St er eosel ective synthesi s of (2 Z, 4
E) - 2, 4 pent adi en-1- ol s vi a sequential 1, 4 el imination reaction and [1, 2]-wittig rear rangement starting from (E) - 4 al koxy- 2-but enyl benzoat es

著者	Nakano Takeo, Soet a Takahi ro, Endo Kohei, I nonat a Kat suhi ko, Ukaj i Yut aka
j our nal or publ i cat i on titl e	Jour nal of Organi c Chemi stry
vol une	78
nunber	24
page range	$12654-12661$
year	$2013-12-20$
URL	ht t p: //hdl . handl e. net /2297/36468

Stereoselective Synthesis of (2Z,4E)-2,4-Pentadien-1-ols via

Sequential 1,4-Elimination Reaction and [1,2]-Wittig

Rearrangement Starting from (E)-4-Alkoxy-2-butenyl

Benzoates

Takeo Nakano, Takahiro Soeta, Kohei Endo, Katsuhiko Inomata, and Yutaka Ukaji*
Division of Material Sciences, Graduate School of Natural Science and Technology,
Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
E-mail: ukaji@staff.kanazawa-u.ac.jp

ABSTRACT

The sequential 1,4-elimination reaction of (E)-4-alkoxy-2-butenyl benzoates and [1,2]-Wittig rearrangement gave $(2 Z, 4 E)-2,4$-pentadien-1-ols stereoselectively. Z-Selective formation of intermediary vinyl ethers, whose stereochemistry was well elucidated by the "syn-effect," was achieved by treatment of the 2-butenyl benzoates
with KOH in the presence of Pd catalyst. The subsequent [1,2]-Wittg rearrangement by use of n-BuLi proceeded with retention of the stereochemistry of the intermediary vinyl ethers.

INTRODUCTION

Stereoselective synthesis of carbon-carbon double bonds as ubiquitous and versatile two-carbon units is among the most important and challenging tasks in organic chemistry. ${ }^{1}$ Consequently, a large number of synthetic methodologies have been reported, e.g., 1) Wittig reaction, which utilizes the characteristics of phosphorus, ${ }^{2}$ 2) Peterson reaction, which utilizes silicon, ${ }^{3}$ 3) Julia olefination, which utilizes sulfones, ${ }^{4,5}$ 4) reduction or carbometalation of alkynes, which takes advantage of organometallic reagents, ${ }^{6}$ and 5) olefin metathesis, which is realized by the use of Grubbs catalysts. ${ }^{7}$ However, these reactions depend on new $\mathrm{C}-\mathrm{C}$ bond formation or reductive olefin formation from alkynes. On the other hand, while the elimination reaction is also a powerful method for the preparation of olefins, the stereochemistry of the products generally depends on the reaction pathway, i.e., E2 anti-elimination, syn-elimination, or

E1 elimination. Therefore, few methods have been reported for stereoselective synthesis of olefins using simple elimination reactions. ${ }^{8}$

In our laboratory, stereoselective formation of sterically unfavorable (Z)-olefins was investigated with various types of elimination and isomerization reactions by treatment with a base. ${ }^{9}$ We proposed that Z-selectivity was achieved by the "syn-effect," namely a stereoelectronic effect owing to $\sigma_{\mathrm{C}-\mathrm{H}} \rightarrow \pi^{*}{ }_{\mathrm{C}=\mathrm{C}}$ interaction as depicted in Scheme 1 , in which the transition state of the 1,4 -elimination of an allylic sulfone is depicted. ${ }^{9 \mathrm{c}}$ Furthermore, it was found that Z-selectivity based on the "syn-effect" was enhanced when the δ-substituent (R^{1} in Scheme 1) was an electron-withdrawing alkoxy or halogen group.

