β ′ > β
and 1/(α p) + 1/(β ′q) > 1. Since p, q, α, β ′ satisfy the condition (2.1), recalling
Remark 3.3 and using the inequality (3.10),

E
[∣∣∣Fξ

Δ(X ,Y )−Fξ ′
Δ′(X ,Y )

∣∣∣]
≤

{
2+ζ (

1
α p

+
1

β ′q
)
}(

∑
k

Vα,β ′
p,q (X ,Y ; [tk−1, tk])+∑

�

Vα,β ′
p,q

(
X ,Y ; [t ′�−1, t

′
�]
))

≤
{
2+ζ (

1
α p

+
1

β ′q
)
}(

∑
k

Vα
p (X ; [tk−1, tk])Vβ ′

q (Y ; [tk−1, tk])

+∑
�

Vα
p

(
X ; [t ′�−1, t

′
�]
)
Vβ ′
q

(
Y ; [t ′�−1, t

′
�]
))

.

Hence, (4.2) and (4.4) together yield

E
[∣∣∣Fξ

Δ(X ,Y )−Fξ ′
Δ′(X ,Y )

∣∣∣]
≤

{
2+ζ (

1
α p

+
1

β ′q
)
}(

∑
k

Vα
p (X ; [tk−1, tk])Vβ

q (Y ; [tk−1, tk])
β
β ′ Osc γ(|Δ|)

β ′−β
β ′q

+ ∑
�

Vα
p

(
X ; [t ′�−1, t

′
�]
)
Vβ
q

(
Y ; [t ′�−1, t

′
�]
) β

β ′ Osc γ(|Δ′|)
β ′−β
β ′q

)

≤ 2
{
2+ζ (

1
α p

+
1

β ′q
)
}
×Osc γ(|Δ|∨ |Δ′|)

β ′−β
β ′q Vα

p (X ; [0, t])Vβ
q (Y ; [0, t])

β
β ′ .

Since γ(u,v) is jointly continuous, Osc γ(|Δ| ∨ |Δ′|) −→ 0 as |Δ|, |Δ′| → 0. Therefore,
the desired result follows. When σ(u,v) is jointly continuous, a similar discussion with
the help of the inequalities (4.1) and (4.3) yields the same result.

We are now ready to establish one of the main theorems of this paper, which states
that a Young-type integral can be defined as a limit of Riemann-Stieltjes approximating
sums.

Theorem A. Let p,q,α,β be positive real numbers satisfying condition (2.1). Let X =
(Xu),Y = (Yu) be measurable processes on [0,T ]×Ω such that Xu ∈ Lp(Ω,F ,P), Yu ∈
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Lq(Ω,F ,P) (0 ≤ u ≤ T ). Suppose that the pair (X ,Y ) satisfies conditions (A.1) and
(A.2). Then for each fixed t ∈ (0,T ], there exists a unique F -measurable, integrable
real-valued function H depending on t for which the following holds: for ε > 0 and
δ = δ (ε) appearing in Theorem 4.4,

|Δ| ≤ δ =⇒ E[|H−Fξ
Δ(X ,Y )|] ≤ ε, (4.6)

where Δ is a finite partition of the interval [0, t] which is accompanied by real number
ξ .

Proof. Let
{

Δ(n)
}∞
n=1 be a sequence of finite partitions of [0, t] with lim

n→∞

∣∣∣Δ(n)
∣∣∣ = 0.

Let Hn := FΔ(n)(X ,Y ) (n ∈ N), the Riemann-Stieltjes approximating sum of the pair
(X ,Y ) over Δ(n). Then {Hn}∞

n=1 forms a Cauchy sequence in L
1(Ω,F ,P) due to The-

orem 4.4. Since L1(Ω,F ,P) is complete, there exists H ∈ L1(Ω,F ,P) for which
lim
n→∞

E [|Hn−H|] = 0. We only need to show that H satisfies (4.6). If (4.6) failed, then

there would be a positive real number ε0 for which one can find a sequence
{

Δ̃(m)
}
of fi-

nite partitions of [0, t], each accompanied by real numbers ξ̃ (m), such that lim
m→∞

∣∣∣Δ̃(m)
∣∣∣= 0

and E

[∣∣∣∣H−Fξ̃ (m)

Δ̃(m) (X ,Y )
∣∣∣∣] > ε0. If

∣∣Δ(n)
∣∣≤ δ ( ε0

2 ) and
∣∣Δ̃(m)

∣∣≤ δ ( ε0
2 ), then by Theorem

4.4,

E

[∣∣∣∣FΔ(n)(X ,Y )−Fξ̃ (m)

Δ̃(m) (X ,Y )
∣∣∣∣]≤ ε0

2
.

Take a sufficiently large n so that E [|Hn−H|] ≤ ε0
2 . Then we have

ε0 < E

[∣∣∣∣H−Fξ̃ (m)

Δ̃(m) (X ,Y )
∣∣∣∣]

≤ E [|H−FΔ(n) (X ,Y )|]+E

[∣∣∣∣FΔ(n)(X ,Y )−Fξ̃ (m)

Δ̃(m) (X ,Y )
∣∣∣∣]

≤ ε0
2

+
ε0
2

= ε0,

a contradiction. Thus, H satisfies (4.6).

