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Abstract This review focuses attention on the experimental studies of intrinsic localized modes (ILMs)
produced in driven atomic lattices. Production methods involve the application of the modulational
instability under carefully controlled conditions. One experimental approach is to drive the atomic
lattice far from equilibrium to produce ILMs, the second is to apply a driver of only modest strength
but nearby in frequency to a plane wave mode so that a slow transformation from large amplitude
standing waves to ILMs takes place. Since in either case the number of ILMs produced is small the
experimental observation tool appropriate for this task is four wave mixing. This nonlinear detection
technique makes use of the nonlinearity associated with an ILM to enhance its signal over that produced
by the more numerous, but linear, spin waves. The final topic deals with numerical simulations of a
nonlinear nanoscale atomic lattice where the new feature is running ILMs.

Keywords Intrinsic localized modes · Discrete breathers · Nonlinear atomic lattices · Modulational
instability · Nonlinear mode locking

PACS 05.45.-a · 63.20.Pw · 63.20.Ry

1 Introduction

1.1 Background

The investigation of vibrational energy localization in highly excited small molecules has a long his-
tory and a number of reviews have appeared[1–7]. Experiments on molecular overtone and combination
bands by means of sensitive absorption, thermal lensing and photoacoustic spectroscopy, particularly
involving X-H vibrations, have been interpreted successfully in terms of normal modes for low lying
vibrational states and local modes for high lying states. In condensed matter lattices vibrational energy
localization can be produced by lattice irregularities and such defect-induced localized modes, which ap-
pear above the plane wave spectrum, in the frequency gaps between the plane wave branches, or in the
acoustic spectrum, have been studied in great detail both theoretically[8–12] and experimentally[13–
15]. For nonlinear atomic lattices the study of localized vibrational energy has a much shorter history.
Initially, the continuum approximation and perturbation theory were used to demonstrate that an-
harmonicity in a 1-D lattice could produce soliton-like excitations, extending over a large number of
sites[16]. In the late 1980 ’s it was proposed that the localization of vibrational energy produced by
nonlinearity in a discrete lattice could appear above the phonon spectrum and extend over a very few
lattice sites[17,18]. Later it was demonstrated with realistic two body potentials that such localized
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excitations should appear in a phonon gap[19,20]. Since spectroscopically these strongly localized ex-
citations would resemble a feature associated with a harmonic force constant lattice defect they were
called intrinsic localized modes (ILMs). They are also referred to as lattice solitons[21] or discrete
breathers[22].

1.2 Experimental approaches for identifying ILMs

For a 3-D dielectric diatomic crystal involving two body potentials simulations have shown that an ILM
not only involves dynamical localization of vibrational energy but also carries an associated localized
dc strain field[23]; hence, its spatial structure in the perfect crystal is similar to that of an intrinsic
vibrationally-induced defect. Such a vibrational defect requires more energy to form than does a plane
wave excitation but the induced crystal disorder makes it appearance possible since associated with
these defects is an additional configurational entropy, Sc [18]. For such a localized crystal defect the
Helmholtz free energy is

F = F0 + nε− TSc (1)

where F0 is the contribution from the perfect lattice, nε is the work done in creating n such ILM
defects, and −TSc is the contribution associated with the disorder. Minimization of the free energy
with respect to the number of defects n for the limit where the defect number, n, is much smaller than
the lattice site number, N , gives

n ≈ N exp (−ε/kBT ) (2)

At elevated temperatures the appearance of such ILMs would contribute an Einstein oscillator-like
component to the Debye plane-wave specific heat of a dielectric diatomic solid. Since the specific heat
contribution from plane wave optic modes themselves is usually approximated by Einstein oscillators,
separating these two different contribution would clearly be challenging; hence, the temperature de-
pendence of the specific heat has not been the unique experimental probe for identifying ILMs in bulk
solids.

