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Abstract 

The geographical distribution of the anthropogenic radionuclides 
238

Pu and 
239+240

Pu in the 

Tropical East Pacific in 2003 was studied from the viewpoint of material migration. We measured 

the contents of Pu isotopes in seawater and in sediment from the sea bottom. The distributions of Pu 

isotopes, together with those of coexisting nitrate and phosphate species and dissolved oxygen, are 

discussed in relation to the potential temperature and potential density (sigma-θ). The Pu contents in 

sediment samples were compared with those in the seawater. Horizontal migration across the 

Equator from north to south was investigated at depths down to ~800 m in the eastern Pacific. The 

Pu distribution at 0–400 m correlated well with the distribution of potential temperature. Maximum 

Pu levels were observed in the subsurface layer at 600–800 m, corresponding to the depth where 

sigma-θ ≈ 27.0. It is suggested that the Pu distribution depends on the structure of the water mass 

and the particular temperature and salinity. The water column/sediment column inventory ratio and 

the vertical distribution of Pu may reflect the efficiency of scavenging in the relevant water areas. 
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1. Introduction 

Radionuclides emitted during atmospheric tests of nuclear weapons have been widely used 

as proxies for tracing the migrations of materials (Doney, 1992; Tosaki et al., 2007). Most of these 

nuclides were deposited on the oceans, which occupy about 70% of the Earth’s surface. It is 

believed that nuclides present as insoluble species become adsorbed by suspended materials in 

seawater. The suspended materials, together with the radionuclides that they contain, subsequently 

sink from the surface to the sea bottom, whereas soluble species, such as 
137

Cs, remain in the 

surface waters for many years (Yamada and Wang, 2007) and migrate both vertically and 

horizontally under the influence of oceanic currents. 

All isotopes of Pu are artificial radioactive nuclides. Most of the isotopes [
238

Pu (T1/2 = 87.7 

yr), 
239

Pu (T1/2 = 2.411 × 10
4
 yr), 

240
Pu (T1/2 = 6.563 × 10

3
 yr), 

241
Pu (T1/2 = 14.254 yr), 

242
Pu (T1/2 = 

3.833 × 10
5
 yr), and 

244
Pu (T1/2 = 8.08 × 10

7
 yr)] that are found in the environment were discharged 

from above-ground tests of nuclear weapons during the 1950s and early 1960s (Perkins and Thomas, 

1980; Aarkrog, 2003). In addition, some Pu nuclides originate from various accidental releases and 

from reprocessing of nuclear materials (Kershaw et al., 1999). 

Several investigations have been carried out by using environmental Pu isotopes. The 

chemical forms of Pu in seawater were evaluated by Aston (1980), who focused on its valence state 

and stability constant with inorganic ligands. The Pu nuclides in size-fractionated particles were 

analyzed by Dai et al. (2001), who reported that the most Pu exists in a low-molecular-weight 

fraction, with a few percent of Pu in a colloidal form. Several researchers have measured the atom 

ratios of Pu isotopes in sea sediment and in the ferromanganese crust by means of accelerator mass 

spectrometry (Paul et al., 2001; Wallner et al., 2000). Pu isotopes of mass numbers up to 244, 

formed a result of multiple neutron capture by 
239

Pu, have been measured. In addition, several 

researchers have measured Pu concentrations and 
240

Pu/
239

Pu atom ratios in seawater, sediment, and 

land soil (Buesseler and Sholkovitz, 1987; Buesseler, 1997; Cooper et al., 2000; Kelley et al., 1999). 
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Seawater and sediment from the North Pacific exhibited a wide range of 
240

Pu/
239

Pu ratios 

(0.19–0.34), and higher ratios tended to be found near the sites of nuclear tests. In terms of the 

vertical distribution in seawater, the concentration of 
239+240

Pu is generally low in surface waters, 

increases to a maximum at 500–1000 m, and then decreases in deeper waters. Vertical and 

horizontal distributions, including the GEOSECS data, have also been reported elsewhere (Bowen 

et al., 1980; Livingston et al., 2001). Lee et al. (2005) reported 
239+240

Pu activities in sea sediments. 

A computer simulation of the scavenging and fate of Pu isotopes in seawater was carried out by 

Periáñez (1998). 

In addition to the 
238

Pu released from nuclear tests and by accident, additional 
238

Pu was 

released when the Transit-5BN-3 navigation satellite, powered by a SNAP-9a nuclear generator 

fuelled with 
238

Pu, failed to achieve orbit and burnt up on reentry at an altitude of about 50 km over 

the Indian Ocean in 1964. In the Northern Hemisphere, the estimated release of 
238

Pu was 230 TBq 

from nuclear tests and 110 TBq from SNAP-9a; the corresponding figures for the Southern 

Hemisphere were 59 TBq and 380 TBq, respectively (Harley, 1980). The ratio of 
238

Pu inventory 

released by nuclear testing to that released from SNAP-9a is estimated to be 2.0 in the Northern 

Hemisphere and 0.16 in the Southern Hemisphere. 

In the East Pacific, there is an oceanic ridge, named the East Pacific Rise, an upwelling 

region and also high nutrient low chlorophyll region resulting from the poverty of iron. Variations in 

climatic conditions such as surface temperature occur in the Equatorial Pacific because of the El 

Niño Southern Oscillation (Tourigny and Jones, 2009). On the other hand, horizontal migration 

should be uncomplicated because there are few islands to block the oceanic currents. The North 

Equatorial Current, North Pacific Current, Equatorial Counter Current, South Equatorial Current, 

California Current, and Peru Current are of importance for surface migration in the Tropical East 

Pacific.  

It was of interest, therefore, to determine how Pu is distributed in the East Pacific, given 
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the conditions mentioned above. If levels of isotopes in a variety of water-mass structures over an 

extensive region could be compared with each other and with previously reported levels, and if they 

could be correlated with levels of dissolved oxygen, water temperatures, and water densities, we 

might be able to understand which parameters affect the migration and distribution of Pu. Here, we 

report the vertical and horizontal distributions of 
238

Pu and 
239+240

Pu activities as well as the Pu 

inventory present in samples of seawater and sediment collected in the Tropical East Pacific during 

2003, and we discuss our results in relation to material migration in seawater. 

 

 

 

2. Experimental 

2.1. Sampling 

Samples of seawater and sediment from the Tropical East Pacific were collected during the 

KH-03-1 ―Hydra‖ expedition of the R/V Hakuho-Maru in 2003. The locations of the sampling 

stations, the water depths, and the sampling dates are listed in Table 1, and the locations are shown 

in Fig. 1. Large-volume water samples (250 L) were collected at various depths between the surface 

and the bottom by using acoustically triggered quadruple PVC sampling bottles. Additionally, 

samples of sea sediment with diameter of 7 cm from the surface of the sea bottom to a depth of 

about 30 cm below the sea bottom were taken by using a multiple corer at locations HY-1, HY-2, 

HY-3, HY-6, and HY-9. The sediment cores were sliced into 1-cm-thick pieces. Additional samples 

of seawater (12 L) were collected by using a CTD Carousel multi-sampling (CTD-CMS) system 

fitted with a dissolved-oxygen (DO) sensor. The water pressure, water temperature, salinity, and DO 

were measured by devices incorporated into the CTD-CMS. In addition, small portions of seawater 

samples collected with the CTD-CMS were subjected to analysis for salinity, DO, nitrate, silicate, 

phosphate, etc. 
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2.2. Analysis of sea water 

Unfiltered seawater samples (~250 L) were acidified with HCl to a pH of less than 1.5 and 

spiked with 
242

Pu tracer and Fe
3+

 carrier. The solution was left to stand for more than 24 h to ensure 

chemical equilibration, then neutralized with aqueous ammonia to coprecipitate Pu with Fe(OH)3. 

The precipitate was separated from the solution and brought back to Japan for subsequent chemical 

analysis. 

The Pu isotopes were analyzed by a procedure similar to that described by Kinoshita et al. 

(2007). Most of iron atoms were removed from the solution by solvent extraction with diisopropyl 

ether, and the remaining iron and Pu atoms were precipitated with aqueous ammonia. The 

precipitate was dissolved in 8 M HNO3, and reduced with NaNO2 to ensure that all the Pu was in 

the Pu(IV) oxidation state. The solution was then passed through an anion-exchange column of 

Dowex 1X8, (100–200 mesh), and Th ions were eluted with 8 M HCl. Pu ions were subsequently 

eluted with 8 M HCl–0.1 M HI solution. This column separation was repeated to purify the 

resulting Pu solution. The Pu solution was then evaporated to dryness and the residue was dissolved 

in aqueous ammonium sulfate. The resulting solution was used to prepare an electrodeposited 

sample on a stainless-steel disk for assay by alpha spectrometry. The typical chemical efficiency of 

the entire procedure was 50% 

 

2.3. Analysis of sea sediment 

Dried sea sediment with mixed with four times its weight of solid NaOH, transferred to a 

Ni crucible, spiked with 
242

Pu, and digested for ~12 h at 400 °C. The residue was dissolved in 

concentrated HCl, and iron atoms were removed by extraction with diisopropyl ether. The resulting 

sample was subjected to the same column separation and alpha spectrometry procedure as described 

above in Section 2.2. 
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3. Hydrography 

The sampling stations HY-1 and HY-2 are located in the North Subtropical Gyre, whereas 

HY-11, HY-12, HY-15A, HY-17, and HY-18 are in the South Subtropical Gyre. Stations HY-6, 

HY-9, and HY-11 are located in the Peru Current. Station HY-6 is located in the terminal area of the 

Equatorial Undercurrent and, therefore, in the upwelling of the current, which is related to El Niño. 

