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Abstract – t-Butyl 3,4-dialkyl-1H-pyrrole-2-carboxylates were oxidized with 

o-chloranil in the presence of MeOH to afford the corresponding 

5-methoxypyrrolin-2-one derivatives.  The resulting 5-methoxypyrrolin-2-one 

was reacted with various nucleophiles under acidic conditions to afford the 

functionalized pyrrolinone derivatives in good yields.  

Toward elucidation of the structure and function of the linear tetrapyrrole (bilin) chromophores in 

phytochromes, we have succeeded in synthesizing phytochromobilin (PΦB), phycocyanobilin (PCB), 

modified PCBs, biliverdin (BV) and its analogs including sterically locked derivatives in free acid forms 

by developing efficient methods for the preparation of each pyrrole ring and a new coupling reaction 

between them.1,2  In order to synthesize different types of locked chromophores, it was necessary to 

prepare various pyrrole and pyrrolinone derivatives bearing a wide variety of functional groups.2  In our 

previous syntheses,1 pyrrole rings with an electron withdrawing group were constructed by a modified 

Barton reaction starting from aldehydes, 1-nitroalkanes, and isonitrile compounds.3  The produced tosyl- 

and ester-substituted pyrroles were converted into A- or D-ring and B- or C-ring, respectively.  It would 

be ideal for the synthesis of the locked bilin chromophores if the various types of pyrroles and the related 

pyrrolinones could be available from a common pyrrole by a simple manipulation.  Recently we have 

developed a regioselective oxidation of the α-position of the C-4 substituents on t-butyl 

pyrrole-2-carboxylates with DDQ and the subsequent substitution reaction via azafulvene intermediates 

(Scheme 1).4  Herein we describe an oxidation of t-butyl pyrrole-2-carboxylates with o-chloranil and its 

application toward the synthesis of various types of functionalized pyrrolinone derivatives.    
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First, t-butyl 3-(2-allyloxycarbonylethyl)-4-methyl-1H-pyrrole-2-carboxylate (1a), which is a useful 

synthon for the B- and C-ring components of bilin chromophores,1 was treated with 3 equiv. of 
p-chloranil in the presence of 10 equiv. of MeOH in CH2Cl2.  Although the reaction was carried out 

under refluxing for 5 d, oxidation did not proceeded and 1a was recovered almost quantitatively.  Since 

it is well-known that o-chloranil is a stronger electron acceptor than p-chloranil,5 o-chloranil was then 
used as an oxidant.6  When 1a was treated with 3 equiv. of o-chloranil in the presence of 10 equiv. of 

MeOH in CH2Cl2 at rt for 20 h, the pyrrole ring was oxidized to give a 5-methoxypyrrolin-2-one 

derivative 2a in 51% yield (Table 1, Entry 1).  Decreasing the amount of MeOH slightly improved the 
chemical yield (Entries 2–4).  In the presence of 2 equiv. of MeOH, the pyrrolinone 2a was obtained in 

enhanced 61% yield (Entry 4).  Variation of the amount of o-chloranil to 2 or 4 equiv. did not improve 

the chemical yield (Entries 5 and 6).   

 
Table 1. Oxidation of t-butyl pyrrole-2-carboxylates 1 with o-chloranil 

N
H

R2R1

CO2
tBuH N

H

R2R1

CO2
tBu

O

OMe

o-chloranil (m equiv.)
MeOH (n equiv.)

CH2Cl2, rt, 20 h

1 2  
Entry R1 R2 1 m n Yield/% 

1a CH3 (CH2)2CO2Allyl a 3 10 51 
2a    3  5 58 
3a    3  3 58 
4a    3  2 61 
5a    2  2 27 
6a    4  2 57 
7a CH3 CH3CH2 b 3  2 80 
8a CH3 CH3 c 3  2 82 
9b CH3CH2 CH3CH2 d 3  2 78  

aReaction was carried out on a 0.3 mmol scale of 1 in 15 ml of CH2Cl2.  
bReaction was carried out on a 3.0 mmol scale of 1 in 150 ml of CH2Cl2.   



 

The oxidation of other pyrroles with o-chloranil was examined.  t-Butyl 

3-ethyl-4-methyl-1H-pyrrole-2-carboxylate (1b) afforded the pyrrolinone 2b in 80% yield (Entry 7).  In 

the cases of 3,4-dimethylpyrrole 1c and 3,4-diethylpyrrole 1d, the oxidation also proceeded smoothly to 

give the corresponding 5-methoxypyrrolin-2-ones 2c and 2d in high yields (Entries 8 and 9).7   

In order to gain an insight into how the reaction proceeds, the oxidation of 1d was monitored by 1H and 
13C NMR in CDCl3.

8  In 1H NMR spectra, the generation of 2d was confirmed after 2 h and the most of 

1d was converted into 2d after 20 h.  However, any other substrates were not clearly detected especially 

in the region of aliphatic protons.  In 13C NMR at 20 h, the signals assigned to 2d and 

3,4,5,6-tetrachlorocatechol (3)9 were confirmed and o-chloranil scarcely remained.  Two or three kinds 

of unknown aromatic compounds were further observed downfield below 100 ppm.  In the upfield 

region around 0–20 ppm, two sets of ethyl group corresponding to 2d were mainly observed accompanied 

with a few small peaks.  Ultimately, any useful information about reaction intermediates was not 

acquired based on the NMR observation.   

Although the precise reaction mechanism is not yet clear, radical mechanism might be ruled out:  

Addition of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) (3 equiv.) in the reaction of 1d as a radical 
inhibitor did not affect the oxidation resulting in the formation of 2d in 79% yield, while TEMPO itself 

could not oxidize 1d.  Based on the facts described above, a possible mechanism is proposed as shown 

in Scheme 2.  The hydride abstraction from pyrrole by o-chloranil followed by nucleophilic addition of 2 

equiv. of MeOH affords 4.  Further oxidation of 4 by o-chloranil resulted in the formation of 5, which is 

hydrolyzed to afford 2.  Although H2O was not added into the reaction mixture on purpose to hydrolyze 

5, irrupting moisture might be sufficient.10   

The oxidized pyrrolinones 2 obtained above are versatile synthetic intermediates (Scheme 3).  For 

example, methoxy group in 2d was substituted with a tosyl group by treating with p-toluenesulfinic acid 

(TsH) in the presence of AcOH to give 6.11  The t-butoxycarbonyl group was directly removed by 

treating with excess amount of TsH to afford 7, which was employed to the Wittig-like coupling reaction 

developed by us with 8 to give the coupling product 9.1,12  A series of transformations from 1d to 9 

means that AB- and CD-ring components of bilin chromophores could be synthesized from 

ester-substituted pyrroles without preparation of tosyl pyrroles, which were required in our previous 

methods.1  Direct C-C bond formation was examined by the treatment with allytrimethylsilane in the 

presence of trifluoroacetic acid.13  To our surprise, an envisaged allylated pyrrolinone 11 was not 

produced but a reduced pyrroline 10 was isolated in 74% yield.  This unprecedented transformation 

might be a useful method for the reduction at congested carbon center. 
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As described above, the mild oxidation of t-butyl 3,4-dialkyl-1H-pyrrole-2-carboxylates was achieved 

with o-chloranil in the presence of MeOH to give the corresponding 5-methoxypyrrolin-2-one derivatives 

in good yields.  Further transformation of the oxidized products to other synthetically useful derivatives 

was also performed.   The present methods would be useful for the preparation of various types of 

pyrrolinones and applicable to the synthesis of bilin chromophores of phytochromes including their 

sterically locked derivatives.1,2 
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