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Distance-regular graphs of ¢g-Racah
type and the g-tetrahedron algebra
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In Memory of Donald Higman

Abstract

In this paper we discuss a relationship between the following two algebras: (i) the
subconstituent algebra T' of a distance-regular graph that has g-Racah type; (ii) the
g-tetrahedron algebra X, which is a g-deformation of the three-point sl loop algebra.
Assuming that every irreducible T-module is thin, we display an algebra homomor-
phism from X, into 7" and show that 7" is generated by the image together with the
center Z(T).

Keywords. Tetrahedron algebra, quantum affine algebra, distance-regular graph, Q-
polynomial.

2000 Mathematics Subject Classification. Primary: 05E30. Secondary: 05E35;
17B37.

1 Introduction

In [20] B. Hartwig and the second author gave a presentation of the three-point sly loop
algebra via generators and relations. To obtain this presentation they defined a Lie algebra
X by generators and relations, and displayed an isomorphism from X to the three-point sl
loop algebra. The algebra K is called the tetrahedron algebra [20, Definition 1.1]. In [24]
we introduced a ¢-deformation X, of X called the g-tetrahedron algebra. In [24] and [25]
we described the finite-dimensional irreducible X -modules. In [26, Section 4] we displayed
four homomorphisms into X, from the quantum affine algebra U, (;[2) In [26, Section 12] we
found a homomorphism from X, into the subconstituent algebra of a distance-regular graph
that is self-dual with classical parameters. In the present paper we do something similar for
a distance-regular graph said to have ¢g-Racah type. This type is described as follows. Let I'
denote a distance-regular graph with diameter D > 3 (See Section 4 for formal definitions).
We say that I' has ¢-Racah type whenever I' has a Q)-polynomial structure with eigenvalue
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sequence {0;}2, and dual eigenvalue sequence {6;}2, that satisfy

0: — n* + u*q%—D + ,U*qD—Qi (0 S i S D),

where ¢, u,v,u*,v* are nonzero and ¢* # 1 for 1 < i < D. Assume I' has ¢-Racah type.
Fix a vertex = of I and let "= T'(z) denote the corresponding subconstituent algebra [32,
Definition 3.3]. Recall that T is generated by the adjacency matrix A and the dual adjacency
matrix A* = A*(z) [32, Definition 3.10]. An irreducible T-module W is called thin whenever
the intersection of W with each eigenspace of A and each eigenspace of A* has dimension at
most 1 [32, Definition 3.5]. Assuming each irreducible T-module is thin, we display invertible
central elements ®, ¥ of T" and a homomorphism ¢ : X, — T such that

A = nl+u®V 19 (ag) +0¥P 1 (21,),
AY = 77*1 -+ u*(I)\I’l%iL'Qg) + U\Ij_l(p_lﬁ(ﬂjgo),
where the x;; are the standard generators of X,. It follows that 71" is generated by the image

Y(X,) together with ®, W. In particular 7" is generated by ¥(X,) together with the center
Z(T).

This paper is organized as follows. In Section 2 we recall the definition of X,. In Section

3 we describe how X, is related to Uq(sA[Q). In Section 4 we recall the basic theory of a
distance-regular graph I', focussing on the ()-polynomial property and the subconstituent
algebra. In Section 5 we discuss the split decomposition of I'. In Section 6 we give our main
results.

Throughout the paper C denotes the field of complex numbers.

2 The g-tetrahedron algebra X,

In this section we recall the ¢-tetrahedron algebra. We fix a nonzero scalar ¢ € C such that
¢*> # 1 and define

_ qn _ q—n
g—q '’
We let Z, = Z/4Z denote the cyclic group of order 4.

(], n=20,1,2,...

Definition 2.1 [24, Definition 10.1] Let X, denote the unital associative C-algebra that has
generators

{I’ij|i,j€Z4, ]—12101']—2:2}
and the following relations:
(i) For i,j € Z4 such that j —i =2,

[Eijsz‘ =1.



(ii) For h,i,j € Z4 such that the pair (i — h,j — ) is one of (1,1),(1,2),(2,1),

—1
qThiTi; — 4 “TijThi
—1
q—dq

= 1.

(iii) For h,i,j,k € Zy such that it —h=j—i=k—j=1,
3 2 2 3
ThiTik — [3qThiTinni + [3lgTrivjk®h; — Tjpwy; = 0. (1)

We call X, the g-tetrahedron algebra or “g-tet” for short. We refer to the z;; as the standard
generators for X,.