Definition 4.6. The integrable function H depending on t ∈ (0,T ] in Theorem A is
called the Young-type integral of the pair (X ,Y ) of measurable processes over the inter-

val [0, t] and is denoted by H =
∫ t

0
XudYu. For t = 0, we set

∫ t

0
XudYu = 0.

The remainder of this section is devoted to convergence results of sequences of
Young-type integrals. Namely, if two sequences

{
Xn

}
and

{
Yn

}
of measurable pro-

cesses converge to measurable processes X and Y respectively, then each of the three
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sequences
{∫ t
0 XudY

n
u

}
,
{∫ t
0 X

n
u dYu

}
and

{∫ t
0 X

n
u dY

n
u

}
is shown to converge under certain

conditions.

Theorem 4.7. Let p,q,α,β be positive real numbers satisfying condition (2.1). Let X =
(Xu),Y = (Yu),Yn = (Ynu ) (n ∈N) be measurable processes on [0,T ]×Ω such that Xu ∈
Lp(Ω,F ,P), Yu ∈ Lq(Ω,F ,P), Y nu ∈ Lq(Ω,F ,P) (0≤ u≤ T,n∈N). Suppose that each
of the pairs (X ,Y ) and (X ,Yn) (n∈N) satisfies conditions (A.1) and (A.2). In condition
(A.2), assume that σ(u,v) is jointly continuous on [0,T ]× [0,T ]. Fix t ∈ (0,T ]. Suppose
also that E[|Ynu −Yu|q] −→ 0 as n→ ∞ for each u ∈ [0, t] and supn∈NV

β
q (Yn; [0, t]) < ∞.

Then

Hn =
∫ t

0
XudY

n
u
n→∞−→ H =

∫ t

0
XudYu in L1(Ω,F ,P). (4.7)

Proof. Let ε > 0. In the light of Remark 4.5, δ = δ (ε) in Theorem 4.4 corresponding
to the pairs (X ,Y ) and (X ,Yn) (n ∈ N) can be taken uniformly, due to the assump-
tion supn∈NV

β
q (Yn; [0, t]) < ∞. Take any sequence

{
Δ(m)

}∞
m=1 of finite partitions of the

interval [0, t] for which lim
m→∞

|Δ(m)| = 0. For each m ∈ N with |Δ(m)| ≤ δ (ε),

E [|H−FΔ(m)(X ,Y )|] ≤ ε and E [|Hn−FΔ(m)(X ,Yn)|] ≤ ε.

By Hölderʼs inequality,

E [|FΔ(m) (X ,Y )−FΔ(m) (X ,Yn)|]

= E

[∣∣∣∣∣∑k Xt(m)
k

(Y
t(m)
k

−Y
t(m)
k−1

)−∑
k

X
t(m)
k

(Yn
t(m)
k

−Yn
t(m)
k−1

)

∣∣∣∣∣
]

≤ ∑
k

E
[∣∣∣X

t(m)
k

∣∣∣p] 1
p
E

[∣∣∣∣(Ynt(m)
k

−Y
t(m)
k

)− (Yn
t(m)
k−1

−Y
t(m)
k−1

)
∣∣∣∣q] 1

q

−→ 0 as n→ ∞,

where Δ(m) = {0= t(m)
0 < t(m)

1 < · · · < t(m)
n(m) = t}. Hence,

lim
n→∞

E [|H−Hn|] ≤ lim
n→∞

E [|Hn−FΔ(m)(X ,Yn)|]+ lim
n→∞

E [|H−FΔ(m)(X ,Y )|]
+ lim

n→∞
E [|FΔ(m) (X ,Y )−FΔ(m)(X ,Yn)|]

≤ 2ε.

Since ε is arbitrary, it follows that lim
n→∞

E [|H−Hn|] = 0.

We can obtain the following theorems in the same way.
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Theorem 4.8. Let p,q,α,β be positive real numbers satisfying condition (2.1). Let
X = (Xu),Y = (Yu),Xn = (Xnu ) (n ∈ N) be measurable processes on [0,T ]×Ω such
that Xu ∈ Lp(Ω,F ,P), Yu ∈ Lq(Ω,F ,P), Xnu ∈ Lp(Ω,F ,P) (0 ≤ u ≤ T,n ∈ N). Sup-
pose that each of the pairs (X ,Y ) and (Xn,Y ) (n ∈ N) satisfies conditions (A.1) and
(A.2). In condition (A.2), assume that γ(u,v) is jointly continuous on [0,T ]× [0,T ].
Fix t ∈ (0,T ]. Suppose also that E[|Xnu −Xu|p] −→ 0 as n→ ∞ for each u ∈ [0, t] and
supn∈NVα

p (Xn; [0, t]) < ∞. Then

Hn =
∫ t

0
Xnu dYu

n→∞−→ H =
∫ t

0
XudYu in L1(Ω,F ,P). (4.8)

Theorem 4.9. Let p,q,α,β be positive real numbers satisfying condition (2.1). Let
X = (Xu),Y = (Yu),Xn = (Xnu ),Yn = (Ynu ) (n∈N) be measurable processes on [0,T ]×Ω
such that Xu,Xnu ∈ Lp(Ω,F ,P), Yu,Ynu ∈ Lq(Ω,F ,P) (0≤ u≤ T, n ∈N). Suppose that
each of the pairs (X ,Y ) and (Xn,Yn) (n ∈ N) satisfies conditions (A.1). Assume either
that σn(u,v) := E[|Xnu −Xnv |p] is jointly continuous for each n ∈ N and converges uni-
formly to σ(u,v) on [0,T ]× [0,T ], or that γn(u,v) := E[|Ynu −Ynv |q] is jointly continuous
for each n ∈ N and converges uniformly to γ(u,v) on [0,T ]× [0,T ]. Fix t ∈ (0,T ]. Sup-
pose also that E[|Xnu −Xu|p] −→ 0 and E[|Ynu −Yu|q] −→ 0 as n→ ∞ for each u ∈ [0, t].
Moreover, suppose that supn∈NVα

p (Xn; [0, t]) < ∞ and supn∈NV
β
q (Yn; [0, t]) < ∞. Then

Hn =
∫ t

0
Xnu dY

n
u
n→∞−→ H =

∫ t

0
XudYu in L1(Ω,F ,P). (4.9)

Proof. For a finite partition Δ = {0= t0 < t1 < · · ·< tm = t} of [0, t], Hölderʼs inequality
yields

