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Dynamic changes in protein conformation in response to external stimuli are vital 

in biological processes. Their direct visualization under physiological conditions 

has long been desired, but remains a challenge. Here, we demonstrate that 

high-speed atomic force microscopy, which has recently been developed by us, now 

makes such visualization feasible. The high-resolution movies of a light-driven 

proton pump, bacteriorhodopsin (bR), reveal that upon illumination, a cytoplasmic 

portion of each bR monomer is brought into contact with the adjacent trimers. 

Remarkably, the bR–bR interaction in the transiently formed assembly elicits both 

positive and negative cooperative effects on the decay kinetics as the initial bR 

recovers. By the bipolar nature of the cooperativity, however, the turnover rate of 

the phtocycle is maintained constant on average, irrespective of the light intensity. 

Thus, the direct and high-resolution visualization of dynamically acting molecules 

is a powerful new approach to gaining insight into elaborate bimolecular processes. 
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The biological function of proteins is closely associated with their ability to undergo 

structural changes. In many cases, these structural changes are triggered by external 

stimuli including pH, temperature, ligand binding, mechanical stress, and light.  

Although their direct real-space and real-time visualization is a straightforward 

approach to understanding the dynamic molecular processes, the lack of suitable 

techniques has precluded it. Atomic force microscopy (AFM) is a versatile technique to 

image proteins in liquids at sub-molecular resolution, but its poor temporal resolution 

has meant an availability of only static or slow time-lapse images of proteins1-5. In the 

last decade, various efforts have been carried out to increase the scan speed of AFM6-9. 

As a result, single protein molecules exhibiting Brownian motion are captured on video 

at a highest temporal resolution of ~30 ms10. However, dynamic visualization of 

physiologically relevant conformational changes in proteins has been difficult because 

tip-sample interaction tends to interfere with the physiological functions. To solve this 

problem, a new method has recently been developed which allows fast and precise 

control of the tip-sample distance with a minimum load to the sample7. This report 

presents the first ever exemplification of dynamic imaging of a functioning biological 

sample.  

Bacteriorhodopsin (bR) is a well-known example of the association between 

stimulus-triggered structural dynamics and biological function11, 12, and its direct 

visualization has long been a goal. bR contains seven transmembrane α-helices (named 

A–G) enclosing the chromophore retinal13, 14. In the photocycle, a series of spectral 

intermediates, designated J, K, L, M, N, and O, occur in that order12. The light-induced 

conformational changes in bR have been investigated by various methods15-25, leading 

to a consensus that the proton channel at the cytoplasmic surface is opened by the tilting 

of helix F away from the protein center21, 23, 24. Sass et al. reported helix F displacement 

of ~0.1 nm in the late M state, based on X-ray diffraction of the three-dimensional 

crystal of wild type (WT)21. However, a larger structural change in bR was reported in 
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the electron crystallography study of the D96G, F171C, F219L triple mutant of bR: 

displacement of helix F by ~0.35 nm away from the center of the protein23. The electron 

crystallography study of the F219L mutant further reported that helices E and F tilt 

away from the center of the protein, which is followed by a shift of the E-F loop by ~0.3 

nm24, resulting in large-scale conformational changes in the M and N states18, 19, 25. 

Nevertheless, a consensus on the conformational changes is not reached yet. Similarly 

to other proteins, our knowledge of the structural dynamics of bR is limited because its 

structural data have been accumulated using static and ensemble averaging approaches. 

The direct and dynamic visualization by high-speed AFM will provide a better answer 

as to the conformational changes of bR. 

We used the D96N bR mutant, which has a longer photocycle (~10 s) than that of 

WT (~10 ms) but retains proton pumping ability26. Figure 1a shows successive images 

of D96N at the cytoplasmic surface captured at 1 frame/s (fps) (Supplementary Movie 

1 online). Individual bR molecules are clearly seen, as reported in earlier pioneering 

studies for the unphotolyzed state3-5. Upon illumination with green light, bR drastically 

changes its structure (compare images at 1 s and 2 s) and returns to the unphotolyzed 

state in a few seconds after light-off, an outcome that is reproducible in repeated 

dark-illumination cycles (Supplementary Movie 1 online). Such high-resolution 

movies of the dynamically changing structure of stimulated proteins have never been 

seen before.   