Scheme 1. Concept of the "Syn-effect": $\sigma \rightarrow \pi^{*}$ Interaction in the Elimination Reaction of Allylic Sulfones

This methodology could then be applied to a stereoselective synthesis of (Z)-olefins in combination with $\mathrm{C}-\mathrm{C}$ bond formation. We have reported a sequential 1,4-elimination reaction of δ-benzyloxy-substituted allylic sulfones followed by [1,2]-Wittig rearrangement ${ }^{10}$ to give (Z)-dienyl alcohols (2,4-pentadien-1-ols), which are useful synthetic intermediates due to the presence of both an allylic alcohol moiety and a diene moiety (Scheme 2a). ${ }^{11}$ However, the reaction was limited to only α, α-disubstituted allylic sulfones. When an α-monosubstituted allylic sulfone was subjected to the reaction, the elimination of the benzyloxy group proceeded preferentially via deprotonation of the more acidic α-proton (Scheme 2b). ${ }^{12}$ In this situation, the stereocontrolled preparation of (2Z)-5-monosubstituted-2,4-pentadien-1-ols still remained to be solved. Previously, we found that $(1 Z, 3 E)$-1,3-dienes were produced stereoselectively in the Pd-catalyzed elimination reaction of acyclic (E)-allylic acetates with a base. ${ }^{9 \mathrm{~g}}$ We anticipated this protocol would be applicable to the sequential 1,4-elimination reaction and [1,2]-Wittig rearrangement. Herein we describe the sequential reaction of stereoselective 1,4-elimination of (E)-4-alkoxy-2-butenyl benzoates via the π-allylic palladium
complex and subsequent [1,2]-Wittig rearrangement to afford (2Z, $4 E)$-5-monosubstituted-2,4-pentadien-1-ols (Scheme 2c).

Scheme 2. Z-Selective Synthesis of Dienyl Alcohols

Previous Work

This Work

RESULTS AND DISCUSSION

We chose (E)-4-benzyloxy-1-phenyl-2-butenyl benzoate (1a) as a model substrate for the optimization of the reaction conditions. ${ }^{13,14}$ Under our previously reported conditions for allylic acetates using DBU, the Pd-catalyzed [1,4]-elimination reaction of 1a did not proceed reproducibly. Deactivation of the $\operatorname{Pd}(0)$ complex by molecular oxygen contamination was suspected as the cause. In order to prevent this deactivation,
degassed THF was used as the solvent, and the 1,4-elimination reaction was found to proceed reproducibly. After the 1,4 -elimination by treatment with $\mathrm{DBU},{ }^{15}$ an excess amount of $n-\mathrm{BuLi}$ was added to the reaction mixture to give the desired $(2 Z, 4 E)$-dienyl alcohol 2a in good yield with high Z-selectivity at the C2-C3 double bond (Table 1, Entry 1). ${ }^{16}$ However, a large excess (12 equiv) of $n-\mathrm{BuLi}$ was required to complete the [1,2]-Wittig rearrangement. ${ }^{17}$ The search for a base that did not react with $n-\mathrm{BuLi}$ revealed that NaOt - Bu could reduce the amount of n - BuLi to 7 equiv for the [1,2]-Wittig rearrangement (Entry 2). However, the desired product 2a was not obtained with NaOt - Bu or KOt -Bu purified by sublimation (Entries 3 and 4). We supposed the actual base might be NaOH or KOH , which was generated by partial hydrolysis of NaOt - Bu or KOt - Bu . Therefore, we employed NaOH and KOH as bases for the initial elimination. To our delight, elimination proceeded ${ }^{18}$ reproducibly and further treatment with $n-\mathrm{BuLi}$ (6 equiv) gave 2a in good yield with excellent Z-selectivity at the $\mathrm{C} 2-\mathrm{C} 3$ double bond (Entries 5 and 6).

Table 1. Optimization of Reaction Conditions

${ }^{a}$ The ratios were determined by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra. Stereochemistries at $\mathrm{C} 4=\mathrm{C} 5$ were E.
${ }^{b}$ Sublimed $\mathrm{NaO} t$-Bu or $\mathrm{KO} t$ - Bu was used.
${ }^{c}$ MS4A was added after elimination reaction.

