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Distance-regular graphs of q-Racah
type and the q-tetrahedron algebra

Tatsuro Ito∗† and Paul Terwilliger‡

In Memory of Donald Higman

Abstract

In this paper we discuss a relationship between the following two algebras: (i) the
subconstituent algebra T of a distance-regular graph that has q-Racah type; (ii) the
q-tetrahedron algebra �q which is a q-deformation of the three-point sl2 loop algebra.
Assuming that every irreducible T -module is thin, we display an algebra homomor-
phism from �q into T and show that T is generated by the image together with the
center Z(T ).

Keywords. Tetrahedron algebra, quantum affine algebra, distance-regular graph, Q-
polynomial.
2000 Mathematics Subject Classification. Primary: 05E30. Secondary: 05E35;
17B37.

1 Introduction

In [20] B. Hartwig and the second author gave a presentation of the three-point sl2 loop
algebra via generators and relations. To obtain this presentation they defined a Lie algebra
� by generators and relations, and displayed an isomorphism from � to the three-point sl2
loop algebra. The algebra � is called the tetrahedron algebra [20, Definition 1.1]. In [24]
we introduced a q-deformation �q of � called the q-tetrahedron algebra. In [24] and [25]
we described the finite-dimensional irreducible �q-modules. In [26, Section 4] we displayed

four homomorphisms into �q from the quantum affine algebra Uq(ŝl2). In [26, Section 12] we
found a homomorphism from �q into the subconstituent algebra of a distance-regular graph
that is self-dual with classical parameters. In the present paper we do something similar for
a distance-regular graph said to have q-Racah type. This type is described as follows. Let Γ
denote a distance-regular graph with diameter D ≥ 3 (See Section 4 for formal definitions).
We say that Γ has q-Racah type whenever Γ has a Q-polynomial structure with eigenvalue
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sequence {θi}D
i=0 and dual eigenvalue sequence {θ∗i }D

i=0 that satisfy

θi = η + uq2i−D + vqD−2i (0 ≤ i ≤ D),

θ∗i = η∗ + u∗q2i−D + v∗qD−2i (0 ≤ i ≤ D),

where q, u, v, u∗, v∗ are nonzero and q2i 6= 1 for 1 ≤ i ≤ D. Assume Γ has q-Racah type.
Fix a vertex x of Γ and let T = T (x) denote the corresponding subconstituent algebra [32,
Definition 3.3]. Recall that T is generated by the adjacency matrix A and the dual adjacency
matrix A∗ = A∗(x) [32, Definition 3.10]. An irreducible T -module W is called thin whenever
the intersection of W with each eigenspace of A and each eigenspace of A∗ has dimension at
most 1 [32, Definition 3.5]. Assuming each irreducible T -module is thin, we display invertible
central elements Φ, Ψ of T and a homomorphism ϑ : �q → T such that

A = ηI + uΦΨ−1ϑ(x01) + vΨΦ−1ϑ(x12),

A∗ = η∗I + u∗ΦΨϑ(x23) + vΨ−1Φ−1ϑ(x30),

where the xij are the standard generators of �q. It follows that T is generated by the image
ϑ(�q) together with Φ, Ψ. In particular T is generated by ϑ(�q) together with the center
Z(T ).

This paper is organized as follows. In Section 2 we recall the definition of �q. In Section

3 we describe how �q is related to Uq(ŝl2). In Section 4 we recall the basic theory of a
distance-regular graph Γ, focussing on the Q-polynomial property and the subconstituent
algebra. In Section 5 we discuss the split decomposition of Γ. In Section 6 we give our main
results.

Throughout the paper C denotes the field of complex numbers.

2 The q-tetrahedron algebra �q

In this section we recall the q-tetrahedron algebra. We fix a nonzero scalar q ∈ C such that
q2 6= 1 and define

[n]q =
qn − q−n

q − q−1
, n = 0, 1, 2, . . .

We let Z4 = Z/4Z denote the cyclic group of order 4.

Definition 2.1 [24, Definition 10.1] Let �q denote the unital associative C-algebra that has
generators

{xij | i, j ∈ Z4, j − i = 1 or j − i = 2}

and the following relations:

(i) For i, j ∈ Z4 such that j − i = 2,

xijxji = 1.
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(ii) For h, i, j ∈ Z4 such that the pair (i− h, j − i) is one of (1, 1), (1, 2), (2, 1),

qxhixij − q−1xijxhi

q − q−1
= 1.