We analyzed the “mass center” positions of the individual monomers imaged 

during the dark-illumination cycles. Note that the “mass center” for each bR monomer 

was calculated from the corresponding surface area and height distribution in the image 

(see Methods). All the activated bR monomers exhibited displacements of their center 

of mass and the average displacement was 0.69 ± 0.15 nm (Supplementary Fig. 1 in 

the green region). In Figure 1b, the trajectories of the mass-center positions during the 

dark-illumination cycles are superimposed on the AFM image in the unphotolyzed state 
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(red, blue, and black marks). They show highly centrosymmetric trajectories, oriented 

outward from the trimer centers. 

The top and bottom images in Figure 1c show magnified images obtained before 

and during illumination, respectively. The prominent protrusion in the AFM topographs 

reflects interhelical loop structures on the cytoplasmic surface4, 27. Compared to the 

atomic model of the α-helical cytoplasmic ends in the unphotolyzed state14 (A–G in Fig. 

1b and c), the protruding areas around helices E and F shift outward from the trimer 

center under illumination. Therefore, the protrusion movement visualized here is 

ascribed to the displacement of the E-F loop. As a result of E-F loop displacement, the 

protrusion is divided into two sections (green arrows 1 and 2 in Fig. 1c), and the minor 

protrusion (green arrow 2) likely corresponds to the position around helices A and B. 

Note that the overall position of each bR molecule does not change because of 

indiscernible alterations at the extracellular surface (Supplementary Fig. 2 and Movie 

5 online).  

To ensure that the conformational changes observed here are not artifacts such as 

tip-force–induced structural alterations4, we measured the decay of the active state after 

flash illumination at various pH values (Fig. 1d). UV-visible spectroscopy26 has shown 

that the lifetime of the M-intermediate of D96N and WT is prolonged at alkaline pH; in 

concordance with this fact is the observation here with D96N that the decay detected by 

high-speed AFM showed a strong pH dependence (inset, Fig. 1d). Using WT at pH 7 

and pH 10, this finding was further confirmed (Fig. 2, Supplementary Movies 2 and 3 

online). Because of the very fast photocycle, no conformational changes of WT were 

detected at pH 7, whereas at pH 10, conformational changes similar to those of D96N 

were observed, although the activated state decays much faster than that of D96N. 

The activation of D96N was observed within 1 s immediately after illumination 

but not observed after light-off, even at alkaline pH (data not shown). A cysteine 

accessibility study with D96N indicated displacement of the E-F loop in the M state19. 
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Therefore, the high-speed AFM imaging of D96N did capture the light-induced 

ground-to-M-state transition. Since the AFM observation was performed with the 

samples on a mica surface, we cannot exclude a possible effect of the surface. Despite 

this uncertainty, the longer decay constant observed using AFM than that observed 

optically suggests that the activated state detected by AFM may contain an additional 

state in which the Schiff base is reprotonated (during M decay) but the protein 

conformation has not yet returned to the ground state. 

As a result of the outward displacement of the E-F loop, nearest-neighbor bR 

monomers, each belonging to a different adjacent trimer, transiently assemble. Here, we 

use a new designation, “trefoil”, for the triad of the nearest-neighbor monomers to 

distinguish it from the original trimer. Remarkably, this transient assembly in a trefoil 

alters the decay kinetics of the activated state (Supplementary Movies 4 online). 

Figure 3a shows the time course of the displacement of the mass centers for six bR 

monomers belonging to two different trefoils observed at different light intensities 

(Mn1–Mn3; n indicates different trefoils) (Supplementary Fig. 3 online). Under weak 

illumination, mostly only one monomer in each trefoil is activated (M13 and M22 in the 

left panel of Fig. 3a). When only one monomer is activated in a trefoil, it decays with a 

time constant of 7.3 ± 0.58 s (the top panel of Fig. 3b). In contrast, under stronger 

illumination, two or three monomers within a trefoil are tends to be activated together. 

Interestingly, the decay of each monomer markedly depends on the order of its 

activation. The monomer that is activated latest among the activated monomers in the 

trefoil (blue arrows in the right panel of Fig. 3a) decay with a shorter time constant of 

2.0 ± 0.16 s (the middle panel of Fig. 3b). On the other hand, the decay kinetics of the 

early activated monomers (M12 and M22 in the right panel of Fig. 3a) does not follow a 

single exponential (the bottom panel of Fig. 3b), and the averaged decay time lengthens 

to about 13 s. This observation indicates that the early activated monomers do not return 

to the ground state as long as the adjacent monomers within the trefoil are in the active 
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state.  