E [|FΔ(Xn,Yn)−FΔ(X ,Y )|]

≤ E

[∣∣∣∣∣∑k Xntk
(
Yntk −Yntk−1

)
−∑

k

Xtk

(
Yntk −Yntk−1

)∣∣∣∣∣
]

+E

[∣∣∣∣∣∑k Xtk
(
Yntk −Yntk−1

)
−∑

k

Xtk(Ytk −Ytk−1)
∣∣∣∣∣
]

≤ ∑
k

E
[∣∣Xntk −Xtk

∣∣p] 1p E [∣∣∣Yntk −Yntk−1∣∣∣q] 1q
+∑

k

E [|Xtk |p]
1
p E

[∣∣∣(Yntk −Ytk)− (Yntk−1 −Ytk−1)
∣∣∣q] 1q .

The assumption on the functions σn(u,v),σ(u,v),γn(u,v) and γ(u,v) implies that for
any ε > 0, there exists δ > 0 such that either sup

n
Osc σn(δ ) ≤ ε or sup

n
Osc γn(δ ) ≤ ε .

The proof of Theorem 4.9 is carried out in a similar way to that of Theorem 4.7.



18 Young-type integrals with respect to measurable processes

5 Uniform convergence of approximating sequences for Young-
type integrals

Theorem A in Section 4 guarantees the existence of a Young-type integral
∫ t
0 XudYu

for each fixed t ∈ (0,T ]. The aim of this section is to establish that the family of in-
tegrals

(∫ t
0 XudYu

)
t∈[0,T ] can be regarded as a measurable process defined on [0,T ]×Ω

(Theorem B).
Suppose that measurable processes X = (Xu) = X(u,ω) and Y = (Yu) = Y (u,ω)

satisfy Xu ∈ Lp(Ω,F ,P), Yu ∈ Lq(Ω,F ,P) (u ∈ [0,T ]) as well as condition (A.1).We
introduce the following additional condition:

(A.3) The function σ(u,v) = E[|Xu−Xv|p] is jointly continuous on [0,T ]× [0,T ],
sup
0≤u≤T

|Xu| and sup
0≤v,u≤T
|u−v|≤δ

|Yu−Yv| areF−measurable, and

E

[
sup
0≤u≤T

∣∣Xu∣∣p] < ∞, lim
δ→0

E

[
sup
0≤u,v≤T
|u−v|≤δ

∣∣Yu−Yv∣∣q] = 0.

For a finite partition Δ = {0 = t0 < t1 < · · · < tn = T} of the interval [0,T ] and real
numbers ξ = {ξk}nk=1 accompanying Δ, i.e., ξk ∈ [tk−1, tk] (1≤ k ≤ n), set

Fξ
Δ(X ,Y )(0) := 0,

Fξ
Δ(X ,Y )(ti) :=

i

∑
r=1

Xξr(Ytr −Ytr−1) (1≤ i≤ n).

A piecewise-linear process Fξ
Δ(X ,Y )(Δ; t) is constructed via linear interpolation as fol-

lows:

Definition 5.1. Define Fξ
Δ(X ,Y )(Δ; t) (t ∈ [0,T ]) by

Fξ
Δ(X ,Y )(Δ; t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if t = 0,

Fξ
Δ(X ,Y )(ti−1)
+ t−ti−1
ti−ti−1

(
Fξ

Δ(X ,Y )(ti)−Fξ
Δ(X ,Y )(ti−1)

)
if ti−1 < t < ti,

Fξ
Δ(X ,Y )(ti) if t = ti.

The following lemma is used to derive Theorem 5.3.

Lemma 5.2. Let q > 1. Let Y = (Yu) be a measurable process on [0,T ]×Ω such that
Yu ∈ Lq(Ω,F ,P) (0 ≤ u ≤ T ). Let τ,η be F -measurable functions on Ω satisfying
0≤ τ(ω) < η(ω) ≤ T (ω ∈ Ω). Define a measurable process Y by

Y (u,ω) = Yu(ω) =

⎧⎨⎩
Y (τ(ω),ω) if 0≤ u< τ(ω),
Y (u,ω) if τ(ω) ≤ u≤ η(ω),
Y (η(ω),ω) if η(ω) < u≤ T.
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Then

V1q
(
Y ; [0,T ]

)≤ V1q (Y ; [0,T ])+2
1
q E

⎡⎣ sup
0≤v,u≤T
|u−v|≤δ

|Yu−Yv|q
⎤⎦ 1

q

, (5.1)

where δ = sup
ω∈Ω

|η(ω)− τ(ω)|.

Proof. Let Δ = {0= t0 < t1 < · · ·< tn = T} be an arbitrary finite partition of [0,T ]. For
a fixed ω ∈ Ω such that 0≤ ti(ω)−1 < τ(ω) ≤ ti(ω) < · · · < t j(ω) < η(ω) ≤ t j(ω)+1 ≤ T ,

n

∑
r=1

∣∣Ytr(ω)−Ytr−1(ω)
∣∣q ≤ ∣∣∣Yti(ω)(ω)−Yti(ω)−1(ω)

∣∣∣q
+

j(ω)

∑
r=i(ω)+1

∣∣Ytr(ω)−Ytr−1(ω)
∣∣q+

∣∣∣Yt j(ω)+1(ω)−Yt j(ω)(ω)
∣∣∣q .