El Niño was observed in 2002 to 2003 (Lagerloef et al., 2003). The potential temperature–salinity 

(θ–S) diagrams for the HY stations are shown in Fig. 2. The θ–S diagrams show various features 

near the surface where the potential temperature is above 15 °C. In particular, a low salinity related 

to the California Current, which includes land water, was observed at the surface at station HY-3, 

but not at HY-1 or HY-2. Similar profiles were observed below 12 °C at stations HY-3, HY-6, HY-9, 

and HY-11. Antarctic Intermediate Water (AAIW), characterized by a minimum salinity (practical 

salinity scale) of 34.3 at a potential temperature of 5 °C, appears at approximately 800 m at stations 

HY-15A, HY-17, and HY-18. It was reported that AAIW was observed on the WOCE P13 survey at 

12° N on the 165° E line in 1992 (Kawabe and Taira, 1998). A tropical thermocline dome (the Costa 

Rica Dome) has been observed several times at around 9° N 90° W (Fiedler, 2002).  

 

 

4. Result 

The contents of 
238

Pu and 
239+240

Pu were deduced from the count rates of plutonium 

isotopes, including a yield tracer of 
242

Pu, as measured by alpha spectrometry. Because the energies 

of alpha rays from 
239

Pu and 
240

Pu are too close to be distinguished from one another, we 

determined the sum of the activities 
239+240

Pu. Vertical profiles of 
238

Pu and 
239+240

Pu in seawater are 

listed in Table 2 and shown in Fig. 3. The potential temperature, salinity, potential density (sigma-), 

and DO are also listed in Table 2. The Pu activities in sea sediment are listed Table 3 and shown in 
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Fig. 4. The standard uncertainty of the background count was used to estimate the detection limit. 

The activities of 
238

Pu were too low to permit discussion of its vertical profile. Maxima in the 

239+240
Pu activity were observed at around 500 m for HY-11, 800 m for HY-17 and HY-18, and 600 

m for the other stations. 

 

 

5. Discussion 

5.1. Distribution of 
239+240

Pu activity and the 
238

Pu/
239+240

Pu activity ratio in sea water 

Figure 5 shows contour displays of the horizontal distribution of 
239+240

Pu along the sailing 

course, as constructed by interpolation of the measured Pu concentrations. Table 4 lists the 

inventories of 
238

Pu and 
239+240

Pu, derived by summing the activities at each station. According to 

UNSCEAR (2000), the total activities of fission products of Pu deposited in the Northern 

Hemisphere are reported to be 3–4 times greater than the corresponding values in the Southern 

Hemisphere. The inventories of 
239+240

Pu at HY-1 to HY-3 were also 3–4 times higher than were 

those at HY-12 to HY-18, but almost same as those at HY-6 and HY-9. These anomalies at HY-6 to 

HY-11 are discussed below. The measured ratio of the Pu inventory in the Northern Hemisphere to 

that in the Southern Hemisphere corresponds with the previously reported ratio, except in the cases 

of stations HY-6 to HY-11. 

Sano et al. (1995) discovered an extensive plume of water enriched in 
3
He at a depth of 

about 2000 m in the South Pacific. This 
3
He plume could be observed at distances of up to 5000 km 

west of the East Pacific Rise. In other words, a deep current flowing toward the west may be present 

in the South Central Pacific. We believe that horizontal migration of Pu at a depth of ~2000 m could 

be affected by this current. In addition, a pathway involving the North Pacific Tropical Water 

(NPTW) and North Pacific Intermediate Water (NPIW) has been discussed by Amakawa et al. 

(2009) and by You (2003). It has been reported that the NPTW and NPIW flow clockwise in the 
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North Pacific, so that a current is expected to flow from east to west in the region of HY-1 and HY-2. 

However, horizontal migration was not clearly demonstrated in our observations on Pu isotopes 

(Fig. 5). 

On the assumption that the sinking behavior of Pu isotopes would result in a depth profile, 

the percentage of the 
239+240

Pu inventory at each depth should reflect the rate of sinking. The results 

in Table 4 show that 30% of Pu was found in the layer between 0 and 1000 m at HY-9 and HY-11, 

whereas 40–50% of Pu was present at 0–1000 m at the other stations. If we compare results for 

similar longitudes, the percentages of Pu inventory in the 1000–2000 m layer at HY-17 and HY-18 

are greater than the corresponding values at HY-2 and HY-1, respectively. Details of the relevant 

discussion are presented in Section 5.3. The percentages in layers deeper than 2000 m at HY-3, 

HY-6, HY-9, and HY-11 were higher than the corresponding values for the other stations. 

The 
239+240

Pu and 
238

Pu inventories and the 
238

Pu/
239+240

Pu inventory ratio are plotted 

against the longitude in Fig. 6. Only a few 
239+240

Pu inventories for the mid-latitude region in the 

South Pacific have been reported previously. The inventories reported by Hirose et al. (2007) were 8 

Bq/m
2
 at 15° S 148° W, 12 Bq/m

2
 at 21.75° S 138.9° W, and 8 Bq/m

2
 at 32.5° S 177.7° E. These 

values are comparable with the 
239+240

Pu inventories in the South Pacific that we measured. 

Furthermore, the inventories in the regions HY-1 to HY-3 and HY-11 to HY-18, which are close to 

one another in latitude, were also comparable. On the other hand, the inventory of 
238

Pu and its ratio 

to 
239+240

Pu tended to be larger in the west than in the east, except in the case of HY-9, HY-11, and 

HY-12; this is probably due to inflow from the Indian Ocean of 
238

Pu from SNAP-9a. 

The 
239+240

Pu inventory in each 1000 m of water column is plotted against the 

corresponding latitude in Fig. 7. For comparison, the inventories from the surface to the bottom in 

the region between 170° E and 170° W (Bowen et al., 1980) and the inventories from the surface to 

2000 m in the region between 140° W and 160° W (Nakano and Povinec, 2003) are also shown in 

the same figure. The inventories measured by Nakano and Povinec (2003) in the South Pacific 
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region were around twice those that we found at stations HY-11 to HY-18 in the South East Pacific. 

If we compare the present results with the 
239+240

Pu inventories measured by Bowen et al. (1980) 

and the inventory from the surface to 2500 m in the Arabian Sea, reported by Mulsow et al. (2003), 

the inventories at the HY stations were closer to those in the Arabian Sea. 

The upper layer of the oceanic current moves in a symmetrical manner about the Equator. 

However, the movement of water no longer follows the surface oceanic current at the depth at 

which the Pu concentration is maximal. In the Central Pacific, the Pu inventory along a line of 

longitude showed a distribution that was symmetrical about the Equator. The distribution in the 

Central Pacific was not reproduced in the inventories for 0–1000 m or 1000–2000 m for the East 

Pacific. The inventory at HY-6 was typical for the North Pacific, and the inventories at stations 

HY-9 and HY-11 were higher than were those at stations HY-12 to HY-18. This phenomenon cannot 

be explained without the presence of a horizontal migration from a Pu-rich region. The Equatorial 

Under Current is the only current that carries water from west to east at a depth of 100–200 m. 

However, the reported Pu concentration in the Central Pacific (Livingston et al., 2001) at the depth 

of the Equatorial Under Current of 100–200 m is too low to explain the increase in the inventory at 

HY-6.  