Under the optimized conditions, the sequential 1,4-elimination reaction and [1,2]-Wittig rearrangement of various substrates were performed (Table 2). Benzyl type ethers 1b-1d with $o-, m$-, and p-methyl groups produced the corresponding
(2Z,4E)-dienyl alcohols 2b-2d (Entries 2-4). When 2-butenyl benzoates 1e and 1f, bearing electron-donating or electron-withdrawing groups on the aromatic ring were employed, the desired products were also obtained with excellent Z-selectivities (Entries 5 and 6). 4-(2-Naphthylmethyloxy)butenyl benzoate $\mathbf{1 g}$ was also converted into the corresponding (2Z,4E)-dienyl alcohol 2g (Entry 7). Next, we examined the generality of the sequential reaction for (E)-2-butenyl benzoates bearing various substituents at the α-position of the butenyl group. The desired products $\mathbf{2 h} \mathbf{-} \mathbf{2} \mathbf{j}$ were obtained in good yields with excellent Z-selectivities from 2-butenyl benzoates $\mathbf{1 h} \mathbf{-} \mathbf{j}$ bearing an aryl or t-Bu substituent on the α-carbon (Entries $8-10$). However, in the case of a benzoate $\mathbf{1 k}$ with an i - Pr group at the α-position of the butenyl group, dienyl alcohol $\mathbf{2 k}$ was obtained in low yield, while excellent Z-selectivity was retained. In this case, by-product $\mathbf{3}$, derived from deprotonation of not $\mathrm{H} \delta$ but H_{β}, followed by [1,2]-Wittig rearrangement, was obtained (Scheme 3). ${ }^{19}$

Table 2. Scope of Substrates

	$\mathrm{Ar}_{2} \mathrm{O}$		$\xrightarrow{2]} \begin{aligned} & \text { 2] } \\ & \rightarrow \\ & \frac{n-E}{(6)} \\ & 5 \end{aligned}$		
Entry	Ar	R		Yield/\%	Z / E^{a}
1	Ph	Ph	a	68	>20/1
2	2-MeC66 H_{4}	Ph	b	65	18/1
3	3-MeC ${ }_{6} \mathrm{H}_{4}$	Ph	c	58	>20/1
4	4-MeC CH_{4}	Ph	d	63	>20/1
5	4-MeOC6 H_{4}	Ph	e	71	19/1
6	4-ClC6 H_{4}	Ph	f	63	15/1
7	2-Naph	Ph	g	68	>20/1
8	Ph	4-MeC6 H_{4}	h	72	>20/1
9	Ph	2-Naph	i	67	17/1
10	Ph	t-Bu	j	53	>20/1
11	Ph	$i-\mathrm{Pr}$	k	34	>20/1

${ }^{a}$ The ratios were determined by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra. Stereochemistries at $\mathrm{C} 4=\mathrm{C} 5$
were E.

Scheme 3. Generation of By-product 3 in the Reaction of 2-Butenyl Benzoate 1 k

 Bearing an Isopropyl Substituent at the α-Position

In conclusion, we achieved a stereoselective synthesis of $(2 Z, 4 E)$-2,4-pentadien-1-ols via sequential 1,4 -elimination reaction and [1,2]-Wittig rearrangement starting from (E)-4-alkoxy-2-butenyl benzoates. The present method would be applicable in synthetic chemistry, because the stereochemistry can be predicted correctly by universal stereoelectronic effects. ${ }^{20}$ Development of other Z-selective reactions based on this strategy is currently underway in our laboratory.