Note ∣∣∣Yti(ω)(ω)−Yti(ω)−1(ω)
∣∣∣ =

{ ∣∣∣Yti(ω)(ω)−Yτ(ω)(ω)
∣∣∣ if ti(ω) ≤ η(ω),∣∣Yη(ω)(ω)−Yτ(ω)(ω)
∣∣ if ti(ω) > η(ω),

≤ sup
0≤u,v≤T
|u−v|≤δ

|Yu(ω)−Yv(ω)| .

A similar observation yields∣∣∣Yt j(ω)+1(ω)−Yt j(ω)(ω)
∣∣∣≤ sup

0≤u,v≤T
|u−v|≤δ

|Yu(ω)−Yv(ω)| .

Hence,

n

∑
r=1

∣∣Ytr(ω)−Ytr−1(ω)
∣∣q ≤ n

∑
r=1

∣∣Ytr(ω)−Ytr−1(ω)
∣∣q+2 sup

0≤u,v≤T
|u−v|≤δ

|Yu(ω)−Yv(ω)|q .

It can be easily checked that this inequality is valid even for ω outside the above-
specified subset of Ω. Therefore, it follows that

n

∑
r=1

E
[∣∣Ytr(ω)−Ytr−1(ω)

∣∣q]≤ V1q (Y ; [0,T ])q+2E

⎡⎣ sup
0≤v,u≤T
|u−v|≤δ

|Yu(ω)−Yv(ω)|q
⎤⎦ .

The desired result follows immediately upon taking the supremum over Δ.
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Theorem 5.3. Let p,q,α,β be positive real numbers satisfying (2.1) with β = 1. Let
X = (Xu), Y = (Yu) be measurable processes on [0,T ]×Ω such that Xu ∈ Lp(Ω,F ,P),
Yu ∈ Lq(Ω,F ,P) (0 ≤ u ≤ T ). Suppose that the pair (X ,Y ) satisfies conditions (A.1)
and (A.3). Then for any ε > 0, there exists δ > 0 such that

|Δ| , ∣∣Δ′∣∣≤ δ =⇒ E

[
sup
0≤t≤T

∣∣∣Fξ
Δ(X ,Y )(Δ; t)−Fξ ′

Δ′(X ,Y )(Δ′; t)
∣∣∣]≤ ε, (5.2)

where Δ and Δ′ are finite partitions of [0,T ], and ξ and ξ ′ accompany Δ and Δ′ respec-
tively.

Proof. We may assume that Δ′ = {0 = t ′0 < t ′1 < · · · < t ′m = T} is a refinement of Δ =
{0= t0 < t1 < · · · < tn = T}. Define a process Fξ ′

Δ′(X ,Y )(Δ; t) (t ∈ [0,T ]) by

Fξ ′
Δ′(X ,Y )(Δ; t) =

⎧⎪⎨⎪⎩
0 if t = 0,
t−ti−1
ti−ti−1

(
Fξ ′

Δ′(X ,Y )(ti)−Fξ ′
Δ′(X ,Y )(ti−1)

)
if ti−1 < t < ti,

Fξ ′
Δ′(X ,Y )(ti) if t = ti.

By the triangle inequality,

E

[
sup
0≤t≤T

∣∣∣Fξ
Δ(X ,Y )(Δ; t)−Fξ ′

Δ′(X ,Y )(Δ′; t)
∣∣∣]

≤ E

[
sup
0≤t≤T

∣∣∣Fξ
Δ(X ,Y )(Δ; t)−Fξ ′

Δ′(X ,Y )(Δ; t)
∣∣∣]

+E

[
sup
0≤t≤T

∣∣∣Fξ ′
Δ′(X ,Y )(Δ; t)−Fξ ′

Δ′(X ,Y )(Δ′; t)
∣∣∣]

=: I1+ I2.

Writing ξ = {ξk} and ξ ′ = {ξ ′
j},

I1 = E

[
max
0≤i≤n

∣∣∣Fξ
Δ(X ,Y )(Δ; ti)−Fξ ′

Δ′(X ,Y )(Δ; ti)
∣∣∣]

≤
n

∑
k=1

E

⎡⎣∣∣∣∣∣∣Xξk(Ytk −Ytk−1)− ∑
tk−1<t ′j≤tk

Xξ ′
j
(Yt ′j −Yt ′j−1)

∣∣∣∣∣∣
⎤⎦ .

Take a real number α ′ satisfying α ′ > α and 1/(α ′p)+1/q> 1. Then for each 1≤ k≤
n, the inequality (3.7) yields

E

⎡⎣∣∣∣∣∣∣Xξk(Ytk −Ytk−1)− ∑
tk−1<t ′j≤tk

Xξ ′
j
(Yt ′j −Yt ′j−1)

∣∣∣∣∣∣
⎤⎦

≤
{
2+ζ (

1
α ′p

+
1
q
)
}
Vα ′,1
p,q (X ,Y ; [tk−1, tk]) .
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Hence, using Remark 3.3 and Lemma 4.1 along with the inequality (4.3),

I1 ≤
{
2+ζ (

1
α ′p

+
1
q
)
} n

∑
k=1

Vα ′,1
p,q (X ,Y ; [tk−1, tk])

≤
{
2+ζ (

1
α ′p

+
1
q
)
} n

∑
k=1

Vα ′
p (X ; [tk−1, tk])V1q (Y ; [tk−1, tk])

≤
{
2+ζ (

1
α ′p

+
1
q
)
} n

∑
k=1

Vα
p (X ; [tk−1, tk])

α
α ′ V1q (Y ; [tk−1, tk])Osc σ(|Δ|) α ′−α

α ′ p

≤
{
2+ζ (

1
α ′p

+
1
q
)
}
Vα
p (X ; [0,T ])

α
α ′ V1q (Y ; [0,T ])Osc σ(|Δ|) α′−α

α ′ p .