There is another possible explanation for the high inventory at HY-6. Maximal levels of 

nutrients was observed at a depth of 700–1000 m, with values of 3.2–3.4 μM for phosphate and 

45–46 μM for nitrate at stations HY-1, HY-2, and HY-3. The concentrations of phosphate and nitrate 

were typical of those for mid-latitudes of the North East Pacific, as reported in the WOCE data 

(Schlitzer, 2007). However, concentrations of phosphate and nitrate typical of those for 

mid-latitudes of the North East Pacific were observed at 20° S on the WOCE P18 line (103° E to 

110° E) and P19 line (85.5° E–88° E) at a depth of ~1000 m. Maxima of 3.0–3.3 M for phosphate 

and 42–47 M for nitrate at depths of 700–1000 m were observed at HY-6, HY-9, and HY-11, and 

maxima for phosphate of around 3 M at HY-12, 2.5 M at HY-15A, HY-17, and HY-18, and 43 
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M at HY-12, 38 M at HY-15A, and 37 M at HY-17 and HY-18 were observed in the present 

work. Increased concentrations of nutrients were observed in the region west of 100° E on the 

WOCE P21 line (17° S), but not on the WOCE P06 line (32.5° S). In addition, trends similar to 

those for phosphate and nitrate were observed in the DO distribution. On the other hand, a 

minimum salinity of 35.5 near 800 m has been observed in both hemispheres in the region between 

15° N and 15° S of the entire Pacific (Tomczak and Godfrey, 2005). The difference in salinity near 

the Equator is not sufficiently significant to permit information on horizontal migration to be 

inferred from the salinity distribution. The features of the distributions of Pu, DO, and nutrient  

seen in the region of HY-1, HY-2, and HY-3 are also observed in the region of HY-6, HY-9, and 

HY-11. These nutrient levels and DO support the theory that Pu migrates from the Northern 

Hemisphere to the South Hemisphere across the Equator in the East Tropical Pacific. Horizontal 

migration across the Equator might explain the high Pu inventories at stations HY-6, HY-9, and 

HY-11. 

 

5.2. Comparison of Pu concentrations in seawater with results of previous work 

There are several earlier sets of data pertaining to locations HY-2 and HY-18 that can be 

examined in conjunction with the results of the present study. Residence times of Pu in surface 

water have been reported to be 5 yr at HY-2 and 9 yr at HY-18 (Hirose and Aoyama, 2003). The 

maximum subsurface activity of 
239+240

Pu at the HY-2 station was observed at 600 m. In 1973, the 

corresponding maximum at the same location was observed at 500 m (Nakano and Povinec, 2003). 

Therefore, the Pu maximum had shifted downward by 100 m during 30 yr, and the average velocity 

of the shift was calculated to be 3.3 m/yr, assuming a constant velocity. At station HY-18, the 

subsurface Pu maximum was observed at a depth of 700 m in 1996, whereas it was observed at 800 

m in 2003. The depth of the maximum Pu level had therefore shifted downward by 100 m in 7 yr, 

and the sinking velocity was therefore estimated to be 14 m/yr. Furthermore, the subsurface 
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maximum in the activity of 
239+240

Pu near Bikini Atoll in the Central Pacific was observed at 850 m 

in 1997 and at 450 m in 1973. The sinking velocity of the subsurface maximum in Pu was therefore 

estimated to be approximately 17 m/yr. The velocity at station HY-2 is therefore markedly slower 

than that near Bikini Atoll. In addition, it has been reported that the maximum in Pu activity has 

been moving to a deeper layer at an almost constant velocity (Livingston et al., 2001).  

 

5.3. Comparisons with dissolved oxygen, potential temperature, and potential density 

Pu atoms can adopt one of four possible oxidation states: III, IV, V, or VI. It is possible that 

DO could control the oxidation state of Pu. Tri- and tetravalent Pu occur as Pu
3+

 and Pu
4+

 ions, 

respectively, whereas penta- and hexavalent Pu occur as PuO2
+
 and PuO2

2+
, respectively, in aqueous 

solution. The residence time of tri- and tetravalent Pu in seawater is considered to be ~30 yr, 

assuming that these show the same behavior as the corresponding thorium species. On the other 

hand, the residence time of penta- and hexavalent Pu is of the order of 5 × 10
5
 yr, based on the 

behavior of uranium in the form of the UO2
2
– ion in seawater. As can be seen in Table 2, there was a 

high DO content in the surface waters, an oxygen-deficient layer at 250–1000 m, and an increase in 

DO near the ocean bottom at stations HY-1 to HY-11. On the other hand, a DO-rich layer caused by 

AAIW was observed at a depth of ~700 m at stations HY-12 to HY-18. As described in Section 4, 

subsurface Pu maxima were observed at 500 m for HY-11, 800 m for HY-17 and HY-18, and 600 m 

for the other stations. The Pu was therefore enriched in the DO-deficient layer at HY-1 to HY-11, 

whereas it was enriched in the DO-rich layer at HY-12 to HY-18. No clear correlation between the 

sinking behavior of Pu and DO was therefore observed. 

The temperature of seawater is a useful tool in studying vertical diffusion in surface waters. 

Contour displays of the potential temperature from the surface to a depth of 500 m are shown in Fig. 

8, together with the corresponding contour lines of 
239+240

Pu activity. In Figs. 8(b) and 8(c), the 

temperature data for the stations HY-4 (4° 00' N 95° 00' W), HY-5 (2° 00' N 95° 30' W), HY-7 (2° 
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00' S 95° 00' W), HY-8 (4° 00' S 95° 00' W), HY-13 (22° 15' S 108° 00' W), HY-14A (23° 30' S 

112° 00' W), HY-14B (24° 15' S 114° 00' W), HY-15B (25° 30' S 118° 00' W), and HY-16 (26° 00' S 

120° 00' W) were used to construct the contours. The temperatures at depths of 0–100 m at HY-6, 

HY-11, and HY-17 are lower by 2–3 °C than are those at neighboring stations of similar longitude. 

The 
239+240

Pu concentrations at HY-6, HY-11, and HY-17 at depths of 0–100 m are higher than are 

those at the neighboring stations. Whereas a layer with a temperature of above 20 °C diffuses down 

to 200 m at HY-1, to 100 m at HY-2, and to 50 m at HY-3, a layer of 
239+240

Pu concentration below 2 

mBq/m
3
 is seen at a depth of less than 200 m at HY-1 and 50 m at HY-2 and HY-3. The distribution 

of the 
239+240

Pu concentration correlates well with the isothermal line at depths shallower than 400 

m. The vertical diffusion may therefore control the Pu distribution at depths from the surface to 

~200 m. In particular, upwelling of seawater from 50 m at HY-6 and from 100–200 at HY-11 and 

HY-17 m may explain the higher Pu concentrations found in the surface waters. 

Figure 9 shows the correlation between the 
239+240

Pu concentration and the potential 

density sigma-. Surprisingly, maxima of 
239+240

Pu are observed at the depth where sigma- ≈ 27.0 

at all HY stations, although the boundary of the water mass structure does not coincide with depth 

of the 
239+240

Pu maximum. The distribution of sigma- is markedly dependent on the water mass 

structure, because each water mass has its own salinity and temperature. It has been reported that 

more than 99% of Pu at a depth of 250 m is in a non-particle-reactive state (Dai et al., 2001). Pu at 

depths below 250 m is also considered to be in the same form as that at 250 m. Vertical migration of 

non-particle-reactive elements such as Pu at depths of 600–800 m is correlated with the density of 

the seawater.  

 

5.4. Pu activity in sediment 

As can be seen in Fig. 4, the vertical profiles of the sediment cores show patterns that 

differed from one another. For the cores taken at HY-3, a subsurface 
239+240

Pu maximum was 
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observed, whereas a marked increase at depths below 7 cm was observed in HY-6. A distribution 

similar to that which we found has been observed in the Japan Sea (Zheng and Yamada, 2005). 

These profiles are, primarily, the result of mixing of sediment particles by bioturbation, a process 

also described as biodiffusional particle mixing (Cochran, 1985), whereas no similar 
239+240

Pu 

maximum was found at HY-1, HY-2, or HY-9. 

Figure 10 shows the 
239+240

Pu inventories in sediment in relation to the latitude, together 

with reported data for the open Pacific (Nagaya and Nakamura, 1987; Hong et al., 1999; Pettersson 

et al., 1999; Livingston et al., 2001; Moon et al., 2003; Lee et al., 2003; Lee et al., 2005; Zheng and 

Yamada, 2006; Dong et al., 2010). It is well known that the deposition of anthropogenic 

radionuclides from all fallout is correlated with the latitude; in other words, maximal deposition is 

observed in the mid-latitude belt, and minimal deposition is observed in the polar and equatorial 

regions (Hardy et al., 1973; Baskaran et al., 1996). The peak in 
239+240

Pu at 10–20° N that can be 

seen in Fig. 10 is the result of local fallout from the Marshall Islands. The inventories decrease on 

going from the Marshall Islands to 30–40° N in the Pacific, where the mid-latitude peak originating 

from global fallout is expected to occur. Higher 
239+240

Pu inventories observed between 50° and 55° 

N are due to intense biological activity and high scavenging east of the Kamchatka Peninsula. The 

figure therefore clearly shows the effects of nuclear bomb test sites and biological activity.  

The activity of 
238

Pu was also detected in the sediment. As shown in Table 4, 

238
Pu/

239+240
Pu inventory ratios in the sediment were calculated to be 0.035 ± 0.013 for HY-1, 0.032 

± 0.012 for HY-2, 0.026 ± 0.006 for HY-3, 0.041 ± 0.007 for HY-6, and 0.021 ± 0.010 for HY-9, 

whereas the inventory ratios in the seawater column of 0–1000 m were 0.033 ± 0.005 for HY-1, 

0.012 ± 0.001 for HY-2, 0.039 ± 0.003 for HY-6, and 0.050 ± 0.003 for HY-9. The 
238

Pu/
239+240

Pu 

activity ratios in the sediment column correspond closely to those in the seawater column, within 

the margin of error. This shows that the Pu in the seawater and that in the sediment have the same 

origin. 
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The ratios of the 
239+240

Pu inventory in the water column to those in the sediment column 

were calculated to be 12.0 for HY-1, 15.0 for HY-2, 5.5 for HY-3, 3.9 for HY-6, and 13.4 for HY-9. 