In addition, Figure 4 shows decay of the activated D96N under weak or strong 

light intensity. Note that all the activated molecules were counted regardless of their 

activation order and of the number of activated monomers in a trefoil. The distributions 

of the activated state lifetime are well fit to single exponential functions under both 

weak and strong light illumination, and their decay constants are almost identical 

despite of the different light intensities. This can be explained by the coexistence of the 

positive and negative cooperativity effects elicited by bR-bR interactions within a trefoil 

(Fig. 3b). Because of the coexistence and the bipolar nature, the two cooperative effects 

cancel out with each other on averaging, resulting in a constant decay rate independent 

of light intensity. Under a conceivable assumption that the conformational change 

turnover of an activated bR monmer is tightly coupled with proton transfer by the bR 

monomer, the average rate of proton-pumping by the activated bR would be conserved 

independently of light intensity. As a result of the cancelation effect, the cooperative 

effects can never be detected by ensemble averaging approaches. Thus, the cooperative 

effects are different from those proposed from absorption spectroscopic studies in which 

fast and slow decays of the M-state were detected depending on light intensity while the 

total turnover rate was independent of light intensity28, 29. This previous report is 

consistent with our presumption that the activated state detected by high-speed AFM 

contains both the M-state and subsequent states. Importantly, the cooperative effects we 

found are caused by bR–bR interactions within a trefoil, not within a trimer. 

As demonstrated above, direct and real-space visualization of the dynamically 

changing structure of stimulated proteins provides a straightforward way of elucidating 

how protein molecules function. We can expect that a large number of dynamic 

bimolecular processes will be directly visualized in the near future, leading to new 

findings inaccessible using other approaches. After further advances of high-speed AFM 

techniques, even molecular processes on membranes of live cells will be directly 



7 

visualized. The present study is the first step toward achieving these expected 

innovations in biological research. 

METHODS 

Sample preparation. Purple membranes containing either WT or D96N mutant were 

isolated from Halobacterium salinarum as described30. The samples were suspended in 

a solution containing 10 mM Tris-HCl (pH 7, 8, 9, or 10) and 300 mM KCl. 

High-speed AFM observation. The laboratory-built high-speed AFM apparatus is an 

extensively improved version of the previously reported one6. See a comprehensive 

review7 for the instrument development including recent technical advances. AFM 

images were acquired in the tapping mode. To detect the cantilever deflection, we used 

an optical beam deflection detector equipped with an infrared laser (980 nm). The laser 

beam was focused onto a small cantilever using a ×50 objective lens. The cantilever 

(Olympus) is 6–7 μm long, 2 μm wide, and 90 nm thick with a spring constant of 

0.1–0.2 N/m. Its resonant frequency and quality factor in an aqueous solution are ~1 

MHz and ~2, respectively. In the AFM imaging, the free oscillation amplitude was ~1 

nm and the set-point amplitude was 90% of the free amplitude. The tapping force 

estimated was less than 30 pN. An amorphous carbon tip was grown on the original tip 

by electron beam deposition. The tip length was adjusted to ~1 μm, and the tip apex was 

sharpened by plasma etching under argon gas (~4 nm in radius). AFM observations 

were performed under solution at room temperature. For illumination of the bR sample, 

a green laser (532 nm) was irradiated through the ×50 objective lens. The intensity 

measured at the exit of the objective lens was varied in a range of 0.004–0.5 μW.   

.  

Data analysis of mass-center position. The mass-center positions of imaged bR 

monomers were calculated by the following procedures. First, a whole AFM image was 

segmented into each monomer region by a watershed algorithm. Second, the grayscale 
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of each segment was digitized using a threshold determined by a fuzzy-entropy 

algorithm. The pixels with grayscales above the threshold were defined as those of a 

monomer (region of interest; ROI). Finally the center of mass of a monomer was 

calculated for the ROI using the pixel positions and the grayscales. Note that the center 

of mass analyzed here is not the real center of mass of the protein but of the AFM image 

of the monomer. 
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FIGURE LEGENDS 

Figure 1 High-speed AFM images of the cytoplasmic surface of D96N under dark or 

illuminated conditions. (a) Successive AFM images of D96N bR adsorbed onto a mica 

surface in 10 mM Tris-HCl (pH 7) and 300 mM KCl. Frame rate: 1 fps; pixel size: 

200×200 pixels (Supplementary Movie 1 online). A bR trimer is highlighted by the 

white triangle. The green bars indicate illumination of 532-nm green light with 0.5 μW. 