Experimental Section

General Method. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 400 MHz NMR spectrometer. Chemical shifts δ are reported in ppm using TMS as an internal standard. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constant (J) and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 100 MHz NMR spectrometer. The chemical shifts are reported relative to $\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm})$. The wavenumbers of maximum absorption peaks in IR spectra are presented in cm^{-1}. HRMS (EI positive, ESI-TOF) spectra were measured with quadrupole and TOF mass spectrometers. All of the melting points were measured with a micro melting point apparatus. THF was freshly distilled from sodium diphenylketyl. THF used for 1,4-elimination was degassed by three freeze-pump-thaw cycles prior to use. DMF was distilled and stored over drying agents.
(E)-4-Alkoxy-2-butenyl benzoates $\mathbf{1}$ were prepared from the corresponding propargyl ethers and aldehydes according to the following scheme.

1

Representative Procedure for Preparation of 4-Alkoxy-2-butyn-1-ol 4a:

To a solution of benzyl propargyl ether ($4.00 \mathrm{~g}, 27.4 \mathrm{mmol}$) in THF (45 mL), $n-\mathrm{BuLi}$ (16.9 mL of 1.62 M solution in hexane, 27.4 mmol) was added dropwise at $-78^{\circ} \mathrm{C}$.

After stirring for 20 min , benzaldehyde ($3.19 \mathrm{~g}, 30.1 \mathrm{mmol}$) was added and the resulted solution was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$, warmed to rt , and stirred for $3 \mathrm{~h} .{ }^{21}$ The reaction mixture was quenched with a sat. aq solution of $\mathrm{NH}_{4} \mathrm{Cl}$. After evaporating the solvent, the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by silica gel column chromatography (hexane/AcOEt $=5 / 1$) to give $\mathbf{4 a}(6.01 \mathrm{~g}, 87 \%)$ as an oil.

In a similar manner, 4-alkoxy-2-butyn-1-ols $\mathbf{4 b} \mathbf{- 4} \mathbf{k}$ were prepared from the
corresponding propargyl ethers.

4-(Benzyloxy)-1-phenyl-2-butyn-1-ol (4a) ${ }^{21}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.25(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~s}$, $2 \mathrm{H}), 5.53(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}) 7.28-7.41(\mathrm{~m}, 8 \mathrm{H}), 7.55(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 57.0, 63.9, 71.3, 81.8, 86.3, 126.3, 127.6, 127.8, 128.0, 128.1, 128.2, 136.8, 140.2. IR (neat): 3390, 3062, 3030, 2857, 2227, 1644, 1494, 1454, 1387, 1354, 1313, 1264, 1193, 1120, 1071, 1026, 918, 738, $698 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 252.1150$. Found: 252.1155.

4-((2-Methylbenzyl)oxy)-1-phenyl-2-butyn-1-ol (4b)

4b ($3.63 \mathrm{~g}, 91 \%$ from 15.0 mmol of 2-methylbenzyl propargyl ether) was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 5.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) 7.15-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.43(\mathrm{~m}, 4 \mathrm{H})$ $7.54(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 18.6, $57.3,64.2,69.8,82.2,86.4$, 125.6, 126.4, 128.0, 128.1, 128.4, 129.0, 130.1, 134.9, 136.9, 140.3. IR (neat): 3391,

3063, 3029, 2864, 2235, 1604, 1493, 1454, 1353, 1262, 1189, 1121, 1072, 945, 918, 843, 809, 745, $699 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$: 266.1307. Found: 266.1313.

4-((3-Methylbenzyl)oxy)-1-phenyl-2-butyn-1-ol (4c)

$4 \mathbf{c}(2.81 \mathrm{~g}, 86 \%$ from 12.3 mmol of 3-methylbenzyl propargyl ether) was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.21(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 5.53(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.1, 57.0, 64.0, 71.3, 82.0, 86.4, 125.0, 126.4, 128.0, 128.1, 128.3, 128.4, 128.6, 136.8, 137.8, 140.0. IR (neat): 3391, 3029, 2857, 2230, 1492, 1454, 1380, 1353, 1255, 1192, 1157, 1120, 1078, 1003, 918, 785, 742, $698 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$ [M^{+}]: 266.1307. Found: 266.1305.