Note 2.2 The equations (1) are the cubic g-Serre relations [29, p. 10].
We make some observations.

Lemma 2.3 [24, Lemma 6.3] There exists a C-algebra automorphism o of X, that sends
each generator x;; to X1 j41. Moreover ot =1.

Lemma 2.4 [24, Lemma 6.5] There exists a C-algebra automorphism of ¥, that sends each

generator x;; to —x;;.

3 The quantum affine algebra Uq(sA[g)

In this section we consider how X, is related to the quantum affine algebra U, (;[2) We start
with a definition.

Definition 3.1 [7, p. 266] The quantum affine algebra Uq(f/)\[g) is the unital associative C-
algebra with generators Kiil, e;t, i € {0,1} and the following relations:
KK ' = KK, =1,
KoKy = KiKo,

KiejtKi_l = qﬂef,
Kief K1 = qTer,  i#,
K, — K!
[62_?61‘_} = —_117
q—dq
[eataelﬂ = 0,
(€)’e; — [Bla(e) e e + Bloeief () — e (e)* =0, i#4.

The following presentation of U, (sly) will be useful.



Proposition 3.2 ([23, Theorem 2.1}, [38]) The quantum affine algebra Uq(;[g) is isomorphic
to the unital associative C-algebra with generators x;ﬂ, Vi, zi, © € {0,1} and the following
relations:

vt =r = 1,

Tor1 18 central,
-1
qr;Y; —q "Yily

— 17
q—q!
e 2 .
q—q ! ’
qziTi — q a2 _
q—q! ’
ZiY; — 4 Y%
TEEE = et i
q—q

vly; — Blaviviy: + Blavivsyi — v =0, i #

20z — 13lgz2l 22 + [Blgziz20 — 252, =0, i # J.

An isomorphism with the presentation in Definition 3.1 is given by:

x;tl — Kiﬂ,
Yi K;l +e;,
% o= K=K 'efqlg—q ")

K3 (2

The inverse of this isomorphism is given by:

Theorem 3.3 [24, Proposition 7.4| For i € Z4 there exists a C-algebra homomorphism from
U,(sly) to X, that sends

-1
T1 = Tiiv2, L1 = Tig24, Y1 Tig2i43, 21 L4354,

Ty Tivaq, T o Tiit2, Yo Tijt1, 20 > Tiplit2.
Proof: Compare the defining relations for U, (;(2) given in Proposition 3.2 with the relations
in Definition 2.1. O
4 Distance-regular graphs; preliminaries

We now turn our attention to distance-regular graphs. After a brief review of the basic
definitions we recall the ()-polynomial property and the subconstituent algebra. For more
information we refer the reader to [1, 3, 19, 32].
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Let X denote a nonempty finite set. Let Matx(C) denote the C-algebra consisting of all
matrices whose rows and columns are indexed by X and whose entries are in C. Let V = C*
denote the vector space over C consisting of column vectors whose coordinates are indexed
by X and whose entries are in C. We observe Mat x (C) acts on V' by left multiplication. We
call V the standard module. We endow V' with the Hermitean inner product (, ) that satisfies
(u,v) = u'v for u,v € V, where t denotes transpose and ~ denotes complex conjugation.
For all y € X, let § denote the element of V' with a 1 in the y coordinate and 0 in all other
coordinates. We observe {y | y € X} is an orthonormal basis for V.

Let I' = (X, R) denote a finite, undirected, connected graph, without loops or multiple
edges, with vertex set X and edge set R. Let O denote the path-length distance function
for T', and set D := max{d(z,y) | z,y € X}. We call D the diameter of I'. For an integer
k > 0 we say that ' is reqular with valency k whenever each vertex of I' is adjacent to
exactly k distinct vertices of I'. We say that [' is distance-reqular whenever for all integers
h,i,5 (0 < h,i,j < D) and for all vertices z,y € X with d(z,y) = h, the number

pl=Hze X |0(x,2) =i,0(z,y) = j}|

is independent of x and y. The pzhj are called the intersection numbers of I'. We abbreviate
G :Pil,i—l (1<i<D),b :pil,z’—&-l (0<i<D-1),a :pliz‘ (0<i<D).