The ratios in 1997 in the Western Pacific, between Japan and Bikini Atoll, have been reported to lie 

in the range 0.9–3.4 (Moon et al., 2003; Povinec et al., 2003). Furthermore, the corresponding ratios 

for 
238

Pu are 11.3 for HY-1, 5.6 for HY-2, 3.7 for HY-6, and 32.2 for HY-9. The trend for the 

water-column/sediment-column ratios at HY-3 and HY-6 to be lower than those at the other stations, 

is common between 
239+240

Pu and 
238

Pu. The percentages of the inventories of 
238

Pu and 
239+240

Pu 

below 1000 m at stations HY-3, HY-6, and HY-9, as shown in Table 4, are also higher than those at 

the other stations. In addition, the 
239+240

Pu concentrations below 1000 m in the regions of HY-3, 

HY-6, and HY-9 are higher than those at other stations, as seen in Fig. 5. The values for stations 

HY-3, HY-6, and HY-9 were close to those of the continent, in contrast to the other stations; it is 

therefore presumed that substances originating from the continent affect these results. Consequently, 

the seawater and sediment data indicate that scavenging in the East Pacific is more active than that 

elsewhere. 

 

 

Conclusion 

Depth profiles of 
238

Pu and 
239+240

Pu in seawater and sea sediment samples taken from the 

Tropical East Pacific in 2003 were measured. By comparing the results with nutrient data, 

horizontal migration from the north to the south across the Equator is invoked to explain the high 

Pu inventories at stations HY-6, HY-9, and HY-11. Furthermore, 
239+240

Pu activity was also 

compared with profiles of DO, potential temperature, and sigma-θ. Although it has been proposed 

that the sinking behavior of Pu could be affected by changes in its valence state under different 

redox condition as a result of the presence of DO, no notable difference due to DO was observed. 

On the other hand, the distribution of Pu at depths of 0–400 m correlated with that of the potential 
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temperature, and the layer of subsurface Pu maximum was observed at a depth where sigma-θ ≈ 

27.0. Various profiles of Pu were observed in samples of sea sediment. A comparison of the 

inventory ratios of the water column to that in the sediment column and the inventory in each 1000 

m of seawater showed that scavenging of Pu at HY-3, HY-6, and HY-9 is more active than that at 

other stations. 

 

 

Acknowledgements 

We wish to thank Captain T. Seino and the officers and crew of R.V. Hakuho-Maru, and the 

scientific staff of the KH-03-1 cruise (Hydra expedition) for their assistance with the shipboard 

sampling. 

  



17 

 

Reference 

Aarkrog A. Input of anthropogenic radionuclides into the world ocean. Deep-Sea Res II 2003; 50: 

2597–2606. 

Amakawa H, Sasaki K, Ebihara M. Nd isotopic composition in the central North Pacific. Geochim 

Cosmochim Acta 2009; 73: 4705–4719. 

Aston SR. Evaluation of the chemical forms of plutonium in seawater. Mar Chem 1980; 8: 

319–325. 

Baskaran M, Asbill S, Santschi P, Brooks J, Champ M, Adkinson D, Colmer MR, Makeyev V. Pu, 

137
Cs and excess 

210
Pb in Russian Arctic sediments. Earth Planet Sci Lett 1996; 140: 

243–257. 

Bowen VT, Noshkin VE, Livingston HD, Volchok HL. Fallout radionuclides in the Pacific Ocean: 

Vertical and horizontal distributions, largely from GEOSECS station. Earth Planet Sci Lett 

1980; 49: 411–434. 

Buesseler KO, Sholkovitz ER. The geochemistry of fallout plutonium in the North Atlantic: II. 

240
Pu/

239
Pu ratios and their significance. Geochim Cosmochim Acta 1987; 51: 2623–2637. 

Buesseler KO. The isotopic signature of fallout plutonium in the north Pacific. J Environ Radioact 

1997; 36: 69–83. 

Cochran JK. Particle mixing rates in sediments of the eastern equatorial Pacific: Evidence from 

210
Pb, 

239, 240
Pu and 

137
Cs distribution at MANOP sites. Geochim Cosmochim Acta 1985; 

49: 1195–1210. 

Cooper LW, Kelley JM, Bond LA, Orlandini KA, Grebmeier J M. Sources of the transuranic 

elements plutonium and neptunium in arctic marine sediments. Mar Chem 2000; 69: 

253–276. 

Dai MH, Buesseler KO, Kelly JM, Andrews JE, Pike S, Wacker JF. Size-fractionated plutonium 

isotopes in a coastal environment. J Environ Radioact 2001; 53: 9–25. 



18 

 

Doney SC. Bomb tritium in the deep north Atlantic. Oceanogr 1992; 5: 169–170. 

Dong W, Zheng J, Guo Q, Yamada M, Pan S. Characterization of plutonium in deep-sea sediments 

of the Sulu and South China Seas. J Environ Radioact 2010; 101: 622–629. 

Fiedler PC. The annual cycle and biological effects of the Costa Rica Dome. Deep-Sea Res I 2002; 

49: 321–338. 

Hardy EP, Krey PW, Volchok HL. Global inventory and distribution of fallout plutonium. Nature 

1973; 241: 444–445. 

Harley JH. Plutonium in the environment –A review. J Radiat Res 1980; 21: 83–104. 

Hirose K, Aoyama M. Analysis of 
137

Cs and 
239,240

Pu concentrations in surface waters of the Pacific 

Ocean. Deep-Sea Res II 2003; 50: 2675–2700. 

Hirose K, Aoyama M, Kim CS. Plutonium in seawater of the Pacific Ocean. J Radioanal Nucl 

Chem 2007; 274: 635–638. 

Hong GH, Lee SH, Kim SH, Chung CS, Baskaran M. Sedimentary fluxes of 
90

Sr, 
137

Cs, 
239, 240

Pu 

and 
210

Pb in the East Sea (Sea of Japan). Sci Tot Environ 1999; 237/238: 225–240. 

Kawabe M, Taira K. Water masses and properties at 165 °E in the western Pacific. J Geophys Res 

1998; 103: 12941–12958. 

Kelley JM, Bond LA, Beasley TM. Global distribution of Pu isotopes and 
237

Np. Sci Tot Environ 

1999; 237/238: 483–500. 

Kershaw PJ, Denoon DC, Woodhead DS. Observations on the redistribution of plutonium and 

americium in the Irish Sea sediments, 1978 to 1996: Concentrations and inventories. J 

Environ Radioact 1999; 44: 191–221. 

Kinoshita N, Sato Y, Yamagata T, Nagai H, Yokoyama A, Nakanishi T. Incorporation rate 

measurements of 
10

Be, 
230

Th, 
231

Pa, and 
239, 240

Pu radionuclides in manganese crust in the 

Pacific Ocean: A search for extraterrestrial material. J Oceanogr 2007; 63: 813–820. 

Lagerloef G, Lukas R, Bonjean F, Gunn JT, Mitchum GT, Bourassa M, Busalacchi AJ. El Niño 



19 

 

Tropical Pacific Ocean surface current and temperature evolution in 2002 and outlook for 

early 2003. Geophys Res Lett 2003; 30: 1514. 

Lee SH, Gastaud J, Povinec PP, Hong GH, Kim SH, Chung CS, Lee KW, Pettersson HBL. 

Distribution of plutonium and americium in the marginal seas of the Northwest Pacific 

Ocean. Deep-Sea Res II 2003; 50: 2727– 2750. 

Lee SH, Povinec PP, Wyse E, Pham MK, Hong GH, Chung CS, Kim SH, Lee HJ. Distribution and 

inventories of 
90

Sr, 
137

Cs, 
241

Am and Pu isotopes in sediments of the northwest Pacific 

Ocean. Mar Geol 2005; 216: 249–263. 

Livingston HD, Povinec PP, Ito T, Togawa O. The behaviour of plutonium in the Pacific Ocean. In 

Kudo A, editor. Plutonium in the Environment. Elsevier Science, Amsterdam; 2001. p. 

267–292. 

Moon DS, Hong GH, Kim YI, Baskaran M, Chung CS, Kim SH, Lee HJ, Lee SH, Povinec PP. 

Accumulation of anthropogenic and natural radionuclides in bottom sediments of the 

Northwest Pacific Ocean. Deep-Sea Res II 2003; 50: 2649–2673. 