(b) Traces (red, blue, and black marks) of the mass-center positions under the 

dark-illumination cycles are superimposed on the image of D96N in the dark. The 

photo-induced movement of bR includes counterclockwise rotation (7.4 ± 2.2°) around 

the trimer center. (c) Surface maps of the magnified images in the dark (upper panel) 

and under illumination (bottom panel). The position of each trimer center is denoted by 

the white dots. A monomer in the dark is indicated by the single white arrow. Under 

illumination, the topography of the monomer splits into major and minor protrusions as 

indicated by the green arrows 1 and 2, respectively. (d) Decay after flash-illumination of 

the activated state at different pH values (7, 8, or 9) detected by high-speed AFM. The 

exponential decay constants (τ) at pH 7, 8, and 9 are 6.7 ± 0.10 s (the total number of 

analyzed bR molecules, nT = 320; the number of different molecules analyzed, nm = 52), 

25 ± 0.25 s ( nT = 373, nm = 65), and 48 ± 0.59 s (nT = 214, nm = 120), respectively. The 

inset shows the absorbance change at 410 nm (i.e., decay of the M-intermediate) after 

flash-illumination of D96N measured at various pH (7, 8, or 9). The exponential decay 

constants (τ) at pH 7, 8, and 9 are 3.4 ± 0.025 s, 14 ± 0.034 s, and 33 ± 0.080 s, 

respectively. 

Figure 2 Displacement of mass-center positions for WT at the cytoplasmic surface. 

Typical 10 bR monomers at pH 7 (a) and pH 10 (b) are analyzed. The AFM movies for 

WT at pH 7 and pH 10 are shown in Supplementary Movies 2 and 3 online, 

respectively. The green regions show periods of green light illumination (532 nm, 0.5 

μW). Conformational changes in WT are not detected at pH 7 because the photocycle is 
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too fast, whereas at pH 10, they were repeatedly detected because the photocycle is 

prolonged at alkaline pH29. 

Figure 3 Cooperative effects on the decay kinetics in D96N. (a) Displacement of 

mass-center positions as a function of time measured for six bR monomers composing 

two different trefoils (Mn1–Mn3; n indicates different trefoils) at pH 7 under different 

light intensities (Supplementary Fig. 3 and Movie 4 online). The green regions 

correspond to the illumination, and their shade level indicates the relative light intensity 

(0.007 μW and 0.5 μW). The blue arrows indicate the conformational changes of the 

monomers (M13, M21, and M23) that are activated subsequently to the activation of 

other monomers in the respective trefoils. (b) The top figure shows the decay of 

activated bR monomers (as depicted by the red circle) while the other monomers (the 

gray circles) within the respective trefoils are not in the activated state. The exponential 

decay constant (τ) is 7.3 ± 0.58 s (nT = 279, nm = 55). On the other hand, when one or 

two nearest neighbor molecules (as depicted by green circles in the middle figure) in a 

trefoil are already activated, the bR monomer activated latest (as depicted by the blue 

circles in the middle figure) decays faster. The exponential time constant (τ) is 

shortened to 2.0 ± 0.16 s (nT = 228, nm = 55). In contrast, the early activated molecules 

within a trefoil (as depicted by green circles in the bottom figure) show a 

non-exponential broad distribution of decay time with an average of 13.3 s (nT = 194, 

nm = 55). 

Figure 4 Decay rate of activated D96N under different light intensities. The upper 

figure shows the decay of activated molecules under weak illumination (0.004–0.09 

μW). Although the frequency is low, two bR monomers in a trefoil are activated 

together, the events of which are also counted in this analysis. The exponential decay 

constant (τ) is 5.4 ± 0.34 s (nT = 429, nm = 55). The bottom figure shows the decay of 
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activated molecules under relatively strong illumination (0.23 or 0.5 μW). The 

exponential decay constant (τ) is 6.1 ± 0.37 s (nT = 416, nm = 55). 
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