For the rest of this paper we assume I' is distance-regular; to avoid trivialities we always
assume D > 3. Note that I' is regular with valency k = by. Moreover k = ¢; + a; + b; for
0 <i< D, where ¢g =0 and bp = 0.

We mention a fact for later use. By the triangle inequality, for 0 < h,i,j < D we have
p?j =0 (resp. p?j # 0) whenever one of h,i,j is greater than (resp. equal to) the sum of the
other two.

We recall the Bose-Mesner algebra of I'. For 0 < i < D let A; denote the matrix in Mat x (C)
with (z,y)-entry
1, it o(x,y) =1
(Ai)ey = {O, if O(xz,y) #i
We call A; the ith distance matriz of I'. We abbreviate A = A; and call this the adjacency
matriz of T. We observe (i) Ay = I; (i) 3.2, A; = J; (iii) A, = 4, (0 < i < D); (iv)
Al = A, (0 <i < D); (v) AiA; = Z}?:Op?jAh (0 <i,57 < D), where I (resp. J) denotes
the identity matrix (resp. all 1’s matrix) in Matx(C). Using these facts we find {A;}2, is a
basis for a commutative subalgebra M of Matx (C), called the Bose-Mesner algebra of T'. It
turns out that A generates M [1, p. 190]. By [3, p. 45], M has a second basis {FE;}2, such
that (i) Eo = |X|7'J; (il) o2, B = I; (iii) E; = E; (0 <i < D); (iv) Ef = E; (0 < i < D);
(v) B;E; = 6;;E; (0 <4,5 < D). We call {E;}? the primitive idempotents of T

(x,y € X).

We recall the eigenvalues of T'. Since {E;}2,, form a basis for M there exist complex scalars
{032, such that A = >>2 6,F;. Observe AE; = E;A = 6;F; for 0 <4 < D. By [1, p. 197]
the scalars {6;}2, are in R. Observe {6;}2, are mutually distinct since A generates M. We
call 0; the eigenvalue of T associated with E; (0 <i < D). Observe

V=EV+EV+- - -+EpV (orthogonal direct sum).



For 0 < < D the space E;V is the eigenspace of A associated with ;.

We now recall the Krein parameters. Let o denote the entrywise product in Matx(C).
Observe A; 0 A; = 6;;A; for 0 <4,j < D, so M is closed under o. Thus there exist complex
scalars qlhj (0 < h,i,57 < D) such that

D
EioE;=|X["') qiEy  (0<4i,j< D).
h=0

By [2, p. 170], qf‘j is real and nonnegative for 0 < h,7,7 < D. The qlhj are called the Krein
parameters of I'. The graph T is said to be Q-polynomial (with respect to the given ordering
{E;}2, of the primitive idempotents) whenever for 0 < h,i,j < D, qu = 0 (resp. qlhj # 0)
whenever one of h, i, j is greater than (resp. equal to) the sum of the other two [3, p. 235].
See [4, 5, 6, 10, 11, 14, 15, 30] for background information on the @-polynomial property.
From now on we assume I' is Q-polynomial with respect to {E;}2,. We call the sequence
{0;}2., the eigenvalue sequence for this Q-polynomial structure.

We recall the dual Bose-Mesner algebra of I". For the rest of this paper we fix a vertex z € X.
We view z as a “base vertex.” For 0 <1i < D let Ef = E(x) denote the diagonal matrix in
Mat x(C) with (y,y)-entry

Ew={y o Sl weX), 2)

We call EF the ith dual idempotent of T' with respect to x [32, p. 378]. We observe (i)
SP B = L (i) Bf = B (0 < i < DY; (ii)) B = Bf (0 < i < D); (iv) B{E] —
6;E7 (0 <i,j < D). By these facts {E;}”, form a basis for a commutative subalgebra
M* = M*(x) of Matx(C). We call M* the dual Bose-Mesner algebra of T with respect to
x [32, p. 378]. For 0 < i < D let Af = Aj(z) denote the diagonal matrix in Mat x(C) with
(y,y)-entry (A¥),, = |X|(E:)sy for y € X. Then {A;}2, is a basis for M* [32, p. 379].
Moreover (i) A5 = I; (i) Af = Af (0 < i < D); (iii) A = AF (0 < i < D); (iv)
ATAT = S g Ay (0 <4, < D) [32, p. 379]. We call {A7}2 the dual distance matrices
of I' with respect to x. We abbreviate A* = A} and call this the dual adjacency matriz of T’
with respect to . The matrix A* generates M* [32, Lemma 3.11].