(iii) For h, i, j, k ∈ Z4 such that i− h = j − i = k − j = 1,

x3
hixjk − [3]qx

2
hixjkxhi + [3]qxhixjkx

2
hi − xjkx

3
hi = 0. (1)

We call �q the q-tetrahedron algebra or “q-tet” for short. We refer to the xij as the standard
generators for �q.

Note 2.2 The equations (1) are the cubic q-Serre relations [29, p. 10].

We make some observations.

Lemma 2.3 [24, Lemma 6.3] There exists a C-algebra automorphism % of �q that sends
each generator xij to xi+1,j+1. Moreover %4 = 1.

Lemma 2.4 [24, Lemma 6.5] There exists a C-algebra automorphism of �q that sends each
generator xij to −xij.

3 The quantum affine algebra Uq(ŝl2)

In this section we consider how �q is related to the quantum affine algebra Uq(ŝl2). We start
with a definition.

Definition 3.1 [7, p. 266] The quantum affine algebra Uq(ŝl2) is the unital associative C-
algebra with generators K±1

i , e±i , i ∈ {0, 1} and the following relations:

KiK
−1
i = K−1

i Ki = 1,

K0K1 = K1K0,

Kie
±
i K−1

i = q±2e±i ,

Kie
±
j K−1

i = q∓2e±j , i 6= j,

[e+
i , e−i ] =

Ki −K−1
i

q − q−1
,

[e±0 , e∓1 ] = 0,

(e±i )3e±j − [3]q(e
±
i )2e±j e±i + [3]qe

±
i e±j (e±i )2 − e±j (e±i )3 = 0, i 6= j.

The following presentation of Uq(ŝl2) will be useful.
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Proposition 3.2 ([23, Theorem 2.1], [38]) The quantum affine algebra Uq(ŝl2) is isomorphic
to the unital associative C-algebra with generators x±1

i , yi, zi, i ∈ {0, 1} and the following
relations:

xix
−1
i = x−1

i xi = 1,

x0x1 is central,

qxiyi − q−1yixi

q − q−1
= 1,

qyizi − q−1ziyi

q − q−1
= 1,

qzixi − q−1xizi

q − q−1
= 1,

qziyj − q−1yjzi

q − q−1
= x−1

0 x−1
1 , i 6= j,

y3
i yj − [3]qy

2
i yjyi + [3]qyiyjy

2
i − yjy

3
i = 0, i 6= j,

z3
i zj − [3]qz

2
i zjzi + [3]qzizjz

2
i − zjz

3
i = 0, i 6= j.

An isomorphism with the presentation in Definition 3.1 is given by:

x±1
i 7→ K±1

i ,

yi 7→ K−1
i + e−i ,

zi 7→ K−1
i −K−1

i e+
i q(q − q−1)2.

The inverse of this isomorphism is given by:

K±1
i 7→ x±1

i ,

e−i 7→ yi − x−1
i ,

e+
i 7→ (1− xizi)q

−1(q − q−1)−2.

Theorem 3.3 [24, Proposition 7.4] For i ∈ Z4 there exists a C-algebra homomorphism from

Uq(ŝl2) to �q that sends

x1 7→ xi,i+2, x−1
1 7→ xi+2,i, y1 7→ xi+2,i+3, z1 7→ xi+3,i,

x0 7→ xi+2,i, x−1
0 7→ xi,i+2, y0 7→ xi,i+1, z0 7→ xi+1,i+2.

Proof: Compare the defining relations for Uq(ŝl2) given in Proposition 3.2 with the relations
in Definition 2.1. 2

4 Distance-regular graphs; preliminaries

We now turn our attention to distance-regular graphs. After a brief review of the basic
definitions we recall the Q-polynomial property and the subconstituent algebra. For more
information we refer the reader to [1, 3, 19, 32].
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Let X denote a nonempty finite set. Let MatX(C) denote the C-algebra consisting of all
matrices whose rows and columns are indexed by X and whose entries are in C. Let V = CX

denote the vector space over C consisting of column vectors whose coordinates are indexed
by X and whose entries are in C. We observe MatX(C) acts on V by left multiplication. We
call V the standard module. We endow V with the Hermitean inner product 〈 , 〉 that satisfies
〈u, v〉 = utv for u, v ∈ V , where t denotes transpose and denotes complex conjugation.
For all y ∈ X, let ŷ denote the element of V with a 1 in the y coordinate and 0 in all other
coordinates. We observe {ŷ | y ∈ X} is an orthonormal basis for V.