4-((4-Methylbenzyl)oxy)-1-phenyl-2-butyn-1-ol (4d)

$4 \mathbf{d}(2.79 \mathrm{~g}, 92 \%$ from 11.4 mmol of 4-methylbenzyl propargyl ether) was obtained as an
oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.23(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 5.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $21.3,57.3,64.4,71.6,82.5,86.8,126.8,128.4,128.5,128.7,129.3,134.2,137.8,140.7$. IR (neat): $3392,3029,2857,2230,1903,1515,1493,1453,1382,1354,1309,1262$, 1193, 1120, 1077, 1021, 945, 918, 843, 806, 754, 732, $699 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$: 266.1307. Found: 266.1306.

4-((4-Methoxybenzyl)oxy)-1-phenyl-2-butyn-1-ol (4e)

$4 \mathbf{e}(1.36 \mathrm{~g}, 89 \%$ from from 5.4 mmol of 4-methoxybenzyl propargyl ether) was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.21(\mathrm{br}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) 7.32-$ $7.41(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 55.3, 57.1, 64.4, $71.3,82.5,86.7,113.9,126.7,128.4,128.7,129.3,130.0,140.7,159.4$. IR (neat): 3401, $3062,3031,2837,2226,1612,1585,1512,1493,1455,1354,1302,1249,1175,1118$, 1074, 1032, 918, 818, 759, $700 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]: 282.1256$.

Found: 282.1253.

4-((4-Chlorobenzyl)oxy)-1-phenyl-2-butyn-1-ol (4f)

$4 \mathbf{f}(2.67 \mathrm{~g}, 85 \%$ from 11.0 mmol of 4-chlorobenzyl propargyl ether) was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.18(\mathrm{br}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H})$, $5.54(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.42(\mathrm{~m}, 7 \mathrm{H}), 7.54(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): 57.4,64.2,70.7,82.0,86.6,126.4,128.0,128.2,128.4,129.2,133.5,135.5$, 140.3. IR (neat): $3378,3031,2861,1598,1540,1491,1455,1408,1354,1262,1193$, 1120, 1086, 1015, 918, 841, 806, 733, 699, $674 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClO}_{2}\left[\mathrm{M}^{+}\right]:$286.0761. Found: 286.0765.

4-(2-Naphthalenylmethoxy)-1-phenyl-2-butyn-1-ol (4g)

$4 \mathrm{e}(1.86 \mathrm{~g}, 73 \%$ from 8.4 mmol of 4-methoxybenzyl propargyl ether) was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.23(\mathrm{br}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H})$, $5.54(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.84$ (m, 4H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 57.2, 64.3, 71.6, 82.3, 86.5, 125.8, 125.9, 126.0,
$126.5,126.9,127.5,127.8,128.1,128.2,128.5,132.9,133.0,134.5,140.3 . \operatorname{IR}$ (neat): 3381, 3057, 2854, 2230, 1601, 1509, 1492, 1454, 1355, 1271, 1173, 1123, 1078, 1003, 918, 856, 818, 754, $699 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 302.1307$. Found: 302.1305.

4-(Benzyloxy)-1-(4-tolyl)-2-butyn-1-ol (4h)

4h ($2.13 \mathrm{~g}, 76 \%$ from 10.5 mmol of benzyl propargyl ether) was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): 2.15 (d, $\left.J=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.36(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 5.49(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.38(\mathrm{~m}, 5 \mathrm{H})$, $7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 20.9, 57.1, 63.8, 71.3, 81.7, 86.7, 126.3, 127.6, 127.9, 128.2, 128.9, 136.9, 137.5, 137.7. IR (neat): 3396, 3029, 2858, $2235,1511,1496,1454,1354,1264,1196,1178,1114,1071,1026,942,821,742,699$ cm^{-1}. HRMS (EI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$: 266.1307. Found: 266.1300 .