Mulsow S, Povinec PP, Somayajulu BLK, Oregioni B, Liong L, Kwong LLW, Gastaud J, Top Z, 

Morgenstern U. Temporal (
3
H) and spatial variation of 

90
Sr, 

239, 240
Pu and 

241
Am in the 

Arabian Sea: GEOSECS Stations revisited. Deep-Sea Res II 2003; 50: 2761–2775. 

Nagaya Y, Nakamura K. Artificial radionuclides in the Western Northwest Pacific (II): 
137

Cs and 
239, 

240
Pu inventories in water and sediment column observed from 1980 to 1986. J Oceanogr 

Soc Jap 1987; 43: 345–355. 

Nakano M, Povinec PP. Modeling the distribution of plutonium in the Pacific Ocean. J Environ 

Radioact 2003; 69: 85–106. 

Paul M, Valenta A, Ahmad I, Berkovits D, Bordeanu C, Ghelberg S, Hashimoto Y, Hershkowitz A, 

Jiang S, Nakanishi T, Sakamoto K. Experimental limit to interstellar 
244

Pu abundance. 

Astrophys J 2001; 558: L133–L135. 



20 

 

Periáñez R. Modeling the distribution of radionuclides in deep ocean water columns. Application to 

3
H, 

137
Cs and 

239,240
Pu. J Environ Radioact 1998; 38: 173–194. 

Perkins RW, Thomas CW. Worldwide fallout. In Hanson WC, editor. Transuranic Elements in the 

Environment. DOE/TIC-22800, National Technical Information Center, Springfield, VA; 

1980. p. 53–82. 

Pettersson HBL, Amano H, Berezhnov VI, Chaykovskaya E, Chumichev VB, Chung CS, Gastaud J, 

Hirose K, Hong GH, Kim CK, Lee SH, Morimoto T, Nikitin A, Oda K, Povinec PP, Suzuki 

E, Tkalin A, Togawa O, Veletova NK, Volkov Y, Yoshida K. Anthropogenic radionuclides 

in sediments in the NW Pacific Ocean and its marginal seas: results of the 1994–1995 

Japanese-Korean-Russian expeditions. Sci Tot Environ 1999; 237/238: 213–224. 

Povinec PP, Livingston HD, Shima S, Aoyama M, Gastaud J, Goroncy I, Hirose K, Huynh-Ngoc L, 

Ikeuchi Y, Ito T, La Rosa J, Liong Wee Kwong L, Lee SH, Moriya H, Mulsow S, Oregioni 

B, Pettersson H, Togawa O. IAEA’97 expedition to the NW Pacific Ocean—results of 

oceanographic and radionuclide investigations of the water column. Deep-Sea Res II 2003; 

50: 2607–2637. 

Sano Y, Takahata N, Gamo T. Helium isotopes in south Pacific deep seawater. Geochem J 1995; 29: 

377–384. 

Schlitzer R. eWOCE - Electronic Atlas of WOCE Data. Alfred Wegener Institute for Polar and 

Marine Research, Bremerhaven, Germany. 2007; http://www.ewoce.org/. 

Tomczak M, Godfrey JS. Regional Oceanography: An Introduction. Elsevier Science; 2005. p. 148. 

Tosaki Y, Tase N, Massmann G, Nagashima Y, Seki R, Takahashi T, Sasa K, Sueki K, Matsuhiro T, 

Miura T, Bessho K, Matsumura H, He M. Application of 
36

Cl as a dating tool for modern 

groundwater. Nucl Instr Meth B 2007; 259: 479–485. 

Tourigny E, Jones CG. An analysis of regional climate model performance over the tropical 

Americas. Part I: Simulating seasonal variability of precipitation associated with ENSO 



21 

 

forcing. Tellus A 2009; 61: 323–342. 

UNSCEAR. Sources and effects of ionizing radiation. United Nations Scientific Committee on the 

Effects of Atomic Radiation, United Nations, New York; 2000. 

Wallner C, Faestermann T, Gerstmann U, Hillebrandt W, Knie K, Korschinek G, Lierse C, Pomar C, 

Rugel G. Development of a very sensitive AMS method for the detection of 

supernova-produced longliving actinide nuclei in terrestrial archives. Nucl Instr Meth B 

2000; 172: 333–337. 

Yamada M, Wang ZL. 
137

Cs in the western South Pacific Ocean. Sci Tot Env 2007; 382: 342–350. 

You Y. The pathway and circulation of North Pacific Intermediate Water. Geophys. Res Lett 2003; 

30: 2201, doi:10.1029/2003GL018561. 

Zheng J, Yamada M. Vertical distribution of 
239+240

Pu activities and 
240

Pu/
238

Pu atom ratios in 

sediment cores: Implications for the sources of Pu in the Japan Sea. Sci Tot Env 2005; 340: 

199–211. 

Zheng J, Yamada M. Plutonium isotopes in settling particles: Transport and scavenging of Pu in the 

Western Northwest Pacific. Environ Sci Technol 2006; 40: 4103–4108. 

  



22 

 

Figure captions 

 

Fig. 1 

The locations of sampling stations HY-1 to HY 18 where Pu isotopes were measured. 

 

Fig. 2 

Potential temperature vs. salinity (θ–S) diagrams for each HY station. 

 

Fig. 3 

Vertical profiles of 
238

Pu and 
239+240

Pu activities in seawater. The 
238

Pu activities are indicated by 

open squares and the 
239+240

Pu activities are indicated by closed circles. 

 

Fig. 4 

Vertical profiles of 
238

Pu and 
239+240

Pu activities in sea sediment. The 
238

Pu activities are indicated 

by open squares and 
239+240

Pu activities are indicated by closed circles. 

 

Fig. 5 

Geographical distribution of 
239+240

Pu along the cruising course. (a): HY-1 to HY-3, (b) HY-3 to 

HY-9, (c) HY-11 to HY-18. 

 

Fig. 6 

Longitudinal distribution of 
239+240

Pu inventory (a), 
238

Pu inventory (b), and 
238

Pu/
239+240

Pu 

inventory ratio (c) in seawater. The data for the North, Equatorial, and South Pacific are plotted 

with red circles, green triangle, and blue squares, respectively. The 
238

Pu/
239+240

Pu inventory ratio in 

sediment was used for estimation at station HY-3 because of a lack of 
238

Pu data for depths of 
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0–1000 m. 

 

Fig. 7 

Latitudinal distributions of 
239+240

Pu inventory. 
239+240

Pu inventories at 0–1000 m (red circles), 

1000–2000 m (green triangles), 2000–3000 m (blue squares) are plotted. In addition, the inventories 

for the water column for the region 170° E to 170° W (Bowen et al., 1980; the inventory is 

multiplied by 1/5), for the region 140° W to 160° W (Nakano and Povinec, 2003), and for the region 

50° W to 70° W (Mulsow et al., 2003) are also drawn. 

 

Fig. 8 

Geographical distribution of potential temperature along the cruising course. The contour lines 

show the 
239+240

Pu activity (mBq/m
3
). (a): HY-1 to HY-3, (b): HY-3 to HY-9, (c): HY-11 to HY-18. 

 

Fig. 9 

Vertical profiles of 
239+240

Pu concentration plotted against the potential density (sigma-θ). 

 

Fig. 10 

Latitudinal distribution of 
239+240

Pu inventory in sediment. Results from this work are plotted as 

closed circles and data from previous reports are plotted as open squares. 
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Table captions 

 

Table 1 

Location of the stations, the water depths, and the sampling dates. 

 

Table 2 

Depth profile data of the potential temperature (P. Temp), salinity, potential density (σθ), dissolved 

oxygen (DO), and radioactivities of 
238

Pu and 
239+240

Pu in seawater. Because 
238

Pu tracer was used 

in some of the samples from HY-3 to check the yield of the chemical protocol, 
238

Pu was not 

determined in some of HY-3 samples. N.D. = ―Not Detected‖ (below the detection limit). 

 

Table 3 

Depth profiles of radioactivity of 
238

Pu and 
239+240

Pu in sea sediment samples. 