Next, we estimate

I2 = E

[
sup
0≤t≤T

∣∣∣Fξ ′
Δ′(X ,Y )(Δ; t)−Fξ ′

Δ′(X ,Y )(Δ′; t)
∣∣∣] . (5.3)

The supremum is attained at one of the division points t ′0, t
′
1, · · · , t ′m of the partition Δ′.

For each ω ∈ Ω, let t ′k(ω) be the smallest real number of these points attaining the supre-
mum in (5.3). And take 0< i(ω) ≤ n for which ti(ω)−1 < t ′k(ω) ≤ ti(ω). Define

X̃t(ω) =

⎧⎪⎨⎪⎩
Xti(ω)−1(ω) if 0≤ t ≤ ti(ω)−1,
Xt(ω) if ti(ω)−1 < t < ti(ω),

Xti(ω)(ω) if ti(ω) ≤ t ≤ T,

and

X̂t(ω) =

{
X̃t(ω) if 0≤ t < t ′k(ω),

Xt ′k(ω)
(ω) if t ′k(ω) ≤ t ≤ T.

Define Ỹt(ω) and Ŷt(ω) in a similar way. X̃ ,Ỹ , X̂ ,Ŷ are all measurable processes on
[0,T ]×Ω. To estimate (5.3), we first deal with the inside of the expectation sign on the
right hand side:

sup
0≤t≤T

∣∣∣Fξ ′
Δ′(X ,Y )(Δ; t)−Fξ ′

Δ′(X ,Y )(Δ′; t)
∣∣∣

=
∣∣∣Fξ ′

Δ′(X̃ ,Ỹ )(Δ; t ′k)−Fξ ′
Δ′(X̂ ,Ŷ )(Δ′; t ′k)

∣∣∣
≤

∣∣∣Fξ ′
Δ′(X̃ ,Ỹ )(Δ; t ′k)−Fξ ′

Δ′(X̂ ,Ŷ )(Δ; t ′k)
∣∣∣

+
∣∣∣Fξ ′

Δ′(X̂ ,Ŷ )(Δ; t ′k)−Fξ ′
Δ′(X̂ ,Ŷ )(Δ′; t ′k)

∣∣∣
=: J1+ J2.
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Using the inequality t ′k−ti−1
ti−ti−1 ≤ 1 and the triangle inequality,

J1 =

∣∣∣∣∣∣ t
′
k− ti−1
ti− ti−1 ∑

ti−1<t ′j≤ti
Xξ ′

j

(
Yt ′j −Yt ′j−1

)
− t ′k− ti−1
ti− ti−1 ∑

ti−1<t ′j≤ti
X̂ξ ′

j

(
Ŷt ′j − Ŷt ′j−1

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ ∑
ti−1<t ′j≤ti

Xξ ′
j

(
Yt ′j −Yt ′j−1

)
−Xti

(
Yti −Yti−1

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ ∑
ti−1<t ′j≤ti

X̂ξ ′
j

(
Ŷt ′j − Ŷt ′j−1

)
−Xti

(
Ŷti − Ŷti−1

)∣∣∣∣∣∣
+

∣∣∣Xti (Yti −Yti−1)−Xti
(
Ŷti − Ŷti−1

)∣∣∣ .
By the definitions of X̂ and Ŷ ,

∑
ti−1<t ′j≤ti

X̂ξ ′
j

(
Ŷt ′j − Ŷt ′j−1

)
= ∑

ti−1<t ′j≤ti
Xξ ′

j

(
Ŷt ′j − Ŷt ′j−1

)
.

Hence,

J1 ≤
∣∣∣∣∣∣ ∑
ti−1<t ′j≤ti

Xξ ′
j

(
Yt ′j −Yt ′j−1

)
−Xti

(
Yti −Yti−1

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ ∑
ti−1<t ′j≤ti

Xξ ′
j

(
Ŷt ′j − Ŷt ′j−1

)
−Xti

(
Ŷti − Ŷti−1

)∣∣∣∣∣∣
+

∣∣∣Xti (Yti −Yti−1)−Xti
(
Ŷti − Ŷti−1

)∣∣∣
≤

n

∑
�=1

∣∣∣∣∣∣ ∑
t�−1<t ′j≤t�

Xξ ′
j

(
Yt ′j −Yt ′j−1

)
−Xt�

(
Yt� −Yt�−1

)∣∣∣∣∣∣
+

n

∑
�=1

∣∣∣∣∣∣ ∑
t�−1<t ′j≤t�

Xξ ′
j

(
Ŷt ′j − Ŷt ′j−1

)
−Xt�

(
Yt� −Yt�−1

)∣∣∣∣∣∣
+ sup
0≤u≤T

|Xu| sup
0≤u,v≤T
|u−v|≤δ

|Yu−Yv| .