We recall the dual eigenvalues of T'. Since {E}}2, form a basis for M* there exist complex
scalars {07 }2, such that A* = S22 0*Er. Observe A*Ef = EfA* = 0:E* for 0 < i < D. By

1=0 "1
[32, Lemma 3.11] the scalars {6} }2 are in R. The scalars {0} }/2, are mutually distinct since
A* generates M*. We call 0} the dual eigenvalue of I' associated with Ef (0 <i < D). We

call the sequence {0;}2, the dual eigenvalue sequence for the given Q-polynomial structure.

We recall the subconstituents of I'. From (2) we find
BV =span{j|ye X, d(ey)=i} (0<i<D). ()
By (3) and since {y | y € X} is an orthonormal basis for V' we find

V=EV+EV+- -+ E,V (orthogonal direct sum).



For 0 < ¢ < D the space E;V is the eigenspace of A* associated with 6. We call ESV the
ith subconstituent of I" with respect to x.

We recall the subconstituent algebra of I'. Let T'= T'(x) denote the subalgebra of Matx (C)
generated by M and M*. We call T the subconstituent algebra (or Terwilliger algebra) of T
with respect to x [32, Definition 3.3]. Observe that 7" has finite dimension. Moreover 7' is
semisimple since it is closed under the conjugate transponse map [13, p. 157]. We note that
A, A* together generate T'. By [32, Lemma 3.2] the following are relations in 7"

EyAE; = 0 iff pl =0, (0 <h,i,j < D), (4)
EyATE; = 0 iff ¢} =0, (0 < h,i,j < D). (5)

See [8,9, 12, 16, 17, 18, 21, 31, 32, 33, 34] for more information on the subconstituent algebra.

We recall the T-modules. By a T-module we mean a subspace W C V such that BW C W
for all B € T. Let W denote a T-module and let W’ denote a T-module contained in W.
Then the orthogonal complement of W’ in W is a T-module [18, p. 802]. It follows that
each T-module is an orthogonal direct sum of irreducible T-modules. In particular V' is an
orthogonal direct sum of irreducible T-modules.

Let W denote an irreducible T-module. Observe that W is the direct sum of the nonzero
spaces among EjW, ... EjW. Similarly W is the direct sum of the nonzero spaces among
EoW, ..., EpW. By the endpoint of W we mean min{i|0 < i < D, EfW # 0}. By the
diameter of W we mean [{i|0 < i < D, EfW # 0}| — 1. By the dual endpoint of W we
mean min{i|0 < i < D, E;W # 0}. By the dual diameter of W we mean [{i|0 < ¢ <
D, E;W # 0} — 1. It turns out that the diameter of W is equal to the dual diameter of
W [30, Corollary 3.3]. By [32, Lemma 3.4] dim EfWW < 1 for 0 < i < D if and only if
dim E;W <1 for 0 < i < D; in this case W is called thin.

We finish this section with a few comments.

Lemma 4.1 [32, Lemma 3.4, Lemma 3.9, Lemma 3.12] Let W denote an irreducible T'-
module with endpoint p, dual endpoint 7, and diameter d. Then p,7,d are nonnegative
integers such that p+d < D and 7+ d < D. Moreover the following (i)-(iv) hold.

(i) EXW #£ 0 if and only if p<i<p+d, (0<i<D).
(i) W =37, By W (orthogonal direct sum).
(i) EEW #0 if and only if T <i1<74+d, (0<i<D).
(iv) W = ZZ:O E W (orthogonal direct sum).
Lemma 4.2 [26, Lemma 12.1] For Y € Matx(C) the following are equivalent:
(i) Y eT;
(it) YW C W for all irreducible T-modules W .



5 The split decomposition

We are going to make use of a certain decomposition of V' called the split decomposition.
The split decomposition was defined in [37] and discussed further in [26, 28|. In this section
we recall some results on this topic.

Definition 5.1 [37, Definition 5.1] For —1 <4, j < D we define
VY = (BV+- -+ EV)N(EV + -+ EV),
VI = (BjV+- -+ EV)N(EpV + -+ Ep_;V).
In the above two equations we interpret the right-hand side to be 0 if i = —1 or j = —1.