Let Γ = (X, R) denote a finite, undirected, connected graph, without loops or multiple
edges, with vertex set X and edge set R. Let ∂ denote the path-length distance function
for Γ, and set D := max{∂(x, y) | x, y ∈ X}. We call D the diameter of Γ. For an integer
k ≥ 0 we say that Γ is regular with valency k whenever each vertex of Γ is adjacent to
exactly k distinct vertices of Γ. We say that Γ is distance-regular whenever for all integers
h, i, j (0 ≤ h, i, j ≤ D) and for all vertices x, y ∈ X with ∂(x, y) = h, the number

ph
ij = |{z ∈ X | ∂(x, z) = i, ∂(z, y) = j}|

is independent of x and y. The ph
ij are called the intersection numbers of Γ. We abbreviate

ci = pi
1,i−1 (1 ≤ i ≤ D), bi = pi

1,i+1 (0 ≤ i ≤ D − 1), ai = pi
1i (0 ≤ i ≤ D).

For the rest of this paper we assume Γ is distance-regular; to avoid trivialities we always
assume D ≥ 3. Note that Γ is regular with valency k = b0. Moreover k = ci + ai + bi for
0 ≤ i ≤ D, where c0 = 0 and bD = 0.

We mention a fact for later use. By the triangle inequality, for 0 ≤ h, i, j ≤ D we have
ph

ij = 0 (resp. ph
ij 6= 0) whenever one of h, i, j is greater than (resp. equal to) the sum of the

other two.

We recall the Bose-Mesner algebra of Γ. For 0 ≤ i ≤ D let Ai denote the matrix in MatX(C)
with (x, y)-entry

(Ai)xy =

{
1, if ∂(x, y) = i
0, if ∂(x, y) 6= i

(x, y ∈ X).

We call Ai the ith distance matrix of Γ. We abbreviate A = A1 and call this the adjacency
matrix of Γ. We observe (i) A0 = I; (ii)

∑D
i=0 Ai = J ; (iii) Ai = Ai (0 ≤ i ≤ D); (iv)

At
i = Ai (0 ≤ i ≤ D); (v) AiAj =

∑D
h=0 ph

ijAh (0 ≤ i, j ≤ D), where I (resp. J) denotes
the identity matrix (resp. all 1’s matrix) in MatX(C). Using these facts we find {Ai}D

i=0 is a
basis for a commutative subalgebra M of MatX(C), called the Bose-Mesner algebra of Γ. It
turns out that A generates M [1, p. 190]. By [3, p. 45], M has a second basis {Ei}D

i=0 such
that (i) E0 = |X|−1J ; (ii)

∑D
i=0 Ei = I; (iii) Ei = Ei (0 ≤ i ≤ D); (iv) Et

i = Ei (0 ≤ i ≤ D);
(v) EiEj = δijEi (0 ≤ i, j ≤ D). We call {Ei}D

i=0 the primitive idempotents of Γ.

We recall the eigenvalues of Γ. Since {Ei}D
i=0 form a basis for M there exist complex scalars

{θi}D
i=0 such that A =

∑D
i=0 θiEi. Observe AEi = EiA = θiEi for 0 ≤ i ≤ D. By [1, p. 197]

the scalars {θi}D
i=0 are in R. Observe {θi}D

i=0 are mutually distinct since A generates M . We
call θi the eigenvalue of Γ associated with Ei (0 ≤ i ≤ D). Observe

V = E0V + E1V + · · ·+ EDV (orthogonal direct sum).
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For 0 ≤ i ≤ D the space EiV is the eigenspace of A associated with θi.

We now recall the Krein parameters. Let ◦ denote the entrywise product in MatX(C).
Observe Ai ◦ Aj = δijAi for 0 ≤ i, j ≤ D, so M is closed under ◦. Thus there exist complex
scalars qh

ij (0 ≤ h, i, j ≤ D) such that

Ei ◦ Ej = |X|−1

D∑
h=0

qh
ijEh (0 ≤ i, j ≤ D).

By [2, p. 170], qh
ij is real and nonnegative for 0 ≤ h, i, j ≤ D. The qh

ij are called the Krein
parameters of Γ. The graph Γ is said to be Q-polynomial (with respect to the given ordering
{Ei}D

i=0 of the primitive idempotents) whenever for 0 ≤ h, i, j ≤ D, qh
ij = 0 (resp. qh

ij 6= 0)
whenever one of h, i, j is greater than (resp. equal to) the sum of the other two [3, p. 235].
See [4, 5, 6, 10, 11, 14, 15, 30] for background information on the Q-polynomial property.
From now on we assume Γ is Q-polynomial with respect to {Ei}D

i=0. We call the sequence
{θi}D

i=0 the eigenvalue sequence for this Q-polynomial structure.