Spectroscopic measurements on solids provide another way to search for an ILM feature. Evidence
of ILMs have been reported in the analysis of resonant Raman spectra in the charge transfer solid
PtCls[24]; in the monatomic bcc crystal of 4He where inelastic neutron scattering shows an anomalous
optic-like mode[25]; in single crystal alpha-uranium where a localized mode has been identified in the
optic branch[26]; in proteins where pico-second pump-probe measurements of the amide I band indicate
a self-trapped vibrational state[27,28]; and hydrogen bonded acetanilide where spectral anomalies are
interpreted as a signature of vibrational self trapping[29,30]. Each of these examples illustrates the
fundamental experimental challenge of exploring ILMs in atomic solids; direct observation of spatial
energy localization is not yet possible and the observation of transitions, spectroscopic frequency shifts,
or relaxation times of spectral elements are connected to localization by theoretical and numerical
analysis.

On the other hand, the combination of a spectroscopic measurement with a cw driver provides a
steady state approach with which to examine both the appearance and disappearance of atomic nonlin-
ear localization[31–33]. One experimental approach is to drive the atomic lattice far from equilibrium
to produce ILMs but then isolate them by continued steady state driving so they can be studied in
detail. A second method is to apply a driver of only modest strength but nearby in frequency to a plane
wave mode so that a slow transformation from large amplitude plane waves to ILMs takes place. This
second procedure was first tested with macroscopic micromechanical arrays[34]. Both of these kinds
of experiments deal with the production and spectroscopic detection of steady state atomic ILMs, the
main focus of this review. In the next section the ILM production and approaches for steady state
driving methods are outlined. Section 3 deals with the experimental observations of such localized spin
excitations in a 1-D antiferromagnetic lattice. This study of large systems is followed in Section 4 by
numerical simulations describing what to expect for small nano-scale systems. Conclusions follow in
Section 5.
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Fig. 1 Delocalized and localized excitations for a 1-D antiferromagnetic arrangement of spins with easy axis
anisotropy. The left panel shows the circularly polarized uniform mode eigenvector, the center panel, the linear
dispersion curve and the right panel, a localized spin wave excitation.

2 ILM production methods with a cw driver

2.1 Dynamics of an antiferromagnetic spin system

Fundamental to the steady state approach of ILM production in atomic lattice is the modulational
instability (MI) of a particular plane wave vibrational mode. MI refers to the exponential growth
of certain modulation sidebands of nonlinear plane waves propagating in a dispersive medium[35].
Although many aspects of MI in discrete systems are the same as those in continuous media, the
discreteness can drastically alter the modulational instability parameter space[36]. In magnetism the
modulational instability of interest for a large amplitude spin wave mode is referred to as the second
order Suhl instability[37]. Recent numerical[38–40] and experimental studies[41–46] have shown that
antiferromagnets provide a natural habitat for ILMs. Although the dipole active spin wave frequencies
of most antiferromagnets are above the frequency range of high power microwave sources a few 1-D
antiferromagnets have uniform modes in the GHz region; hence, it is now possible to examine the low
lying nonlinear excitations of these atomic systems in the steady state.

The uniform spin wave mode and linear dispersion curve of spin wave excitations for a typical 1-D
easy axis uniaxial antiferromagnet, shown in Fig 1, can be obtained by examining the equations of
motion. For such a chain, in which each spin interacts with its nearest neighbors via the exchange
interaction and each spin feels an on-site anisotropy field, the Hamiltonian is[47]

H = 2J
∑
n

Sn · Sn+1 −D
∑
n

(Szn)2 (3)

where both the exchange constant J and the single ion anisotropy constant D are positive. The classical
equations of motion for the circularly polarized spin deviation s+

n is

ids+
n

/
dt = −2J

[(
szn−1 + szn+1

)
s+
n −

(
s+
n−1 + s+

n+1

)
szn
]

+ 2DSszns
+
n (4)

giving the linear dispersion curve

Ω(q) = ±
√

(A+ 2)2 − 4 cos2 (qa) (5)

Here Ω(q) = ω(q)/2JS , A = D/J , q the wavevector and a is the lattice constant. The antifer-
romagnetic resonance (AFMR) frequency is Ω(0) =