4-(Benzyloxy)-1-(2-naphthalenyl)-2-butyn-1-ol (4i)

$4 i\left(1.44 \mathrm{~g}, 81 \%\right.$ from 5.8 mmol of benzyl propargyl ether) was obtained as an oil. ${ }^{1} \mathrm{H}$

NMR (400 MHz, CDCl_{3}): $2.34(\mathrm{br}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=0.92 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 5.69(\mathrm{~s}$, $1 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.47-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.89(\mathrm{~m}$, $3 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 57.1, 64.2, 71.4, 82.3, 86.4, 124.4, 125.1, 126.0, 127.4, 127.7, 127.9, 127.9, 128.0, 128.2, 128.3, 132.9, 133.0, 136.9, 137.7. IR (neat): $3375,3057,2857,2225,1601,1507,1495,1455,1355,1269,1167,1113$, 1071, 1025, 951, 903, 861, 821, 748, $699 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$: 302.1307. Found: 302.1306.

6-(Benzyloxy)-2,2-dimethyl-4-hexyn-3-ol (4j) $)^{22}$

$\mathbf{4 j}\left(1.16 \mathrm{~g}, 42 \%\right.$ from 11.9 mmol of benzyl propargyl ether) was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.01(\mathrm{~s}, 9 \mathrm{H}), 1.72(\mathrm{br}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, 2H), $4.60(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 25.2, 35.6, 57.2, 71.1, 71.3, 81.2, 86.3, 127.7, 128.0, 128.3, 137.2. IR (neat): 3446, 3030, 2956, 2867, $2215,1540,1478,1455,1363,1321,1240,1123,1072,1008,936,743,698 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$: 232.1463. Found: 232.1464.

6-(Benzyloxy)-2-methyl-4-hexyn-3-ol (4k) ${ }^{22}$

$4 \mathbf{k}\left(2.53 \mathrm{~g}, 94 \%\right.$ from 12.3 mmol of benzyl propargyl ether) was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $1.01(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{br}$, $1 \mathrm{H}), 1.89(\mathrm{br}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}) 4.23-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 7.28-$ $7.36(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 17.3, 18.0, 34.2, 57.2, 67.6, 71.3, 81.1, 86.4, 127.7, 128.0, 128.3, 137.1. IR (neat): 3402, 3031, 2962, 2872, 2215, 1496, 1455, 1384, 1352, 1261, 1207, 1144, 1073, 1027, 936, 743, $699 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$: 218.1307. Found: 218.1311.

Representative Procedure for Preparation of (\boldsymbol{E})-4-Alkoxy-2-butenyl Benzoate 1a:

To a solution of compound $\mathbf{4 a}(2.52 \mathrm{~g}, 10 \mathrm{mmol})$ in THF (20 mL), Red-Al (5.6 mL of 3.6 M solution in toluene, 20 mmol) was added dropwise at $-40{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and stirred for 3 h . The reaction mixture was quenched with a satd. aq solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After insoluble substrate was filtered off through celite, the solvent was evaporated. The residue was passed through silica gel short column (hexane/AcOEt $=2 / 1$) to afford the almost pure (E)-2-buten-1-ol $\mathbf{5 a}^{23}$
$(2.53 \mathrm{~g})$. This material was used for the conversion to the corresponding benzoate $\mathbf{1 a}$ without further purification. To a solution of the obtained $\mathbf{5 a}(2.53 \mathrm{~g})$ in DMF (40 mL) were added $\mathrm{Et}_{3} \mathrm{~N}(2.02 \mathrm{~g}, 20 \mathrm{mmol})$, benzoyl chloride ($1.40 \mathrm{~g}, 10 \mathrm{mmol}$), and DMAP ($610 \mathrm{mg}, 5 \mathrm{mmol}$) at rt and the resulted solution was stirred overnight. The reaction mixture was quenched with a sat. aq solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was separated and extracted with AcOEt. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by silica gel column chromatography (hexane/ $\mathrm{AcOEt}=15 / 1$) to give $\mathbf{1 a}(2.51 \mathrm{~g}, 70 \%$ for 2 steps $)$ as an oil.