We recall the dual Bose-Mesner algebra of Γ. For the rest of this paper we fix a vertex x ∈ X.
We view x as a “base vertex.” For 0 ≤ i ≤ D let E∗

i = E∗
i (x) denote the diagonal matrix in

MatX(C) with (y, y)-entry

(E∗
i )yy =

{
1, if ∂(x, y) = i
0, if ∂(x, y) 6= i

(y ∈ X). (2)

We call E∗
i the ith dual idempotent of Γ with respect to x [32, p. 378]. We observe (i)∑D

i=0 E∗
i = I; (ii) E∗

i = E∗
i (0 ≤ i ≤ D); (iii) E∗t

i = E∗
i (0 ≤ i ≤ D); (iv) E∗

i E
∗
j =

δijE
∗
i (0 ≤ i, j ≤ D). By these facts {E∗

i }D
i=0 form a basis for a commutative subalgebra

M∗ = M∗(x) of MatX(C). We call M∗ the dual Bose-Mesner algebra of Γ with respect to
x [32, p. 378]. For 0 ≤ i ≤ D let A∗

i = A∗
i (x) denote the diagonal matrix in MatX(C) with

(y, y)-entry (A∗
i )yy = |X|(Ei)xy for y ∈ X. Then {A∗

i }D
i=0 is a basis for M∗ [32, p. 379].

Moreover (i) A∗
0 = I; (ii) A∗

i = A∗
i (0 ≤ i ≤ D); (iii) A∗t

i = A∗
i (0 ≤ i ≤ D); (iv)

A∗
i A

∗
j =

∑D
h=0 qh

ijA
∗
h (0 ≤ i, j ≤ D) [32, p. 379]. We call {A∗

i }D
i=0 the dual distance matrices

of Γ with respect to x. We abbreviate A∗ = A∗
1 and call this the dual adjacency matrix of Γ

with respect to x. The matrix A∗ generates M∗ [32, Lemma 3.11].

We recall the dual eigenvalues of Γ. Since {E∗
i }D

i=0 form a basis for M∗ there exist complex
scalars {θ∗i }D

i=0 such that A∗ =
∑D

i=0 θ∗i E
∗
i . Observe A∗E∗

i = E∗
i A

∗ = θ∗i E
∗
i for 0 ≤ i ≤ D. By

[32, Lemma 3.11] the scalars {θ∗i }D
i=0 are in R. The scalars {θ∗i }D

i=0 are mutually distinct since
A∗ generates M∗. We call θ∗i the dual eigenvalue of Γ associated with E∗

i (0 ≤ i ≤ D). We
call the sequence {θ∗i }D

i=0 the dual eigenvalue sequence for the given Q-polynomial structure.

We recall the subconstituents of Γ. From (2) we find

E∗
i V = span{ŷ | y ∈ X, ∂(x, y) = i} (0 ≤ i ≤ D). (3)

By (3) and since {ŷ | y ∈ X} is an orthonormal basis for V we find

V = E∗
0V + E∗

1V + · · ·+ E∗
DV (orthogonal direct sum).
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For 0 ≤ i ≤ D the space E∗
i V is the eigenspace of A∗ associated with θ∗i . We call E∗

i V the
ith subconstituent of Γ with respect to x.

We recall the subconstituent algebra of Γ. Let T = T (x) denote the subalgebra of MatX(C)
generated by M and M∗. We call T the subconstituent algebra (or Terwilliger algebra) of Γ
with respect to x [32, Definition 3.3]. Observe that T has finite dimension. Moreover T is
semisimple since it is closed under the conjugate transponse map [13, p. 157]. We note that
A, A∗ together generate T . By [32, Lemma 3.2] the following are relations in T :

E∗
hAiE

∗
j = 0 iff ph

ij = 0, (0 ≤ h, i, j ≤ D), (4)

EhA
∗
i Ej = 0 iff qh

ij = 0, (0 ≤ h, i, j ≤ D). (5)

See [8, 9, 12, 16, 17, 18, 21, 31, 32, 33, 34] for more information on the subconstituent algebra.

We recall the T -modules. By a T-module we mean a subspace W ⊆ V such that BW ⊆ W
for all B ∈ T. Let W denote a T -module and let W ′ denote a T -module contained in W .
Then the orthogonal complement of W ′ in W is a T -module [18, p. 802]. It follows that
each T -module is an orthogonal direct sum of irreducible T -modules. In particular V is an
orthogonal direct sum of irreducible T -modules.