√
A (A+ 4). For the small anisotropy limit the

relatively large AFMR frequency associated with the uniform mode is roughly the geometric mean of
the exchange and anisotropy fields. A more careful description shows that the sample shape also influ-
ences the frequency position of the uniform mode with respect to the rest of the spin wave branch[40].
To obtain the bottom frame in Fig. 1 one assumes a stationary elementary excitation with a circular
precession frequency ω1:

s+
n (t) = sn(t) exp (−iω`t) (6)
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Fig. 2 Evolution of the uniform mode energy density in space versus time. The uniform mode at the bottom
of the spin wave band in Fig. 1 is excited at t = 0. Dark shading identifies areas of high energy. The large
amplitude uniform mode is stable until about 200 periods where it breaks up into ILMs that initially are fairly
uniformly spaced. (After Ref. [40].)

Inserting Eq. 6 into Eq. 4 gives a system of nonlinear equations that can support localized solutions,
namely,

Ω`sn = (−1)n
{(√

1− s2
n−1 +

√
1− s2

n+1

)
sn + [(sn−1 + sn+1) +Asn]

√
1− s2

n

}
(7)

where the time variable has been explicitly dropped. With an appropriate symmetry imposed on
the mode shape Eq. 7 can be solved numerically for both the ILM frequency and eigenvector. The
bottom frame in Fig. 1 illustrates the possible eigenvector shape for a single peaked spin wave ILM.
Because of the soft nonlinearity associated with both the exchange and anisotropy energies this large
amplitude localized mode appears below the plane wave modes. Once such a localized mode exists in
the antiferromagnetic crystal then by introducing a driving cw oscillator producing circularly polarized
radiation of sufficient amplitude tuned to frequency ω` it should be possible to maintain the ILM in a
steady state configuration even in the presence of damping.

2.2 Modulational instability of the dipole active mode

The first step along this path then is to produce such ILMs using the modulational instability mech-
anism. Figure 2 presents a numerical demonstration of what happens to the uniform mode amplitude
patterns beyond the Suhl instability for the case when the uniform mode frequency lies on the spinwave
dispersion curve. (Other possibilities are described in Ref. [40]). The figure shows the time evolution of
the energy at each site in the form of a density plot of spin energy as a function of spin site and time.
At t = 0 the uniform mode is excited with specific amplitude. After some time interval the uniformity
disappears, a fairly regular train of ILMs appears and then disappears as time progresses to be replaced
by a random regime.

The power spectrum for the ILM transverse magnetic moment of such a 1-D spin system in the
random regime is shown in Fig. 3. Localized excitations appear below the AFMR with a range of
frequencies. The conclusion is that driving the modulational instability results in ILMs but at a number
of different frequencies; thus, by itself, the MI is not a method of well-defined ILM production. To
produce monochromatic ILMs a second ac drive is introduced in addition to the one that produces
the modulational instability. Its frequency is necessarily below the linear spin wave spectrum, near the
bottom of the distribution of ILM frequencies shown in Fig. 3. If this driver has sufficient strength it
can capture ILMs on speaking terms and support them even after the initial MI driver is turned off.
The result is monochromatic ILMs in the crystal synchronized to the second steady state driver.
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Fig. 3 Power spectrum of the transverse magnetic moments after the modulational instability. A large number
of local mode excitations are generated. The dot dashed curve identifies the driving frequency. (After Ref. [39].)