Taking expectations on both sides, and then using the inequalities (3.6) and (4.3), Re-
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mark 3.3 and Lemma 4.1 and 5.2,

E[J1] ≤ E

⎡⎣ n

∑
�=1

∣∣∣∣∣∣ ∑
t�−1<t ′j≤t�

Xξ ′
j

(
Yt ′j −Yt ′j−1

)
−Xt�

(
Yt� −Yt�−1

)∣∣∣∣∣∣
⎤⎦

+E

⎡⎣ n

∑
�=1

∣∣∣∣∣∣ ∑
t�−1<t ′j≤t�

Xξ ′
j

(
Ŷt ′j − Ŷt ′j−1

)
−Xt�

(
Yt� −Yt�−1

)∣∣∣∣∣∣
⎤⎦

+E

[
sup
0≤u≤T

|Xu|p
] 1

p

E

⎡⎣ sup
0≤u,v≤T
|u−v|≤δ

|Yu−Yv|q
⎤⎦ 1

q

≤
{
2+ζ (

1
α ′p

+
1
q
)
}
Vα
p (X ; [0,T ])

α
α′ V1q (Y ; [0,T ])Osc σ(|Δ|) α ′−α

α ′ p

+
{
2+ζ (

1
α ′p

+
1
q
)
}
Vα
p (X ; [0,T ])

α
α ′ Osc σ(|Δ|) α ′−α

α′ p

×

⎛⎜⎝V1q (Y ; [0,T ])+2
1
q E

⎡⎣ sup
0≤u,v≤T
|u−v|≤δ

|Yu−Yv|q
⎤⎦ 1

q

⎞⎟⎠
+E

[
sup
0≤u≤T

|Xu|p
] 1

p

E

⎡⎣ sup
0≤u,v≤T
|u−v|≤δ

|Yu−Yv|q
⎤⎦ 1

q

.

On the other hand, using the inequality ti−t ′k
ti−ti−1 ≤ 1 along with the equality

∑
ti−1<t ′j≤t ′k

X̂ξ ′
j

(
Ŷt ′j − Ŷt ′j−1

)
= ∑

ti−1<t ′j≤ti
X̂ξ ′

j

(
Ŷt ′j − Ŷt ′j−1

)
= ∑

ti−1<t ′j≤ti
Xξ ′

j

(
Ŷt ′j − Ŷt ′j−1

)
,

J2 can be estimated as follow:

J2 ≤
∣∣∣∣∣∣ ∑
ti−1<t ′j≤ti

Xξ ′
j

(
Ŷt ′j − Ŷt ′j−1

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ ∑
ti−1<t ′j≤ti

Xξ ′
j

(
Ŷt ′j − Ŷt ′j−1

)
−Xti

(
Ŷti − Ŷti−1

)∣∣∣∣∣∣+
∣∣∣Xti (Ŷti − Ŷti−1)∣∣∣

≤
n

∑
�=1

∣∣∣∣∣∣ ∑
t�−1<t ′j≤t�

Xξ ′
j

(
Ŷt ′j − Ŷt ′j−1

)
−Xt�

(
Yt� −Yt�−1

)∣∣∣∣∣∣
+ sup
0≤u≤T

|Xu| sup
0≤u,v≤T
|u−v|≤δ

|Yu−Yv| .
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Taking expectations,

E[J2] ≤
{
2+ζ (

1
α ′p

+
1
q
)
}
Vα
p (X ; [0,T ])

α
α′ Osc σ(|Δ|) α′−α

α′ p

×

⎛⎜⎝V1q (Y ; [0,T ])+2
1
q E

⎡⎣ sup
0≤u,v≤T
|u−v|≤δ

|Yu−Yv|q
⎤⎦ 1

q

⎞⎟⎠
+E

[
sup
0≤u≤T

|Xu|p
] 1

p

E

⎡⎣ sup
0≤u,v≤T
|u−v|≤δ

|Yu−Yv|q
⎤⎦ 1

q

.

The result now follows by putting together all of the estimates obtained above.

Lemma 5.4. Let
{
Z(n)

}∞
n=1 be a sequence of measurable processes on [0,T ]×Ω such

that Z(n)
· (ω) is continuous on [0,T ] for each n ∈ N and ω ∈ Ω. Suppose that

E

[
sup
0≤t≤T

∣∣∣Z(n)
t

∣∣∣] < ∞ for all n ∈ N and

lim
n,m→∞

E

[
sup
0≤t≤T

∣∣∣Z(n)
t −Z(m)

t

∣∣∣] = 0.

Then there exists a unique measurable process I(= It) on [0,T ]×Ω such that I·(ω) is

continuous on [0,T ] for each ω ∈ Ω, E
[
sup
0≤t≤T

|It |
]

< ∞, and

lim
n→∞

E

[
sup
0≤t≤T

∣∣∣Z(n)
t − It

∣∣∣] = 0.

Remark 5.5. For the sequence
{
Z(n)

}∞
n=1 in Lemma 5.4, there exists a subsequence{

Z(nk)
}
which converges to I uniformly on [0,T ] almost everywhere.