Let W denote an irreducible T -module. Observe that W is the direct sum of the nonzero
spaces among E∗

0W, . . . , E∗
DW . Similarly W is the direct sum of the nonzero spaces among

E0W, . . . , EDW . By the endpoint of W we mean min{i|0 ≤ i ≤ D, E∗
i W 6= 0}. By the

diameter of W we mean |{i|0 ≤ i ≤ D, E∗
i W 6= 0}| − 1. By the dual endpoint of W we

mean min{i|0 ≤ i ≤ D, EiW 6= 0}. By the dual diameter of W we mean |{i|0 ≤ i ≤
D, EiW 6= 0}| − 1. It turns out that the diameter of W is equal to the dual diameter of
W [30, Corollary 3.3]. By [32, Lemma 3.4] dim E∗

i W ≤ 1 for 0 ≤ i ≤ D if and only if
dim EiW ≤ 1 for 0 ≤ i ≤ D; in this case W is called thin.

We finish this section with a few comments.

Lemma 4.1 [32, Lemma 3.4, Lemma 3.9, Lemma 3.12] Let W denote an irreducible T -
module with endpoint ρ, dual endpoint τ , and diameter d. Then ρ, τ, d are nonnegative
integers such that ρ + d ≤ D and τ + d ≤ D. Moreover the following (i)–(iv) hold.

(i) E∗
i W 6= 0 if and only if ρ ≤ i ≤ ρ + d, (0 ≤ i ≤ D).

(ii) W =
∑d

h=0 E∗
ρ+hW (orthogonal direct sum).

(iii) EiW 6= 0 if and only if τ ≤ i ≤ τ + d, (0 ≤ i ≤ D).

(iv) W =
∑d

h=0 Eτ+hW (orthogonal direct sum).

Lemma 4.2 [26, Lemma 12.1] For Y ∈ MatX(C) the following are equivalent:

(i) Y ∈ T ;

(ii) Y W ⊆ W for all irreducible T -modules W .
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5 The split decomposition

We are going to make use of a certain decomposition of V called the split decomposition.
The split decomposition was defined in [37] and discussed further in [26, 28]. In this section
we recall some results on this topic.

Definition 5.1 [37, Definition 5.1] For −1 ≤ i, j ≤ D we define

V ↓↓
i,j = (E∗

0V + · · ·+ E∗
i V ) ∩ (E0V + · · ·+ EjV ),

V ↓↑
i,j = (E∗

0V + · · ·+ E∗
i V ) ∩ (EDV + · · ·+ ED−jV ).

In the above two equations we interpret the right-hand side to be 0 if i = −1 or j = −1.

Definition 5.2 [37, Definition 5.5] With reference to Definition 5.1, for (µ, ν) = (↓, ↓) or
(µ, ν) = (↓, ↑) we have V µν

i−1,j ⊆ V µν
i,j and V µν

i,j−1 ⊆ V µν
i,j . Therefore

V µν
i−1,j + V µν

i,j−1 ⊆ V µν
i,j .

Referring to the above inclusion, we define Ṽ µν
i,j to be the orthogonal complement of the

left-hand side in the right-hand side; that is

Ṽ µν
i,j = (V µν

i−1,j + V µν
i,j−1)

⊥ ∩ V µν
i,j .

The following is a mild generalization of [37, Corollary 5.8].

Lemma 5.3 With reference to Definition 5.2 the following holds for (µ, ν) = (↓, ↓) and
(µ, ν) = (↓, ↑):

V =
D∑

i=0

D∑
j=0

Ṽ µν
i,j (direct sum). (6)

Proof: For (µ, ν) = (↓, ↓) this is just [37, Corollary 5.8]. For (µ, ν) = (↓, ↑), in the proof of
[37, Corollary 5.8] replace the sequence {Ei}D

i=0 by {ED−i}D
i=0. 2

Note 5.4 Following [28, Definition 6.4] we call the sum (6) the (µ, ν)-split decompostion of
V .

We now recall how the split decompositions are related to the irreducible T -modules. we
start with a definition.

Definition 5.5 [37, Definition 4.1] Let W denote an irreducible T -module with endpoint ρ,
dual endpoint τ , and diameter d. By the displacement of W of the first kind we mean the
scalar ρ+ τ + d−D. By the displacement of W of the second kind we mean the scalar ρ− τ .
By the inequalities in Lemma 4.1, each kind of displacement is at least −D and at most D.