3 Observations of driven ILMs

3.1 Dynamics of the (C2H5NH3)2CuCl4 spin system

Experiments have been carried out on an easy plane antiferromagnetic crystal, the quasi-1D (C2H5NH3)2CuCl4.
The equation of motion for the normalized spin Sn, including damping and driving terms, is

d

dt
Sn = −γSn ×Hn − γλSn × (Sn ×Hn) (8)

where vecSn is a macroscopic spin obtained by averaging over the strongly coupled ferromagnetic sheet
of spins in the ab plane, γ, the gyromagnetic ratio, and λ, the Landau damping parameter. Here Hn

is the magnetic field acting on the nth macroscopic spin along the c direction where

Hn = −2J (Sn−1 + Sn+1)− 2
↔
ASn +Hx0êx cosωt (9)

with J , the nearest neighbor antiferromagnetic exchange constant,
↔
A, the anisotropic field tensor, and

Hx0, the amplitude of the ac driving field along a specific transverse spin direction. For this easy plane
case the two dispersion curves (solid circles) are shown in Fig. 4. The branches are no longer degenerate,
as in Fig. 1, and are described by an upper branch and a lower branch with the q = 0 modes now
linearly polarized in orthogonal directions. The experiments described here involved exciting spins at
the bottom of the lower branch.

3.2 Pulse method of generating and observing ILMs

Figure 5 illustrates the actual experimental procedure displaying an absorption frequency versus time
graph in the neighborhood of the AFMR of the lower branch. A very weak probe oscillator (call it
f3) is swept in frequency to monitor the absorption spectrum. At t = 0 the AFMR absorption is
located at 1.375 GHz. A strong microwave pulse of short duration (f1) produces an MI in the spin
wave spectrum. A steady state oscillator (f2) with 1000 times less power is used to capture some ILMs
which are passing by this frequency as the spins recovers from the initial high intensity pulse. Notice
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Fig. 4 Dispersion curve of C2H5NH3)2CuCl4 showing a traveling ILM mode. For N = 100 the linear modes
are indicated by solid circles. The stationary ILMs that appear below the bottom of the acoustic branch do
not depend on sample size. Open circles on the dashed tangent to the dispersion are Fourier components of a
traveling ILM for the small system described in Section 4. The ILM velocity coincides with the slope. Because
of the finite crystal boundary conditions the excitation of linear modes in the acoustic spectrum and hence
runnimng ILMs is possible.

that it takes many milliseconds for the AFMR to return to the starting condition so the frequency gap
between f2 and the AFMR increases with increasing time. Since no absorption feature is evident at
frequency f2 in Fig. 5 the question is how can one determine that ILMs are actually trapped there?
The technique is four wave mixing involving the two remaining oscillators f2 and f3. Since ILMs are
nonlinear by nature while the plane wave modes are essentially linear the mixing technique lights up
the few nonlinear excitations and only a much weaker signal stems from the many linear ones.

The ILM sensitivity produced by the four wave mixing method can be seen in Fig. 6 where the
emission (2f2 − f3) is compared to the linear spin wave absorption spectrum taken with f3 for 2 ms
after the f1 pulse. The absorption spectrum (linear scale) is quite simple while the more sensitive
emission spectrum (log scale) is much richer. The strongest emission peak observed slightly below the
f2 driver is from the monochromatic ILMs. Rather than look at the emission spectrum at fixed time
after the f1 pulse another kind of measurement is to place f2 on the ILM emission peak and measure
its amplitude as a function of time. A family of time dependent traces can be obtained by then varying
the power settings of f2. Such traces are shown in Fig. 7(a) where the square root of the emission power
is plotted versus time. Figure 7(b) shows how the individual emission curves can be decomposed into
an exponential decay plus steps of equal height demonstrating that individual ILMs are disappearing
as the frequency difference between f2 and the AFMR increases with time. The dotted curve in Fig.
7(b) is the same as the dotted curve in 7(a).

These experiments show that the emitted P
(3)
ILM power received at the spectrum analyzer is a

function of the integer number of locked ILMs, nILM , that involve magnetization changes of equal
increments. The four wave mixing signal has the form[45]

√
P

(3)
ILM = nILM (2f2 − f3)χ (2f2 − f3)P2P3 (10)

where χ (2f2 − f3) is an effective nonlinear susceptibility, and the powers delivered to the sample by
f2 and f3 are P2 and P3, respectively.