Proof. Since
{
Z(n)

}∞
n=1 is uniformly Cauchy on [0,T ] with respect to the L1-norm, one

can find a subsequence {nk}∞
k=1 for which

E

[
sup
0≤t≤T

∣∣∣Z(nk)
t −Z(n�)

t

∣∣∣]≤ 1
22k

(5.4)

for all � ≥ k. By the Chebyshevʼs inequality,

P

(
sup
0≤t≤T

∣∣∣Z(nk)
t −Z(n�)

t

∣∣∣ >
1
2k

)
≤ 2kE

[
sup
0≤t≤T

∣∣∣Z(nk)
t −Z(n�)

t

∣∣∣]
≤ 2k · 1

22k
=
1
2k



Aye Aye Win and S. Nakao 25

for all � ≥ k. For each k ∈ N, set

Ωk =
{
sup
0≤t≤T

∣∣∣Z(nk)
t −Z(nk+1)

t

∣∣∣ >
1
2k

}
,

then∑
k

P(Ωk)≤∑
k

1
2k

= 1< ∞. Hence, the Borel-Cantelli Lemma yieldsP
(
lim
k→∞

Ωk

)
=

0. Then
{
Z(nk)
t (ω)

}∞

k=1
converges uniformly for each ω ∈ lim

k→∞
Ωc
k.

Now, define

It(ω) :=

⎧⎨⎩ lim
k→∞

Z(nk)
t (ω) if ω ∈ lim

n→∞
Ωc
n and t ∈ [0,T ],

0 if ω /∈ lim
n→∞

Ωc
n and t ∈ [0,T ].

Then I(= It) is a measurable process on [0,T ]×Ω such that I·(ω) is continuous on [0,T ]
for each ω ∈ Ω. Fix k ∈N. Then as k≤ �→ ∞,

∣∣∣Z(nk)
t −Z(n�)

t

∣∣∣−→ ∣∣∣Z(nk)
t − It

∣∣∣ uniformly
on [0,T ] almost everywhere. By the dominated convergence theorem and the inequality
(5.4),

E

[
sup
0≤t≤T

∣∣∣Z(nk)
t − It

∣∣∣] = lim
�→∞

E

[
sup
0≤t≤T

∣∣∣Z(nk)
t −Z(n�)

t

∣∣∣]≤ 1
22k

,

which yields

lim
n→∞

E

[
sup
0≤t≤T

∣∣∣Z(n)
t − It

∣∣∣] = 0.

Moreover, by the triangle inequality,

E

[
sup
0≤t≤T

|It |
]
≤ E

[
sup
0≤t≤T

∣∣∣Z(nk)
t − It

∣∣∣]+E

[
sup
0≤t≤T

∣∣∣Z(nk)
t

∣∣∣] ,

which is finite by the above inequality as well as the assumption of this theorem. The
uniqueness of I is obvious.

Here is a main theorem of this section.

Theorem B. Let p,q,α,β be positive real numbers satisfying condition (2.1) with
β = 1. Let X = (Xu),Y = (Yu) be measurable processes on [0,T ]×Ω such that Xu ∈
Lp(Ω,F ,P), Yu ∈ Lq(Ω,F ,P) (0≤ u≤ T ). Suppose that the pair (X ,Y ) satisfies con-
ditions (A.1) and (A.3). Then there exists a unique measurable process I(= It) on
[0,T ]×Ω for which the following hold:
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(1) I·(ω) is continuous on [0,T ] for each ω ∈ Ω and E

[
sup
0≤t≤T

∣∣It∣∣] < ∞.

(2) for any ε > 0 and δ = δ (ε) appearing in Theorem (5.3) such that

|Δ| ≤ δ =⇒ E

[
sup
0≤t≤T

∣∣∣Fξ
Δ(X ,Y )(Δ; t)− It

∣∣∣]≤ ε (5.5)

where Δ is a finite partition of the interval [0,T ] and real number ξ accompany Δ.

Proof. Let {Δ(m)}∞
m=1 be a sequence of finite partitions of the time interval [0,T ] ac-

companied by ξ (m) with lim
m→∞

∣∣∣Δ(m)
∣∣∣ = 0 . Let ε > 0. Then for δ = δ (ε) appearing in

Theorem 5.3,∣∣∣Δ(n)
∣∣∣ , ∣∣∣Δ(m)

∣∣∣≤ δ =⇒ E

[
sup
0≤t≤T

∣∣∣Fξ (n)

Δ(n) (X ,Y )(Δ(n); t)−Fξ (m)

Δ(m) (X ,Y )(Δ(m); t)
∣∣∣]≤ ε.

Therefore, the sequence
{
Fξ (m)

Δ(m) (X ,Y )(Δ(m); t)
}∞

m=1
satisfies the assumption of Lemma

5.4; hence, I = (It) with the specified conditions uniquely exists.

Definition 5.6. The measurable process I = (It) appearing in Theorem B is called the
Young-type integral of the pair (X ,Y ) of measurable processes and is denoted by It =∫ t

0
XudYu for each t ∈ [0,T ].

Remark 5.7. For the sequence
{
Fξ (m)

Δ(m) (X ,Y )(Δ(m); t)
}∞

m=1
in Theorem B, there exists

a subsequence
{
Fξ (mk)

Δ(mk)
(X ,Y )(Δ(mk); t)

}∞

k=1
which converges to I uniformly on [0,T ] al-

most everywhere.

Remark 5.8. Let Δ = {0= t0 < · · · < tn = T} be a finite partition of the interval [0,T ].
For t = t�, the equality

XtYt −X0Y0 = ∑
k

{
Ytk

(
Xtk −Xtk−1

)}
+∑

k

{
Xtk−1

(
Ytk −Ytk−1

)}
implies that under the same assumption of Theorem B, an integral

∫ t
0YudXu can also be

defined.

We introduce the following condition:

(A.4) The function γ(u,v) = E[|Yu−Yv|q] is jointly continuous on [0,T ]× [0,T ],
sup
0≤u≤T

|Yu| and sup
0≤v,u≤T
|u−v|≤δ

∣∣Xu−Xv
∣∣ areF−measurable, and

E

[
sup
0≤u≤T

∣∣Yu∣∣q] < ∞, lim
δ→0

E

[
sup
0≤u,v≤T
|u−v|≤δ

∣∣Xu−Xv
∣∣p] = 0.
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With this condition, the Young-type integral with respect to a pair (Y,X) of measur-
able processes is defined via Remark 5.9.