Lemma 5.6 [37, Theorem 6.2] For −D ≤ δ ≤ D the following coincide:
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(i) The subspace of V spanned by the irreducible T -modules for which δ is the displacement
of the first kind;

(ii)
∑

Ṽ ↓↓
ij , where the sum is over all ordered pairs i, j (0 ≤ i, j ≤ D) such that i+j = δ+D.

Lemma 5.7 For −D ≤ δ ≤ D the following coincide:

(i) The subspace of V spanned by the irreducible T -modules for which δ is the displacement
of the second kind;

(ii)
∑

Ṽ ↓↑
ij , where the sum is over all ordered pairs i, j (0 ≤ i, j ≤ D) such that i+j = δ+D.

Proof: In the proof of [37, Theorem 6.2], replace the sequence {Ei}D
i=0 by the sequence

{ED−i}D
i=0. 2

6 A homomorphism ϑ : �q → T

We now impose an assumption on Γ.

Assumption 6.1 We fix complex scalars q, η, η∗, u, u∗, v, v∗ with q, u, u∗, v, v∗ nonzero and
q2i 6= 1 for 1 ≤ i ≤ D. We assume that Γ has a Q-polynomial structure with eigenvalue
sequence

θi = η + uq2i−D + vqD−2i (0 ≤ i ≤ D)

and dual eigenvalue sequence

θ∗i = η∗ + u∗q2i−D + v∗qD−2i (0 ≤ i ≤ D).

Moreover we assume that each irreducible T -module is thin.

Remark 6.2 In the notation of Bannai and Ito [1, p. 263] the Q-polynomial structure from
Assumption 6.1 is type I with s 6= 0, s∗ 6= 0. We caution the reader that the scalar denoted
q in [1, p. 263] is the same as our scalar q2.

Example 6.3 The ordinary cycles are the only known distance-regular graphs that satisfy
Assumption 6.1 [3].

Under Assumption 6.1 we will display a C-algebra homomorphism ϑ : �q → T . To describe
this homomorphism we define two matrices in MatX(C), called Φ and Ψ.

Definition 6.4 With reference to Lemma 5.3 and Assumption 6.1, let Φ (resp. Ψ) denote
the unique matrix in MatX(C) that acts on Ṽ ↓↓

ij (resp. Ṽ ↓↑
ij ) as qi+j−DI for 0 ≤ i, j ≤ D.

Observe that each of Φ, Ψ is invertible.
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Lemma 6.5 Under Assumption 6.1 let W denote an irreducible T -module with endpoint
ρ, dual endpoint τ , and diameter d. Then Φ and Ψ act on W as qρ+τ+d−DI and qρ−τI
respectively.

Proof: Concerning Φ, abbreviate δ = ρ+τ +d−D and recall that this is the displacement of
W of the first kind. We show that Φ acts on W as qδI. Let Vδ denote the common subspace
from parts (i), (ii) of Lemma 5.6. By Lemma 5.6(i) we have W ⊆ Vδ. In Lemma 5.6(ii) Vδ is
expressed as a sum. The matrix Φ acts on each term of this sum as qδI by Definition 6.4, so
Φ acts on Vδ as qδI. By these comments Φ acts on W as qδI and this proves our assertion
concerning Φ. Our assertion concerning Ψ is similarly proved using the displacement of the
second kind and Lemma 5.7. 2

Lemma 6.6 Under Assumption 6.1 the matrices Φ and Ψ are central elements of T .

Proof: The matrices Φ and Ψ are contained in T by Lemma 4.2 and Lemma 6.5. These
matrices are central in T since by Lemma 6.5 they act as a scalar multiple of the identity
on every irreducible T -module. 2

The following is our main result.

Theorem 6.7 Under Assumption 6.1 there exists a C-algebra homomorphism ϑ : �q → T
such that both

A = ηI + uΦΨ−1ϑ(x01) + vΨΦ−1ϑ(x12), (7)

A∗ = η∗I + u∗ΦΨϑ(x23) + v∗Ψ−1Φ−1ϑ(x30). (8)

We will prove the above theorem after a few lemmas.

Lemma 6.8 Under Assumption 6.1 let W denote an irreducible T -module with endpoint ρ,
dual endpoint τ , and diameter d. Then there exists a �q-module structure on W such that
the adjacency matrix A acts as ηI+uq2τ+d−Dx01+vqD−d−2τx12 and the dual adjacency matrix
A∗ acts as η∗I + u∗q2ρ+d−Dx23 + v∗qD−d−2ρx30. This �q-module structure is irreducible.