3.3 CW method of generating and observing ILMs

Another experimental method has been uncovered by which ILMs can be made to appear and dis-
appear. With this approach the spin system is not driven far from equilibrium with a high power
pulse, instead f2 is brought sufficiently close to the AFMR so that it alone can produce and capture
ILMs[46]. The mechanism is demonstrated by the absorption spectra shown in Fig. 8. In Fig. 8(a) after
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Fig. 5 Absorption spectrum of an antiferromagnetic resonance versus time. The arrow identifies the resonance
position at t = 0. A strong microwave pulse at frequency f1 is used to break up the uniform mode. The power
of the cw driver f2 is 1000 times weaker than that of the pulse. (After ref. [45].)
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Fig. 6 Snapshot of the emission and absorption spectra 2ms after the f1 pulse. The small number of ILMs
captured by f2 and seen in the four-wave emission signal is not apparent in the absorption spectrum (dashed
trace). In emission the strongest and second strongest peaks on either side of the driver are associated with
locked ILMs. (After ref. [45].)

f2 is turned on at 1.325 GHz the AFMR at 1.38 GHz is pulled to lower frequencies over a time scale
of many ms by its coupling to this power source. For Fig. 8(b) f2 is bought somewhat closer to the
AFMR and the process repeated. Now the AFMR frequency is pulled down more rapidly over about 2
ms but then reaches a near plateau where the coupling appears steady. With f2 still closer, shown in
Fig. 8(c), the result is completely different in that the AFMR quickly becomes unstable as indicated
by the increase in the line width. When the time dependence of this configuration is examined with
four wave mixing ILMs steps are again observed as shown in Fig. 9. Now the ILMs appear as time
progresses. The family of curves is generated using different f2 power levels. These results demonstrate
that ILMs are trapped at the f2 driver frequency. If the f2 power is increased, more ILMs are trapped;
if the power is decreased, fewer ILMs are trapped. Using this method it is possible to follow an ILM
through a switching cycle and display the important signature of step hysteresis.
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Fig. 7 (a) Square root of the emission decay output versus time for a fixed driving frequency as a function
of its cw power. The steps stem from ILMs that become unbound from the driver with increasing time. (b)
Characterization of the time dependence of the four-wave emission signal for one of the powers in (a) identified
by the dashed curve. The steps are superimposed on an exponential time-dependent background.

Fig. 8 Pulling the AFMR frequency with a cw driver. (a) The driver at 1.325 GHz is switched on at t = 0. It
is sufficiently far removed in frequency that the AFMR frequency initially at 1.38 GHz continuously changes
over a 15 ms time interval. (b) The gap between the AFMR frequency and the cw driver is small enough so
that the change in the AFMR frequency now occurs over 3 ms. (c) The cw driving frequency is sufficiently
close to the AFMR mode that it becomes unstable. (After Ref. [46].)
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Fig. 9 Square root of the emission growth output versus time for a fixed driving frequency as a function of its
cw power. The power is varied from 0.5W to 2W. The cw driver is switched on at t = 0 as shown in Fig. 8(c).
Positive steps in the emission indicate that ILMs are becoming trapped at the driving frequency. Increasing
the cw power produces an increased number of trapped ILMs.

4 Numerical studies of running ILMs in a small atomic lattice

4.1 Modulational instability method for running ILMs

So far the focus of this review has been on experimental studies of atomic ILMs in large lattices.
Numerical studies on small nonlinear spin lattices indicate that additional interesting features may be
associated with the discrete localization limit[48,49]. In addition to ILMs that appear in the gapped
region of the plane wave spectrum of a large lattice, running ILMs can now appear inside the plane
wave spectrum of a small lattice. To identify the frequency region of interest attention is again focused
on the bottom branch of the linear spin wave dispersion curves of C2H5NH3)2CuCl4 shown in Fig. 4.
Although the highest and lowest frequency modes at q = 0 couple most strongly to the E&M driver,
for a small system with free boundary conditions, a large number of modes in the spectrum become
magnetic dipole active so a single mode of odd symmetry (wavelength λ = 2L/n, where L is the sample
length and n is an odd number) can be excited by simply adjusting the uniform driver to its frequency.
The arrow in Fig. 4 identifies a typical driver frequency location near the bottom of the dispersion curve
between two standing plane wave modes in the frequency region where soft (negative) nonlinearity can
balance positive dispersion. In this dispersion curve picture the signature of the localized wave packet
has a spread in values along the q-axis, the more spatially localized the excitation the larger its spread
in q-space. The open circles in the figure represent the FT of the ILM. In the simulations described
below the polarization of the driving E&M wave for the lower branch frequencies is chosen to match
that of the upper branch to suppress exciting the strong low frequency AFMR.