In similar manner, (E)-4-alkoxy-2-butenyl benzoates $\mathbf{1 b} \mathbf{-} \mathbf{1 k}$ were prepared from the corresponding 4-alkoxy-2-butyn-1-ols $\mathbf{4 b} \mathbf{4} \mathbf{k}$.

(E)-4-(Benzyloxy)-1-phenyl-2-buten-1-yl benzoate (1a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 4.07 (d, $\left.J=5.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.52(\mathrm{~s}, 2 \mathrm{H}), 5.96(\mathrm{dt}, J=15.6$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=15.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.58(\mathrm{~m}$, $13 \mathrm{H}), 8.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 69.6, 72.3, 75.9, 127.0,
127.6, 127.7, 128.1, 128.3, 128.5, 128.6, 129.5, 129.6, 130.1, 130.6, 133.0, 137.9, 139.0, 165.4. IR (neat): $3063,3031,2855,1717,1600,1584,1494,1452,1315,1267,1176$, 1107, 1069, 1025, 968, 751, $712 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]: 358.1569$. Found: 358.1573.

(E)-4-((2-Methylbenzyl)oxy)-1-phenyl-2-buten-1-yl benzoate (1b)

Starting from 5.0 mmol of $\mathbf{4 b}$, almost pure $\mathbf{5 b}(1.22 \mathrm{~g})$ was obtained. Then 708 mg of the intermediary $\mathbf{5 b}$ was used to give $\mathbf{1 b}$ ($644 \mathrm{mg}, 61 \%$ for 2 steps) as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $2.30(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 5.97(\mathrm{dt}, J=$ $15.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=15.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.58$ $(\mathrm{m}, 12 \mathrm{H}), 8.09(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 18.7, 69.7, 70.5, 75.8, 125.6, 126.9, 127.7, 128.1, 128.3, 128.5, 129.6, 130.1, 130.6, 132.9, 135.8, 136.6, 139.0, 165.3. IR (neat): $3063,3031,2855,1719,1601,1493,1452,1314,1266,1176,1107$, 1070, 1025, 968, 746, $712 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]: 372.1725$. Found: 372.1728.

(E)-4-((3-Methylbenzyl)oxy)-1-phenyl-2-buten-1-yl benzoate (1c)

Starting from 5.5 mmol of $\mathbf{4 c}$, almost pure $\mathbf{5 c}(1.33 \mathrm{~g})$ was obtained. Then 707 mg of the intermediary $\mathbf{5 c}$ was used to give $\mathbf{1 c}$ ($678 \mathrm{mg}, 69 \%$ for 2 steps) as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.33(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 5.97(\mathrm{dt}, J=$ $15.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=15.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.58$ $(\mathrm{m}, 12 \mathrm{H}), 8.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.3, 69.7, 72.4, 75.9, 124.9, 127.0, 128.1, 128.2, 128.3, 128.4, 128.6, 129.6, 129.7, 130.1, 130.7, 133.0, 137.8, 137.9, 139.0, 165.4. IR (neat): 3061, 3031, 2919, 2855, 1718, 1601, 1585, 1492, 1451, 1314, 1266, 1176, 1158, 1107, 1069, 1025, 968, 907, 780, 757, $712 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$: 372.1725. Found: 372.1721.