 

Table 4 

Inventory, percentage of 
239+240

Pu, and 
238

Pu/
239+240

Pu activity ratio at each depth in the water 

column and in sediment. 
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Table 1 

 

 

  

Station Location Water depth Sampling date 

HY-1 20°00' N 140°00' W 5309 m June 28, 2003 

HY-2 16° 31' N 123° 00' W 4208 m July 2, 2003 

HY-3 8° 02' N 95° 27' W 3635 m July 7, 2003 

HY-6 0° 01' N 95° 27' W 3219 m July 10, 2003 

HY-9 7° 59' S 95° 01' W 3882 m July 14, 2003 

HY-11 15° 08' S 85° 50' W 4680 m July 26, 2003 

HY-12 20° 00' S 101° 00' W 4114 m July 30, 2003 

HY-15A 25° 00' S 116° 00' W 2867 m Aug. 2, 2003 

HY-17 28° 30' S 127° 47' W 4037 m Aug. 5, 2003 

HY-18 26° 00' S 140° 00' W 4411 m Aug. 8, 2003 
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Table 2 

  

Depth P.Temp Salinity σ θ DO Depth P.Temp Salinity σ θ DO

(m) (ºC) (kg/m
3
) (L/m

3
) (m) (ºC) (kg/m

3
) (L/m

3
)

6 24.152 34.713 23.379 4.51 1.0 ± 0.2 6 25.150 34.449 22.879 4.38 0.3 ± 0.2 0.8 ± 0.2

99 22.217 35.096 24.230 4.68 0.8 ± 0.2 101 20.428 34.645 24.378 4.82 0.3 ± 0.2 7.6 ± 0.6

256 14.049 34.284 25.623 3.28 2.4 ± 0.5 247 11.327 34.686 26.471 0.09 0.6 ± 0.2 3.7 ± 0.4

395 9.076 34.256 26.602 1.27 18.0 ± 1.2 397 9.173 34.578 26.760 0.11 1.3 ± 0.3 25.9 ± 2.1

600 6.732 34.435 27.010 0.32 31.4 ± 3.0 594 6.841 34.595 27.043 0.23 0.4 ± 0.2 52.6 ± 3.6

795 5.226 34.461 27.222 0.46 0.6 ± 0.1 23.0 ± 2.5 796 5.597 34.517 27.221 0.18 0.6 ± 0.3 29.8 ± 2.3

1000 4.333 34.489 27.351 0.69 0.7 ± 0.2 17.0 ± 0.8 989 4.560 34.528 27.351 0.38 25.2 ± 2.4

1500 2.883 34.577 27.558 0.94 5.2 ± 0.8 1490 2.970 34.589 27.560 1.16 9.9 ± 1.8

2000 2.008 34.623 27.669 1.88 2.8 ± 0.3 1989 2.104 34.632 27.669 1.46 4.9 ± 1.3

2485 1.568 34.652 27.726 2.31 2.5 ± 0.3 2486 1.657 34.656 27.723 1.78 6.2 ± 0.7

2983 1.362 34.671 27.756 2.61 2.3 ± 0.3 2984 1.413 34.672 27.753 2.26 5.7 ± 0.5

3481 1.233 34.680 27.773 2.85 2.5 ± 0.3 3487 1.280 34.680 27.769 2.57 5.0 ± 0.6

4011 1.142 34.687 27.785 3.09 1.6 ± 0.5 4.2 ± 0.3 3983 1.220 34.684 27.776 2.77 6.0 ± 0.6

4485 1.059 34.694 27.795 3.34 4.6 ± 0.2 4154 1.194 34.686 27.776 2.89 0.5 ± 0.2 14.7 ± 1.0

4976 1.009 34.697 27.801 3.49 7.1 ± 0.3 4208 1.194 34.686 27.780 2.97 19.3 ± 1.8

5265 0.999 34.698 27.801 3.50 0.3 ± 0.1 9.8 ± 0.4

5309 0.999 34.698 27.803 3.50 0.7 ± 0.3 9.8 ± 0.7

Depth P.Temp Salinity σ θ DO Depth P.Temp Salinity σ θ DO

(m) (ºC) (kg/m
3
) (L/m

3
) (m) (ºC) (kg/m

3
) (L/m

3
)

6 28.745 33.779 21.241 4.17 0.6 ± 0.2 6 21.397 34.971 24.374 4.03 0.2 ± 0.1 3.1 ± 0.3

108 13.834 34.914 26.155 0.31 11.0 ± 1.3 95 15.653 34.983 25.813 2.49 0.5 ± 0.2 9.0 ± 0.6

247 11.115 34.755 26.564 0.24 15.2 ± 1.9 248 13.012 34.926 26.333 1.62 0.7 ± 0.2 12.2 ± 0.8

394 9.585 34.684 26.775 0.09 22.3 ± 1.8 404 10.139 34.746 26.729 0.20 0.7 ± 0.1 18.7 ± 0.9

601 6.948 34.582 27.096 0.10 35.1 ± 3.2 592 7.752 34.622 27.014 0.62 1.3 ± 0.3 31.6 ± 2.2

794 5.507 34.571 27.275 0.37 0.6 ± 0.1 26.1 ± 1.0 792 5.963 34.562 27.211 1.20 0.4 ± 0.2 29.9 ± 2.3

995 4.545 34.572 27.388 0.85 0.4 ± 0.1 17.3 ± 0.8 989 4.482 34.558 27.383 1.61 0.8 ± 0.2 18.3 ± 1.4

1489 3.155 34.608 27.558 1.32 10.5 ± 0.9 1488 3.112 34.602 27.557 1.78 0.6 ± 0.2 11.7 ± 1.2

1990 2.253 34.640 27.662 1.62 7.2 ± 0.7 1978 2.156 34.644 27.674 2.02 9.3 ± 0.8

2486 1.699 34.667 27.728 1.93 0.2 ± 0.1 6.1 ± 0.6 2479 1.709 34.664 27.725 2.19 0.5 ± 0.1 11.2 ± 0.7

2988 1.600 34.672 27.740 2.30 0.4 ± 0.1 14.4 ± 1.1 2985 1.524 34.677 27.750 2.56 0.9 ± 0.2 11.7 ± 0.6

3484 1.588 34.673 27.741 2.47 11.6 ± 0.8 3162 1.515 34.677 27.750 2.77 0.5 ± 0.2 16.7 ± 1.2

3585 1.586 34.674 27.741 2.51 18.4 ± 1.4 3214 1.515 34.677 27.750 2.78 0.6 ± 0.2 16.5 ± 1.3

3635 1.586 34.674 27.742 2.51 0.3 ± 0.2 21.4 ± 1.1

Depth P.Temp Salinity σ θ DO Depth P.Temp Salinity σ θ DO

(m) (ºC) (kg/m
3
) (L/m

3
) (m) (ºC) (kg/m

3
) (L/m

3
)

6 23.952 35.518 24.048 4.43 0.9 ± 0.2 6 19.689 35.573 25.281 4.840 0.8 ± 0.2

108 15.903 35.083 25.833 0.75 0.2 ± 0.1 2.6 ± 0.3 105 19.575 35.555 25.297 4.770 0.8 ± 0.2

250 11.545 34.848 26.557 0.26 3.0 ± 0.5 13.2 ± 1.2 247 11.705 34.810 26.497 0.090 0.5 ± 0.1 5.3 ± 0.4

403 9.575 34.721 26.806 0.18 0.4 ± 0.2 15.8 ± 1.9 395 9.076 34.662 26.841 0.230 1.5 ± 0.2 11.8 ± 0.7

595 6.864 34.576 27.103 0.19 0.5 ± 0.2 17.7 ± 1.4 593 6.743 34.539 27.091 0.520 0.5 ± 0.1 11.2 ± 0.7

793 5.202 34.540 27.287 1.01 1.1 ± 0.3 16.2 ± 1.5 792 5.193 34.510 27.264 0.860 0.3 ± 0.2 9.2 ± 0.6

996 4.336 34.547 27.390 1.57 0.2 ± 0.1 11.3 ± 1.0 1000 4.329 34.533 27.380 1.210 0.3 ± 0.1 8.4 ± 0.7

1491 2.858 34.601 27.580 2.06 0.3 ± 0.2 8.5 ± 0.9 1495 2.864 34.594 27.573 1.870 5.9 ± 0.5

1993 2.171 34.640 27.670 2.08 0.2 ± 0.1 7.0 ± 0.5 1991 2.085 34.642 27.678 2.410 0.3 ± 0.1 5.1 ± 0.3

2486 1.750 34.666 27.723 2.27 0.4 ± 0.1 8.3 ± 0.5 2487 1.696 34.668 27.729 2.800 3.3 ± 0.3

2989 1.563 34.680 27.749 2.55 0.6 ± 0.1 8.7 ± 0.5 2983 1.578 34.677 27.746 2.900 5.4 ± 0.5

3485 1.521 34.684 27.755 2.97 0.3 ± 0.1 9.6 ± 0.6 3481 1.519 34.683 27.755 3.020 2.4 ± 0.3

3831 1.517 34.685 27.755 2.95 0.6 ± 0.1 13.3 ± 0.5 3978 1.442 34.689 27.764 3.170 3.7 ± 0.3

3882 1.517 34.685 27.755 2.92 0.7 ± 0.1 14.2 ± 0.5 4622 1.421 34.690 27.767 3.180 0.2 ± 0.1 6.4 ± 0.4

4680 1.419 34.691 27.768 3.180 6.2 ± 0.6N.D.

N.D.

(mBq/m
3
)

(mBq/m
3
) (mBq/m

3
)

239+240
Pu

239+240
Pu

N.D.

N.D.

238
Pu

238
Pu

239+240
Pu

HY-9 (07°59'S, 95°01'W) HY-11 (15°08'S, 85°50'W)

N.D.

N.D.

N.D.

N.D.

N.D.

-

(mBq/m
3
)

N.D.

(mBq/m
3
) (mBq/m

3
)

N.D. N.D.