To generate a traveling ILM the driving frequency is chosen near an appropriate linear mode. (This
will become the carrier frequency of the traveling ILM.) Because of the small size of the system a
well-defined frequency gap exists between that mode and the next higher frequency one. Figure 10
shows the average energy for the lattice excitation as a function of driving frequency between two
lattice modes. As the driving frequency is decreased across the first mode at 1.8297 GHz the mode
keeps resonating with the driver by adjusting its resonance frequency so that the decreasing frequency
supports increasing amplitude. The MI induces the complex running mode pattern shown in insert (a);
then at lower frequencies the locked running ILM state in inset (b) appears. This localized feature is
one side of a bi-stable state, the other side is a no-mode state, characteristic of the hysteresis response
of a Duffing oscillator[50]. The sequence of events to obtain a traveling ILM then is (1) identify a plane
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Fig. 10 Calculated energy of spins averaged over the lattice as a function of driver frequency for N = 100.
Vertical dashed line (1.8297 GHz) identifies the frequency of a linear mode; the next linear mode is at 1.74
GHz. Insert (a) shows spin number versus time. The complex traveling mode pattern shown occurs in the
frequency region between 1.8183 to 1.826 GHz. The smooth traveling ILM (insert b) is observed for frequencies
between 1.747 to 1.8176 GHz. Both patterns are generated from the MI of the plane wave mode at 1.8297 GHz.
The frequencies of inserts (a) and (b) are 1.8183 Hz and 1.8176 GHz, respectively. The time interval for each
insert is 180 ns. Spikes at 1.736, 1.7402, 1.7444 and 1.7794 GHz occur at instabilities within the averaging 3000
period time duration.

wave mode in the region where the nonlinearity balances the dispersion, (2) slowly decrease the driver
frequency so the plane wave nonlinear mode grows in amplitude reaching the modulational instability,
(3) decrease the driver frequency farther until a single traveling ILM is resolved. When the driver
frequency is decreased from either the ILM or the no-ILM high frequency state, the system always
goes back into the unstable region. Only by decreasing the driver frequency does the system have the
opportunity to reach the traveling ILM state.

4.2 Nanoscale size limitations

Numerical simulation results of traveling ILMs for spin arrays in three different size lattices are shown
in Fig. 11. The horizontal lines indicate the plane wave mode frequencies. The open circles identify
frequencies where locked smoothly traveling ILMs are found. Crosses correspond to frequency regions
of instability involving complex traveling modes. The complexity comes about when some overtone of
the ILM frequency couples to the linear phonon band. In general smoothly traveling ILMs appear at
frequencies below these unstable regions. As the linear modes become closely spaced with increasing
system size, in addition to the overtone frequencies of the ILM coupling to the plane wave modes, the
driven ILM from the Nth carrier mode interacts with the driven complex mode of the N + 1st mode
and becomes unstable. The end result is that large systems cannot have discrete stable running ILMs.

The small size limitation for running ILMs in a nanoscale system, which is beginning to show itself
for N = 50 in Fig. 11, comes about when the spatial extent of the ILM becomes a recognizable fraction
of the sample size itself. Because the frequency, size and amplitude of an ILM are interrelated and
because its frequency shift from one plane wave mode is bounded by the neighboring plane wave mode
frequency, the range of the driven ILM amplitude is limited. This restricted amplitude sets a lower
bound on the spatial extent of such a running mode.