Definition 5.2 [37, Definition 5.5] With reference to Definition 5.1, for (u,v) = (], ]) or
(1, v) = (1, 1) we have V| . C V5" and V//}” | C Vi Therefore

RN e el

27.7_1 27.7

Referring to the above inclusion, we define f//;” to be the orthogonal complement of the
left-hand side in the right-hand side; that is

7 UV v 1 v
lez = (V;'liLj + V;A;V—1) N Vzl; .

The following is a mild generalization of [37, Corollary 5.8].

Lemma 5.3 With reference to Definition 5.2 the following holds for (u,v) = (l,]) and
() = (L, 1)

D D
V= Z Z v (direct sum). (6)

Proof: For (u,v) = (], ]) this is just [37, Corollary 5.8]. For (u,v) = ([, 1), in the proof of
[37, Corollary 5.8] replace the sequence {E;}2 by {Ep_;}2,. O

Note 5.4 Following [28, Definition 6.4] we call the sum (6) the (i, v)-split decompostion of
V.

We now recall how the split decompositions are related to the irreducible T-modules. we
start with a definition.

Definition 5.5 [37, Definition 4.1] Let W denote an irreducible T-module with endpoint p,
dual endpoint 7, and diameter d. By the displacement of W of the first kind we mean the
scalar p+7+d— D. By the displacement of W of the second kind we mean the scalar p — 7.
By the inequalities in Lemma 4.1, each kind of displacement is at least —D and at most D.

Lemma 5.6 [37, Theorem 6.2] For —D < 6 < D the following coincide:
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(i) The subspace of V' spanned by the irreducible T-modules for which ¢§ is the displacement
of the first kind;

(i) > f/#, where the sum is over all ordered pairsi,j (0 <i,j < D) such thati+j = 6+D.
Lemma 5.7 For —D < 6 < D the following coincide:

(i) The subspace of V' spanned by the irreducible T-modules for which § is the displacement
of the second kind;

(ii) > ‘Z-f, where the sum is over all ordered pairsi,j (0 < i,j < D) such thati+j = 0+D.

Proof: In the proof of [37, Theorem 6.2], replace the sequence {E;}2, by the sequence
{EDfi}z‘Zo- =

6 A homomorphism ¥ : X, — T
We now impose an assumption on I'.

Assumption 6.1 We fix complex scalars ¢, n,n*, u, u*,v,v* with ¢, u,u*, v, v* nonzero and
¢ # 1for 1 <i < D. We assume that I' has a Q-polynomial structure with eigenvalue
sequence

ei = 7 + uq2i—D =+ UqD—Qi (0 S i S D)
and dual eigenvalue sequence

9>}< _ 77* _|_u*q2i—D +U*qD—27L (O S 2 S D)

(2

Moreover we assume that each irreducible T-module is thin.

Remark 6.2 In the notation of Bannai and Ito [1, p. 263] the Q-polynomial structure from
Assumption 6.1 is type I with s # 0, s* # 0. We caution the reader that the scalar denoted
q in [1, p. 263] is the same as our scalar ¢°.

Example 6.3 The ordinary cycles are the only known distance-regular graphs that satisfy
Assumption 6.1 [3].

Under Assumption 6.1 we will display a C-algebra homomorphism ¢ : X, — T'. To describe
this homomorphism we define two matrices in Matx (C), called ¢ and V.

Definition 6.4 With reference to Lemma 5.3 and Assumption 6.1, let ® (resp. W) denote
the unique matrix in Matx(C) that acts on V# (resp. VZﬁT) as ¢"PJ for 0 < i,j < D.
Observe that each of ®, ¥ is invertible.



Lemma 6.5 Under Assumption 6.1 let W denote an irreducible T'-module with endpoint
p, dual endpoint T, and diameter d. Then ® and ¥ act on W as ¢4 PI and ¢*~ "1
respectively.

Proof: Concerning ®, abbreviate 6 = p+7+4d — D and recall that this is the displacement of
W of the first kind. We show that ® acts on W as ¢°. Let Vj denote the common subspace
from parts (i), (ii) of Lemma 5.6. By Lemma 5.6(i) we have W C V. In Lemma 5.6(ii) Vj is
expressed as a sum. The matrix ® acts on each term of this sum as ¢°I by Definition 6.4, so
® acts on Vs as ¢°I. By these comments ® acts on W as ¢° and this proves our assertion
concerning ®. Our assertion concerning W is similarly proved using the displacement of the
second kind and Lemma 5.7. O

Lemma 6.6 Under Assumption 6.1 the matrices ® and V¥ are central elements of T.