N.D.

-

239+240
Pu

238
Pu

N.D. N.D.

N.D. N.D.

N.D.

N.D.

N.D. N.D.

-

N.D. N.D.

N.D. N.D.

-

N.D.

-

(mBq/m
3
) (mBq/m

3
) (mBq/m

3
) (mBq/m

3
)

(mBq/m
3
)

HY-1 (20°00'N, 140°00'W) HY-2 (16°31'N, 123°00'W)

HY-3 (8°02'N, 95°27'W) HY-6 (0°02'N, 95°27'W)

238
Pu

239+240
Pu

238
Pu

239+240
Pu

238
Pu

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D. N.D.

(mBq/m
3
)
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Table 2 (continued) 

  

Depth P.Temp Salinity σ θ DO Depth P.Temp Salinity σ θ DO

(m) (ºC) (kg/m
3
) (L/m

3
) (m) (ºC) (kg/m

3
) (L/m

3
)

6 22.045 36.004 24.968 4.69 0.2 ± 0.1 6 22.425 36.222 25.027 4.61 0.7 ± 0.1

101 22.048 36.019 24.979 4.70 0.2 ± 0.1 0.4 ± 0.1 101 21.847 36.085 25.086 4.62 0.2 ± 0.1 0.7 ± 0.2

258 13.830 34.631 25.938 4.02 0.2 ± 0.1 0.7 ± 0.2 249 15.989 35.009 25.757 4.44 1.0 ± 0.1

398 9.081 34.524 26.733 1.24 0.7 ± 0.2 8.7 ± 0.6 404 9.362 34.405 26.594 3.49 0.3 ± 0.1 2.7 ± 0.2

595 6.246 34.425 27.067 2.19 0.9 ± 0.2 10.1 ± 0.6 598 5.926 34.300 27.009 4.77 0.7 ± 0.2 6.6 ± 0.4

801 5.179 34.461 27.227 1.67 1.3 ± 0.3 6.6 ± 0.6 797 4.797 34.302 27.145 4.13 0.8 ± 0.3 5.1 ± 0.5

990 4.295 34.503 27.360 1.84 0.6 ± 0.3 5.7 ± 0.5 998 4.041 34.417 27.318 3.07 0.7 ± 0.2 5.7 ± 0.7

1500 2.875 34.579 27.560 2.29 0.2 ± 0.1 1.8 ± 0.3 1488 2.451 34.574 27.594 3.19 2.1 ± 0.4

1986 2.122 34.631 27.667 2.73 1.4 ± 0.2 1993 1.903 34.638 27.689 3.26 2.1 ± 0.5

2485 1.723 34.663 27.723 3.20 1.1 ± 0.1 2488 1.690 34.660 27.723 3.32 1.2 ± 0.3

2978 1.569 34.679 27.747 3.20 0.8 ± 0.2 2817 1.651 34.665 27.730 3.32 1.4 ± 0.3

3921 1.510 34.686 27.760 3.15 0.2 ± 0.1 3.2 ± 0.1 2867 1.645 34.666 27.730 3.31 0.2 ± 0.1 1.2 ± 0.2

4065 1.491 34.687 27.760 3.14 0.5 ± 0.1 5.4 ± 0.2

4114 1.490 34.687 27.760 3.12 0.4 ± 0.1 5.9 ± 0.2

Depth P.Temp Salinity σ θ DO Depth P.Temp Salinity σ θ DO

(m) (ºC) (kg/m
3
) (L/m

3
) (m) (ºC) (kg/m

3
) (L/m

3
)

6 20.228 35.556 25.126 4.82 0.7 ± 0.1 6 22.053 35.564 24.631 4.63 0.6 ± 0.1

248 15.946 35.125 25.856 4.84 1.4 ± 0.8 100 21.678 35.552 24.727 4.68 0.2 ± 0.1 0.6 ± 0.1

398 10.781 34.600 26.503 4.42 0.4 ± 0.1 3.1 ± 0.3 250 17.777 35.461 25.680 4.31 0.2 ± 0.1 0.8 ± 0.1

588 6.690 34.348 26.947 5.20 1.3 ± 0.2 6.5 ± 0.4 399 12.318 34.861 26.420 4.30 0.7 ± 0.2 2.7 ± 0.3

792 5.503 34.287 27.050 5.04 1.1 ± 0.1 8.5 ± 0.4 597 6.892 34.363 26.932 4.90 0.7 ± 0.1 7.2 ± 0.5

988 4.368 34.316 27.203 4.24 1.0 ± 0.2 6.9 ± 0.5 801 5.479 34.299 27.063 4.89 1.2 ± 0.3 9.6 ± 0.6

1492 2.638 34.535 27.546 3.37 0.2 0.1 2.5 ± 0.2 993 4.287 34.338 27.230 4.04 1.1 ± 0.2 8.2 ± 0.5

1990 2.005 34.623 27.669 3.25 1.7 ± 0.2 1495 2.563 34.552 27.567 3.34 0.2 ± 0.1 2.4 ± 0.2

2485 1.656 34.657 27.723 3.29 0.9 ± 0.1 1989 1.967 34.627 27.676 3.24 1.5 ± 0.2

2986 1.441 34.673 27.752 3.45 1.6 ± 0.2 2486 1.662 34.656 27.722 3.30 1.1 ± 0.1

3461 1.311 34.683 27.769 3.58 1.3 ± 0.1 2985 1.464 34.671 27.749 3.42 1.7 ± 0.2

3983 1.243 34.688 27.778 3.63 0.2 ± 0.1 1.1 ± 0.2 3487 1.283 34.684 27.772 3.59 0.4 ± 0.2 1.5 ± 0.2

4037 1.239 34.688 27.779 3.63 4.9 ± 0.5 3988 1.272 34.687 27.786 3.71 0.2 ± 0.1 1.4 ± 0.2

4356 1.247 34.694 27.786 3.71 0.3 ± 0.2 3.0 ± 0.2

4411 1.247 34.694 27.789 3.71 0.5 ± 0.1 3.8 ± 0.4

N.D.

HY-17 (28°30'S, 127°47'W) HY-18 (26°00'S, 140°00'W)

(mBq/m
3
)

N.D.

238
Pu

239+240
Pu

238
Pu

(mBq/m
3
) (mBq/m

3
) (mBq/m

3
) (mBq/m

3
)

N.D. N.D.

(mBq/m
3
)

239+240
Pu

N.D.

N.D. N.D.

N.D.

N.D.

N.D.

(mBq/m
3
) (mBq/m

3
)

N.D. N.D.

N.D. N.D.

239+240
Pu

238
Pu

238
Pu

239+240
Pu

N.D. N.D.

N.D. N.D.

N.D.

N.D. N.D.

HY-12 (20°00'S, 101°00'W) HY-15A (25°00'S, 116°00'W)
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Table 3 

 

 

  

Depth 

(cm)

0-1 0.06 ± 0.04 1.67 ± 0.15 0.06 ± 0.02 1.60 ± 0.18 0.06 ± 0.03 1.08 ± 0.15 0.11 ± 0.03 2.19 ± 0.23 1.15 ± 0.18

1-2 0.05 ± 0.02 0.11 ± 0.03 0.05 ± 0.04 0.71 ± 0.09 0.05 ± 0.02 1.35 ± 0.19 1.48 ± 0.19 0.54 ± 0.09

2-3 0.15 ± 0.03 0.30 ± 0.06 0.06 ± 0.02 1.31 ± 0.16 0.04 ± 0.02 0.99 ± 0.13 0.06 ± 0.03 0.37 ± 0.07

3-4 0.14 ± 0.02 0.21 ± 0.04 0.04 ± 0.02 1.89 ± 0.22 0.04 ± 0.01 0.98 ± 0.12 0.26 ± 0.06

4-5 0.37 ± 0.23 0.32 ± 0.04 0.03 ± 0.01 1.28 ± 0.15 0.03 ± 0.02 0.73 ± 0.12 0.25 ± 0.05

5-6 0.24 ± 0.04 0.22 ± 0.02 1.27 ± 0.17 0.17 ± 0.06 0.42 ± 0.21 0.33 ± 0.04

6-7 0.34 ± 0.04 0.39 ± 0.07 1.45 ± 0.48

7-8 0.09 ± 0.03 0.29 ± 0.05 0.11 ± 0.04 2.63 ± 0.60

8-9 0.24 ± 0.03 0.90 ± 0.08

 9-10 0.17 ± 0.02

10-11 0.12 ± 0.02

11-12 0.06 ± 0.01

N.D.

N.D.

N.D.

N.D.

N.D. N.D.

N.D. N.D.

N.D. N.D. N.D. N.D.

N.D. N.D. N.D.

N.D. N.D.

N.D. N.D. N.D.

N.D.

N.D. N.D.

N.D. N.D.