Proof: By [22, Example 1.4] and since the T -module W is thin the pair A, A∗ acts on W as
a Leonard pair in the sense of [35, Definition 1.1]. In the notation of [35, Definition 5.1] this
Leonard pair has an eigenvalue sequence {θτ+i}d

i=0 and a dual eigenvalue sequence {θ∗ρ+i}d
i=0

in view of Lemma 4.1. To motivate what follows we note that

θτ+i = η + uq2τ+d−Dq2i−d + vqD−d−2τqd−2i,

θ∗ρ+i = η∗ + u∗q2ρ+d−Dq2i−d + v∗qD−d−2ρqd−2i

for 0 ≤ i ≤ d. In both equations above the coefficients of q2i−d and qd−2i are nonzero;
therefore the action of A, A∗ on W is a Leonard pair of q-Racah type in the sense of [36,
Example 5.3]. Referring to this Leonard pair, let {ϕi}d

i=1 (resp. {φi}d
i=1) denote the first

(resp. second) split sequence [35, Section 7] associated with the eigenvalue sequence {θτ+i}d
i=0
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and the dual eigenvalue sequence {θ∗ρ+i}d
i=0. By [35, Section 7] each of ϕi, φi is nonzero for

1 ≤ i ≤ d. By [36, Example 5.3] there exists a nonzero r ∈ C such that

ϕi = (qi − q−i)(qd−i+1 − qi−d−1)

× (qd−i − r−1qi−1)(uu∗rq2τ+2ρ+d+i−2D − vv∗q2D−2d−2τ−2ρ+1−i),

φi = (qi − q−i)(qd−i+1 − qi−d−1)

× (urq2τ+d−D+1−i − vqD−2d−2τ+i)(u∗q2ρ+d−D+i−1 − v∗r−1qD−2ρ−i)

for 1 ≤ i ≤ d. Observe that r is not among qd−1, qd−3, . . . , q1−d since each of ϕ1, ϕ2, . . . , ϕd

is nonzero. By [35, Section 7] there exists a basis {vi}d
i=0 of W such that

Avi = θτ+d−ivi + vi+1 (0 ≤ i ≤ d− 1), Avd = θτvd,

A∗vi = θ∗ρ+ivi + φivi−1 (1 ≤ i ≤ d), A∗v0 = θ∗ρv0.

For convenience we adjust this basis slightly. For 1 ≤ i ≤ d define

γi = (qi − q−i)(urq2τ+d−D+1−i − vqD−2d−2τ+i).

In the above equation the right-hand side is nonzero since it is a factor of φi, so γi 6= 0.
Define ui = (γ1γ2 · · · γi)

−1vi for 0 ≤ i ≤ d and note that {ui}d
i=0 is a basis for W . By the

construction

Aui = θτ+d−iui + γi+1ui+1 (0 ≤ i ≤ d− 1), Aud = θτud,

A∗ui = θ∗ρ+iui + φiγ
−1
i ui−1 (1 ≤ i ≤ d), A∗u0 = θ∗ρu0.

We let each standard generator of �q act linearly on W ; to define this action we specify
what it does to the basis {ui}d

i=0. Here are the details:

x01.ui = qd−2iui + (qd − qd−2i−2)q1−drui+1 (0 ≤ i ≤ d− 1), x01.ud = q−dud,

x12.ui = q2i−dui + (q−d − q2i+2−d)ui+1 (0 ≤ i ≤ d− 1), x12.ud = qdud,

x23.ui = q2i−dui + (qd − q2i−2−d)ui−1 (1 ≤ i ≤ d), x23.u0 = q−du0,

x30.ui = qd−2iui + (q−d − qd−2i+2)qd−1r−1ui−1 (1 ≤ i ≤ d), x30.u0 = qdu0,

x13.ui = q2i−dui (0 ≤ i ≤ d),

x31.ui = qd−2iui (0 ≤ i ≤ d),

x02.ui = (1− rq−d−1)
(1− q2d−2i+2)(1− q2d−2i+4) · · · (1− q2d)qd−2i

(1− rqd−1−2i)(1− rqd+1−2i) · · · (1− rqd−1)
u0

+ (1− rqd+1)(1− rq−d−1)
i∑

h=1

(1− q2d−2i+2)(1− q2d−2i+4) · · · (1− q2d−2h)qd−2i

(1− rqd−1−2i)(1− rqd+1−2i) · · · (1− rqd+1−2h)
uh

+
(q2i+2 − 1)r

q2i+1(1− rqd−1−2i)
ui+1 (0 ≤ i ≤ d− 1),

x02.ud =
(1− q2)(1− q4) · · · (1− q2d)q−d

(1− rq1−d)(1− rq3−d) · · · (1− rqd−1)
u0

+ (1− rqd+1)
d∑

h=1

(1− q2)(1− q4) · · · (1− q2d−2h)q−d

(1− rq1−d)(1− rq3−d) · · · (1− rqd+1−2h)
uh,
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x20.u0 = (1− rqd+1)
d−1∑
h=0