Proof: The matrices ® and ¥ are contained in 7" by Lemma 4.2 and Lemma 6.5. These
matrices are central in 7" since by Lemma 6.5 they act as a scalar multiple of the identity
on every irreducible T-module. O

The following is our main result.

Theorem 6.7 Under Assumption 6.1 there exists a C-algebra homomorphism 9 : W, — T
such that both

A = nl+ud®VU 19 (xg)) + WP I (212), (7)
AY = ]+ ur WY (z93) + v UM (). (8)

We will prove the above theorem after a few lemmas.

Lemma 6.8 Under Assumption 6.1 let W denote an irreducible T-module with endpoint p,
dual endpoint 7, and diameter d. Then there ewists a M -module structure on W such that
the adjacency matriz A acts as nl +ug®™ 4 Prg +vg” =¥ 215 and the dual adjacency matriz
A* acts as n* ] + u*g*PrIProy + v qP =215y, This X,-module structure is irreducible.

Proof: By [22, Example 1.4] and since the T-module W is thin the pair A, A* acts on W as
a Leonard pair in the sense of [35, Definition 1.1]. In the notation of [35, Definition 5.1] this
Leonard pair has an eigenvalue sequence {6.;}{, and a dual eigenvalue sequence {6%,,;}7
in view of Lemma 4.1. To motivate what follows we note that

0,0 = n+ uq27+d—Dq2i—d + UqD—d—Qqu—Zi
0;+i — T]* + u*q2p+d—Dq2i—d + U*qD—d—qud—Qi
for 0 < i < d. In both equations above the coefficients of ¢*~¢ and ¢%~?' are nonzero;

therefore the action of A, A* on W is a Leonard pair of ¢-Racah type in the sense of [36,
Example 5.3]. Referring to this Leonard pair, let {¢;}¢, (resp. {¢;}% ;) denote the first
(resp. second) split sequence [35, Section 7] associated with the eigenvalue sequence {0,,;}%,
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and the dual eigenvalue sequence {6%,,}% . By [35, Section 7] each of ¢;, ¢; is nonzero for
1 <1 <d. By [36, Example 5.3] there ex1sts a nonzero r € C such that

©; = (qz' . q—i)(qd—i—H - qi—d—l)

% (qd 7 —r 1qz 1)(uu*rq27+2p+d+i72D . vv*q2D72d72772p+17i)’
¢i — (qz . q—z)(qd i+1 qz d—l)
% (urq27—+d7D+lfi . UqD72d72T+i)(u*q2p+d7D+i 1 — vt qu 2p— z)

for 1 < i < d. Observe that r is not among ¢!, ¢%=3,..., ¢~ since each of ¢1, s, ..., ¢4

is nonzero. By [35, Section 7] there exists a basis {v;}%_, of W such that
Av; = a0 + vig (0<i<d—1), Avg=0,v4,
A*Ui = 6;4»11}1 + (bl'l}l 1 (1 <1 < d), A*UO = 9;'110.
For convenience we adjust this basis slightly. For 1 <7 < d define

v = (qi o q7i>(urq27+d7D+lfi . ,UqD72d72T+’L'>'

In the above equation the right-hand side is nonzero since it is a factor of ¢;, so v; # 0.
Define u; = (172 -+ -7:) tv; for 0 < i < d and note that {u;}&, is a basis for W. By the
construction

Aug = Orp g qu; + Yig1Uig ( <i<d 1)= Auq = bruq,
A*ui = 9;+Zul + ¢17@ Ui—1 (1 S S d), A*UO = QZUO

We let each standard generator of X, act linearly on W; to define this action we specify
what it does to the basis {u;}%,. Here are the details:

To1.U; = q + (¢ = ¢ ) ¢ rui 0<i<d-1), Torug = q “ug,
Tio.U; = q + (7% — T Yy (0<i<d-1), T19.ug = qug,
To3.Uj = q (qd Ny (1<i<d), Ta3.tp = ¢ uy,