(Bq/m
2
) (Bq/m

2
) (Bq/m

2
) (Bq/m

2
) (Bq/m

2
)(Bq/m

2
) (Bq/m

2
) (Bq/m

2
) (Bq/m

2
) (Bq/m

2
)

239+240
Pu

238
Pu

239+240
Pu

238
Pu

239+240
Pu

238
Pu

239+240
Pu

238
Pu

239+240
Pu

238
Pu

(20°00'N, 140°00'W) (16°31'N, 123°00'W) (8°02'N, 95°27'W) (0°01'N, 95°27'W) (7°59'S, 95°01'W)

HY-1 HY-2 HY-3 HY-6 HY-9
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Table 4 

  

Depth Depth 

(m) (m)

0-1000 0.19 ± 0.02 16.2 ± 0.6 15.5 ± 3.1 43.7 ± 1.8 0.012 ± 0.002 0-1000 0.56 ± 0.07 24.8 ± 0.7 90.8 ± 15.1 48.5 ± 1.8 0.023 ± 0.003

1000-2000 0.18 ± 0.05 7.6 ± 0.4 14.1 ± 4.6 20.4 ± 1.0 0.023 ± 0.007 1000-2000 12.5 ± 0.9 0.0 ± 0.0 24.5 ± 1.9 -

2000-3000 2.5 ± 0.1 0.0 ± 0.0 6.7 ± 0.4 - 2000-3000 5.7 ± 0.4 0.0 ± 0.0 11.2 ± 0.9 -

3000-bottom 0.87 ± 0.18 10.8 ± 0.2 70.0 ± 18.0 29.1 ± 0.8 0.080 ± 0.017 3000-bottom 0.06 ± 0.02 8.1 ± 0.3 9.1 ± 3.1 15.9 ± 0.7 0.007 ± 0.002

Sea water 1.24 ± 0.19 37.1 ± 0.7 0.033 ± 0.005 Sea water 0.62 ± 0.07 51.1 ± 1.3 0.012 ± 0.001

Sediment 0.11 ± 0.04 3.1 ± 0.3 0.035 ± 0.013 Sediment 0.11 ± 0.04 3.4 ± 0.2 0.032 ± 0.012

Depth Depth 

(m) (m)

0-1000 - 21.4 ± 0.6 - 42.7 ± 1.4 - 0-1000 0.71 ± 0.06 20.2 ± 0.5 - 42.9 ± 1.1 0.035 ± 0.003

1000-2000 0.10 ± 0.02 11.3 ± 0.4 - 22.5 ± 0.9 0.009 ± 0.002 1000-2000 0.50 ± 0.09 12.6 ± 0.6 - 26.8 ± 1.3 0.039 ± 0.007

2000-3000 0.20 ± 0.04 8.4 ± 0.4 - 16.8 ± 0.8 0.024 ± 0.005 2000-3000 0.48 ± 0.06 10.9 ± 0.4 - 23.2 ± 0.8 0.044 ± 0.006

3000-bottom 0.11 ± 0.03 9.0 ± 0.4 - 17.9 ± 0.8 0.012 ± 0.003 3000-bottom 0.15 ± 0.03 3.4 ± 0.1 - 7.2 ± 0.3 0.045 ± 0.008

Sea water - 50.1 ± 0.9 - Sea water 1.84 ± 0.13 47.1 ± 0.8 0.039 ± 0.003

Sediment 0.24 ± 0.05 9.1 ± 0.4 0.026 ± 0.006 Sediment 0.50 ± 0.08 12.1 ± 0.9 0.041 ± 0.007

Depth Depth 

(m) (m)

0-1000 0.87 ± 0.10 12.9 ± 0.4 45.3 ± 5.8 33.1 ± 1.2 0.068 ± 0.008 0-1000 0.60 ± 0.05 7.9 ± 0.2 72.9 ± 8.7 31.0 ± 0.9 0.076 ± 0.007

1000-2000 0.25 ± 0.07 8.8 ± 0.4 12.9 ± 3.5 22.6 ± 1.1 0.028 ± 0.008 1000-2000 0.15 ± 0.04 6.2 ± 0.2 18.1 ± 4.5 24.5 ± 1.0 0.024 ± 0.006

2000-3000 0.40 ± 0.05 8.1 ± 0.3 20.7 ± 2.9 20.7 ± 0.8 0.050 ± 0.006 2000-3000 4.2 ± 0.2 0.0 ± 0.0 16.7 ± 0.7 -

3000-bottom 0.41 ± 0.02 9.2 ± 0.2 21.3 ± 1.9 23.7 ± 0.8 0.045 ± 0.003 3000-bottom 0.07 ± 0.03 7.1 ± 0.2 8.6 ± 4.0 27.8 ± 1.0 0.010 ± 0.005

Sea water 1.93 ± 0.13 38.9 ± 0.7 0.050 ± 0.003 Sea water 0.82 ± 0.07 25.5 ± 0.4 0.032 ± 0.003

Sediment 0.06 ± 0.03 2.9 ± 0.2 0.021 ± 0.010 Sediment - - -

Depth Depth 

(m) (m)

0-1000 0.67 ± 0.06 5.5 ± 0.1 61.3 ± 9.0 45.4 ± 1.7 0.121 ± 0.012 0-1000 0.44 ± 0.06 3.6 ± 0.1 71.7 ± 12.2 45.9 ± 2.3 0.123 ± 0.016

1000-2000 0.25 ± 0.08 2.7 ± 0.2 23.2 ± 8.1 22.3 ± 1.5 0.094 ± 0.032 1000-2000 0.17 ± 0.05 3.0 ± 0.2 27.7 ± 8.5 37.5 ± 3.4 0.058 ± 0.017

2000-3000 1.1 ± 0.1 0.0 ± 0.0 9.2 ± 0.6 - 2000-3000 1.3 ± 0.1 0.0 ± 0.0 16.6 ± 2.0 -

3000-bottom 0.17 ± 0.05 2.8 ± 0.1 15.3 ± 4.7 22.9 ± 1.0 0.060 ± 0.018 3000-bottom - - - - -

Sea water 1.09 ± 0.12 12.1 ± 0.3 0.090 ± 0.010 Sea water 0.62 ± 0.07 7.9 ± 0.3 0.078 ± 0.010

Sediment - - - Sediment - - -

Depth Depth 

(m) (m)

0-1000 0.99 ± 0.07 4.6 ± 0.2 94.7 ± 10.0 42.5 ± 1.6 0.218 ± 0.018 0-1000 0.98 ± 0.08 4.8 ± 0.1 70.3 ± 8.3 39.2 ± 1.2 0.203 ± 0.017

1000-2000 3.4 ± 0.2 0.0 ± 0.0 32.2 ± 1.5 - 1000-2000 0.05 ± 0.02 3.6 ± 0.1 3.6 ± 1.8 29.5 ± 1.3 0.014 ± 0.007

2000-3000 0.05 ± 0.03 1.3 ± 0.1 5.0 ± 2.5 12.0 ± 0.8 0.041 ± 0.021 2000-3000 0.10 ± 0.05 1.3 ± 0.1 7.2 ± 3.7 10.9 ± 0.6 0.075 ± 0.038

3000-bottom 0.01 ± 0.00 1.5 ± 0.1 0.5 ± 0.3 13.6 ± 0.8 0.004 ± 0.002 3000-bottom 0.26 ± 0.07 2.5 ± 0.1 19.0 ± 5.3 20.5 ± 0.9 0.105 ± 0.028

Sea water 1.05 ± 0.08 10.7 ± 0.2 0.098 ± 0.008 Sea water 1.39 ± 0.12 12.3 ± 0.2 0.113 ± 0.010

Sediment - - - Sediment - - -

(%)

N.D.

HY-18 (26°00'S, 140°00'W)

HY-15A (25°00'S, 116°00'W)

HY-11 (15°08'S, 85°50'W)

HY-6 (0°02'N, 95°27'W)

239+240
Pu

(Bq/m
2
) (Bq/m

2
) (Bq/m

2
) (Bq/m

2
)

238
Pu

239+240
Pu

238
Pu

N.D.

N.D.

239+240
Pu

238
Pu

239+240
Pu

239+240
Pu

238
Pu

(%) (%)

HY-17 (28°30'S, 127°47'W)

(%)

(Bq/m
2
) (Bq/m

2
) (Bq/m

2
)

238
Pu/

239+240
Pu

activity ratio

238
Pu/

239+240
Pu

239+240
Pu

(Bq/m
2
) (Bq/m

2
)

(Bq/m
2
) (Bq/m

2
) (Bq/m

2
) (Bq/m

2
)

238
Pu

239+240
Pu

(Bq/m
2
) (Bq/m

2
) (%)

238
Pu

239+240
Pu

238
Pu

239+240
Pu

238
Pu

(%) (%)

238
Pu

HY-1 (20°00'N, 140°00'W)

HY-3 (8°02'N, 95°27'W)

238
Pu/

239+240
Pu

activity ratio
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Pu/
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2
)

N.D.

N.D.

238
Pu
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2
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2
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Pu

(%)
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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