5 Conclusions

Experimental studies of a 1-D antiferromagnetically coupled spin systems provide insights into atomic
ILMs. Since both onsite and intersite nonlinearity play a role the results can be somewhat different
from those expected for vibrational modes in an atomic lattice where only intersite nonlinearity is
important. For an antiferromagnet with easy uniaxis anisotropy the acoustic-like spin wave modes
are degenerate and are gapped both below and above the plane wave spectrum. Since both exchange
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Fig. 11 Numerical simulation results for the dependence of traveling locked ILMs on system size. Horizontal
lines identify spin wave modes of the lower branch that can be excited by the ac field polarized along the upper
branch q = 0 direction due to the finite lattice size with free boundary conditions. Crosses indicate frequencies
for the complex traveling modes and open circles identify smoothly traveling mode locations. The frequency
of the smoothly running mode is always lower than the complex mode, when they stem from the same carrier
mode. (After Ref. [49].)

and anisotropy nonlinearity are soft ILMs can drop out of the bottom of the plane wave spectrum.
For the antiferromagnet with hard uniaxis anisotropy (the case studied here in experiment) there are
nondegenerate acoustic and optic-like branches. Because of the soft nonlinearity and the fact that the
two branches are degenerate at the zone boundary ILMs only drop out of the bottom of the plane wave
acoustic branch. Numerical simulations show that for such a spin system of small size running ILMs
can be excited within the plane wave spectrum.

There have been a variety of experiments carried out on macroscopic nonlinear lattices, not dis-
cussed here, where visual inspection can be used to identify localization[51,52]. These range from
electric transmission lines[53–56], to electromagnetic waves in nonlinear layered structures[57,58], to
coupled pendula[59–61], to arrays of Josephson junctions[62,63], to 2-D photonic crystal lattices[64,
65], to micromechanical arrays[66]. The ILM observations obtained for the 1-D spin system described
here complement rather nicely the ILMs measured for micromechanical arrays[34]. Since the array has
two cantilevers of different length per unit cell the plane wave spectrum contains an acoustic and optic
branch with frequency versus k-vector shapes very similar to those found in Fig. 4 for the antiferro-
magnet. However, for the micromechanical array both the intersite and on site nonlinearity are hard
so stationary ILMs now rise out of the top of the optic branch[34]. By driving a small MEMS array it
is possible to excite running ILMs, of either the bright (localized excitation present) or dark (localized
excitation absent) variety[49].

The experimental results for the 1-D antiferromagnet are expected to be less complex than ILMs
involving a 1-D atomic lattice with realistic two body potentials. The main reason is that whereas
the spin dynamics involves potential energy terms of even powers the two body potentials in lattice
dynamics involve both even and odd potential terms. The odd potential terms not only insure that
the nonlinearity of the lattice is soft but also introduce a new feature: a localized dc distortion at the
ILM site. To move this ILM through the lattice requires simultaneous motion of both the localized
vibrational energy and the localized dc elastic distortion energy. Driving a small 1-D lattice would
necessarily take more power to generate and sustain this more complex localized structure across the
lattice than for the spin problem but locked running ILMs should still be possible. This two body
potential form should also allow counterpropagating ILMs in a small lattice by driving it at the ILM
harmonic frequency so that localized excitations at q and −q are simultaneously produced.

Additional new ILM features may be expected to occur in a 3-D atomic lattice. For example, if the
crystal symmetry is lowered from Oh to Td the importance of nonlinearity and hence ILMs will more
rapidly become evident[23]. If the crystal is piezoelectric then formation of an ILM will consist of a
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localized vibration, a localized dc distortion and a localized dc electric dipole moment. Since the ILM
dc distortion will have a lower symmetry than the corresponding crystal point group there must be a
number of equivalent directions associated with this dc distortion and localized electric dipole moment.
One could expect hindered rotation or tunneling to occur between such equivalent configurations at a
given lattice location so that on average the point group symmetry of the crystal is recovered.
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