T30.U; = q + (g —q" Qz”)qd*lfluiﬂ (1<i<d), 30.tp = ¢ o,

Ti3.U; = q° di (O<i§d)7
z31.u; = ¢4, (0<i<d),
iy (1— q2d72i+2).(1 _ q2d72i+4)“ (1= Pyt .
(= rg )1 = g1 (1~ 7t )
vo(1- rqd+1)(1 _ Tq—d—l) i: (1— QQd_in)‘(l - q2d_2i+i1)" (1 - qu_%)i]d_% u
(1 — rq@1-2)(1 — rqd+1=2) ... (1 — rgtti-2h)

xoou; = (1 —rq

h=1
(q2i+2_1>7, -
+ q2i+1(1_rqd7172i)ui+1 (0<i<d-1),
_ 2 _ . —d
S TP
= =) = D)1= )
d
1— 1 4y, .. (1 — g2d—2h),—d
+ d+1z @)1 —q")---(1—=¢**")q .

h—l (1—rg=9)(1 —rg3d)--- (1 — rqtti-2n)
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SH

a1y — (1 -1 —qY--- (1= @ )rhgh—dh—d
(1 —rg'=4)(1 —rg3=9)--- (1 — rg?h—d+1)

(1= @)1= g (1 — Pyt

Tooup = (1 —rq up,

>

1
+ Ud,
(1—7rq=9)(1 —rg32)--- (1 —rqi?)
d _ q2i—2—d
L20- Ui = Wui—l
a1y g1 = (1= FF2) (1 — 2 o (1 — @) —ig@ s (d-Dhd
-+ (1 rq Z 1 _ TQQ'L d— 1)(1 _ quZ d+1) (1 . TQO—d—f—l) Up,

h=i
(1 . q21+2)(1 o q21+4) . (1 _ q2d)rdfiqdi+ifd2

—d-1
+ (1 —rq ) (1— Tq2i—d—1)(1 _ rq%_d“) . (1 _ qu—l)

In the above formulae the denominators are nonzero since r is not among ¢%~1,¢4=3,..., ¢*~¢
One checks (or see [27]) that the above actions satisfy the defining relations for X, from
Definition 2.1, so these actions induce a X,-module structure on W. Comparing the action

of A (resp. A*) on {u;}¢_, with the actions of To1, T12 (TESP. Ta3,30) on {u; ¢, we find that
both

A = 77]+uq2T+d_D£U01+qu_d_QT:E12,

2p+d—D D—d—2
A = I+ utgPT T Py + v’y P30

on W. By these equations and since the T-module W is irreducible we find the X,-module
W is irreducible. The result follows. |

Lemma 6.9 Under Assumption 6.1 let W denote an irreducible T-module and consider the
X,-action on W from Lemma 6.8. Then the following equations hold on W :

A = nl+ udU g + 0Ud i,
A = T +urdVroy + v U 1O g,

Proof: Combine Lemma 6.5 and Lemma 6.8. a

It is now a simple matter to prove Theorem 6.7.

Proof of Theorem 6.7. We start with a comment. Let W and W’ denote irreducible T-
modules, and consider the X, ,-module structure on W and W’ from Lemma 6.8. From the
construction we may assume that if the T-modules W and W' are isomorphic then the X -
modules W and W' are isomorphic. With our comment out of the way we proceed to the
main argument. The standard module V' decomposes into a direct sum of irreducible 7T-
modules. Each irreducible T-module in this decomposition supports a M,-module structure
from Lemma 6.8. Combining these X, -modules we get a X,-module structure on V. This
module structure induces a C-algebra homomorphism ¥ : X, — Matx(C). The map o sat-
isfies (7), (8) in view of Lemma 6.9. To finish the proof it suffices to show that J(X,) C T

12



To this end we pick ¢ € K, and show J(¢) € T. Since T' is semisimple, and by our pre-
liminary comment, there exists B € T that acts on each irreducible T-module in the above
decomposition as ¥(¢). The T-modules in this decomposition span V' so ¥({) coincides with
B on V; therefore ¥(¢) = B and in particular ¥(¢) € T" as desired. We have now shown that
Y¥(X,) € T and the result follows. O

Remark 6.10 In Theorem 6.7 we obtained a C-algebra homomorphism 9 : X, — 7. In
Theorem 3.3 we displayed four C-algebra homomorphisms from U, (sl;) into X,. Composing

these homomorphisms with ¢ we obtain four C-algebra homomorphisms from U,(slz) into
T.

We conjecture that the conclusion of Theorem 6.7 still holds if we weaken Assumption 6.1
by no longer requiring that each irreducible T-module is thin.
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