Remark 5.9. Let p,q,α,β be positive real numbers satisfying condition (2.1) with
α = 1. Let X = (Xu),Y = (Yu) be measurable processes on [0,T ]×Ω such that Xu ∈
Lp(Ω,F ,P), Yu ∈ Lq(Ω,F ,P) (0≤ u≤ T ). Suppose that the pair (X ,Y ) satisfies con-
ditions (A.1) and (A.4). Then there exists a unique measurable process I(= It) on
[0,T ]×Ω for which the following hold:

(1) I·(ω) is continuous on [0,T ] for each ω ∈ Ω and E

[
sup
0≤t≤T

|It |
]

< ∞.

(2) for any ε > 0 and δ = δ (ε) appearing in Theorem (5.3),

|Δ| ≤ δ =⇒ E

[
sup
0≤t≤T

∣∣∣Fξ
Δ(Y,X)(Δ; t)− It

∣∣∣]≤ ε (5.6)

where Δ is a finite partition of the interval [0,T ] and real number ξ accompanies Δ.

The next theorem establishes linearity of Young-type integrals, which is derived
from the proofs of Theorems 5.3 and B.

Theorem 5.10. Suppose that two pairs (X ,Y ) and (X ′,Y ′) both satisfy the assumption
of Theorem 5.3. Let a,a′ be real constants. Then the equalities∫ t

0
(aXu+a′X ′

u)dYu = a
∫ t

0
XudYu+a′

∫ t

0
X ′
udYu (0≤ t ≤ T ),∫ t

0
Xud(aYu+a′Y ′

u) = a
∫ t

0
XudYu+a′

∫ t

0
XudY

′
u (0≤ t ≤ T )

hold P-almost everywhere on Ω.

The Young-type integral
∫ t
0 XudYu with respect to a pair (X ,Y ) of measurable pro-

cesses obtained in Theorem A of Section 4 arises for each fixed time t as the limiting
integrable function of Riemann-Stieltjes approximating sums. On the other hand, The-
orem B guarantees the existence of the family

(∫ t
0 XudYu

)
t∈[0,T ] of integrals which is a

measurable process on [0,T ]×Ω. The next theorem shows that it is reasonable to use
the same terminology ʻYoung-type integralʼ for these two types of integrals.

Theorem 5.11. Suppose that a pair (X ,Y ) of measurable processes satisfies the as-
sumption of Theorem B. Fix t ∈ (0,T ]. Write the Young-type integrals obtained in The-

orems A and B as H =
∫ t

0
XudYu and Is =

∫ s

0
XudYu (0 ≤ s ≤ T ), respectively. Then

H = It P-almost everywhere on Ω.
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Proof. Let ε > 0 and let δ = δ (ε) be the positive real number appearing in Theorem
5.3. Let Δ be a finite partition of [0, t] with |Δ| ≤ δ . Let Δ = {0 = t0 < t1 < · · · < tn =
t < tn+1 < · · ·< tm = T} be another partition of [0,T ] with |Δ| ≤ δ which coincides with
Δ on the subinterval [0, t]. Let Δ′ = {0= t ′0 < t ′1 < · · · < t ′� = T} be a finite partition of
[0,T ] with |Δ′| ≤ δ . Then

E

[∣∣∣∣∣ n

∑
i=1

Xti(Yti −Yti−1)−FΔ′(X ,Y )(Δ′; t)

∣∣∣∣∣
]

≤ E

[
sup
0≤t≤T

∣∣FΔ(X ,Y )(Δ; t)−FΔ′(X ,Y )(Δ′; t)
∣∣]

≤ ε .

If we set ξ := {ti}mi=1,ξ ′ := {t ′j}�
j=1, then FΔ(X ,Y )(Δ;u) = Fξ

Δ(X ,Y )(Δ;u) and

FΔ′(X ,Y )(Δ′;u) = Fξ ′
Δ′(X ,Y )(Δ′;u) (0≤ u≤ T ). Therefore,

E [|H− It |] ≤ ε,

yielding the desired result.

The next two theorems establish locality of the Young-type integral obtained in The-
orem B. The results follow from the proofs of Theorems 5.3 and B.

Theorem 5.12. Suppose that two pairs (X ,Y ) and (X ′,Y ′) of measurable processes
both satisfy the assumption of Theorem B. Let τ : Ω −→ [0,T ] be an F -measurable
function such that

Xu(ω) = X ′
u(ω), Yu(ω) = Y ′

u(ω) (0≤ u≤ τ(ω))

for P-almost every ω ∈ Ω. Then∫ t

0
Xu(ω)dYu(ω) =

∫ t

0
X ′
u(ω)dY ′

u(ω) (0≤ t ≤ τ(ω))

for P-almost every ω ∈ Ω.

Theorem 5.13. Suppose that two pairs (X ,Y ) and (X ′,Y ′) of measurable processes
both satisfy the assumption of Theorem B. Let Ω′ ∈ F such that

Xu(ω) = X ′
u(ω), Yu(ω) = Y ′

u(ω) (0≤ u≤ T )

for P-almost every ω ∈ Ω′. Then∫ t

0
Xu(ω)dYu(ω) =

∫ t

0
X ′
u(ω)dY ′

u(ω) (0≤ t ≤ T )

for P-almost every ω ∈ Ω′.
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