(1− q2)(1− q4) · · · (1− q2h)rhqh−dh−d

(1− rq1−d)(1− rq3−d) · · · (1− rq2h−d+1)
uh

+
(1− q2)(1− q4) · · · (1− q2d)rdq−d2

(1− rq1−d)(1− rq3−d) · · · (1− rqd−1)
ud,

x20.ui =
qd − q2i−2−d

1− rq2i−d−1
ui−1

+ (1− rqd+1)(1− rq−d−1)
d−1∑
h=i

(1− q2i+2)(1− q2i+4) · · · (1− q2h)rh−iq(d+1)i−(d−1)h−d

(1− rq2i−d−1)(1− rq2i−d+1) · · · (1− rq2h−d+1)
uh

+ (1− rq−d−1)
(1− q2i+2)(1− q2i+4) · · · (1− q2d)rd−iqdi+i−d2

(1− rq2i−d−1)(1− rq2i−d+1) · · · (1− rqd−1)
ud (1 ≤ i ≤ d).

In the above formulae the denominators are nonzero since r is not among qd−1, qd−3, . . . , q1−d.
One checks (or see [27]) that the above actions satisfy the defining relations for �q from
Definition 2.1, so these actions induce a �q-module structure on W . Comparing the action
of A (resp. A∗) on {ui}d

i=0 with the actions of x01, x12 (resp. x23, x30) on {ui}d
i=0 we find that

both

A = ηI + uq2τ+d−Dx01 + vqD−d−2τx12,

A∗ = η∗I + u∗q2ρ+d−Dx23 + v∗qD−d−2ρx30

on W . By these equations and since the T -module W is irreducible we find the �q-module
W is irreducible. The result follows. 2

Lemma 6.9 Under Assumption 6.1 let W denote an irreducible T -module and consider the
�q-action on W from Lemma 6.8. Then the following equations hold on W :

A = ηI + uΦΨ−1x01 + vΨΦ−1x12,

A∗ = η∗I + u∗ΦΨx23 + v∗Ψ−1Φ−1x30.

Proof: Combine Lemma 6.5 and Lemma 6.8. 2

It is now a simple matter to prove Theorem 6.7.

Proof of Theorem 6.7: We start with a comment. Let W and W ′ denote irreducible T -
modules, and consider the �q-module structure on W and W ′ from Lemma 6.8. From the
construction we may assume that if the T -modules W and W ′ are isomorphic then the �q-
modules W and W ′ are isomorphic. With our comment out of the way we proceed to the
main argument. The standard module V decomposes into a direct sum of irreducible T -
modules. Each irreducible T -module in this decomposition supports a �q-module structure
from Lemma 6.8. Combining these �q-modules we get a �q-module structure on V . This
module structure induces a C-algebra homomorphism ϑ : �q → MatX(C). The map ϑ sat-
isfies (7), (8) in view of Lemma 6.9. To finish the proof it suffices to show that ϑ(�q) ⊆ T .
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To this end we pick ζ ∈ �q and show ϑ(ζ) ∈ T . Since T is semisimple, and by our pre-
liminary comment, there exists B ∈ T that acts on each irreducible T -module in the above
decomposition as ϑ(ζ). The T -modules in this decomposition span V so ϑ(ζ) coincides with
B on V ; therefore ϑ(ζ) = B and in particular ϑ(ζ) ∈ T as desired. We have now shown that
ϑ(�q) ⊆ T and the result follows. 2

Remark 6.10 In Theorem 6.7 we obtained a C-algebra homomorphism ϑ : �q → T . In

Theorem 3.3 we displayed four C-algebra homomorphisms from Uq(ŝl2) into �q. Composing

these homomorphisms with ϑ we obtain four C-algebra homomorphisms from Uq(ŝl2) into
T .

We conjecture that the conclusion of Theorem 6.7 still holds if we weaken Assumption 6.1
by no longer requiring that each irreducible T -module is thin.
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