(E)-4-((4-Methylbenzyl)oxy)-1-phenyl-2-buten-1-yl benzoate (1d)

Starting from 6.4 mmol of $\mathbf{4 d}$, almost pure $\mathbf{5 d}(1.45 \mathrm{~g})$ was obtained. Then 570 mg of the intermediary $\mathbf{5 d}$ was used to give $\mathbf{1 d}$ ($546 \mathrm{mg}, 58 \%$ for 2 steps) as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $2.33(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{dt}, J=$ $15.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.58$
$(\mathrm{m}, 12 \mathrm{H}), 8.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.1, 69.5, 72.2, 75.9, $127.0,127.9,128.1,128.3,128.6,129.0,129.7,130.2,130.6,133.0,133.5,134.9,137.3$, 139.1, 165.5. IR (neat): $3031,2921,2856,1719,1601,1515,1493,1451,1315,1267$, 1176, 1107, 1070, 1025, 969, 806, 756, $712 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3}$ $\left[M^{+}\right]: 372.1725$. Found: 372.1726.

(E)-4-((4-Methoxybenzyl)oxy)-1-phenyl-2-buten-1-yl benzoate (1e)

Starting from 3.6 mmol of $\mathbf{4 e}$, almost pure $\mathbf{5 e}(986 \mathrm{mg})$ was obtained. Then 781 mg of the intermediary $\mathbf{5 e}$ was used to give $\mathbf{1 e}\left(619 \mathrm{mg}, 56 \%\right.$ for 2 steps) as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $3.80(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{dt}, J=$ $15.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=15.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=$ 8.7 Hz, 2H), $7.22-7.58(\mathrm{~m}, 10 \mathrm{H}), 8.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): 55.2, 69.4, 72.0, 75.9, 113.7, 127.0, 128.1, 128.3, 128.6, 129.4, 129.7, 130.0, 130.2, 130.6, 133.0, 139.1, 159.2, 165.4. IR (neat): 3062, 3032, 2934, 2836, 1718, 1612, $1585,1512,1493,1452,1361,1314,1266,1175,1107,1026,968,820,756,713 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{4}$ [M+ ${ }^{+}$: 388.1675. Found: 388.1683.

(E)-4-((4-Chlorobenzyl)oxy)-1-phenyl-2-buten-1-yl benzoate (1f)

Starting from 7.0 mmol of $\mathbf{4 f}$, almost pure $\mathbf{5 f}(1.87 \mathrm{~g})$ was obtained. Then 800 mg of the intermediary $\mathbf{5 f}$ was used to give $\mathbf{1 f}\left(783 \mathrm{mg}, 67 \%\right.$ for 2 steps) as an oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.05(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{dt}, J=16.4,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.03(\mathrm{dd}, J=16.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.59(\mathrm{~m}, 12 \mathrm{H}), 8.09(\mathrm{~d}, J$ $=8.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 69.8, 71.5, 75.8, 126.9, 128.1, 128.3, 128.4, 128.6, 129.0, 129.3, 129.6, 130.1, 130.8, 133.0, 133.3, 136.5, 138.9, 165.4. IR (neat): 3062, 3032, 2854, 1718, 1600, 1584, 1491, 1451, 1396, 1314, 1267, 1200, 1176, 1108, 1025, 1015, 968, 841, 807, 757, $712 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClO}_{3}$ [M^{+}]: 392.1179. Found: 392.1175.

(E)-4-(2-Naphthalenylmethoxy)-1-phenyl-2-buten-1-yl benzoate (1g)

Starting from 5.5 mmol of $\mathbf{4 g}$, almost pure $\mathbf{5 g}(1.35 \mathrm{~g})$ was obtained. Then 802 mg of the intermediary $\mathbf{5 g}$ was used to give $\mathbf{1 g}(463 \mathrm{mg}, 35 \%$ for 2 steps $)$ as an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $4.11(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 5.98(\mathrm{dt}, J=15.5,5.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.06(\mathrm{dd}, J=15.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.58(\mathrm{~m}, 11 \mathrm{H})$, $7.75-7.84(\mathrm{~m}, 4 \mathrm{H}), 8.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 69.7, 72.4, $75.9,125.7,125.8,126.0,126.5,127.0,127.6,127.8,128.1,128.3,128.6,129.5,129.6$, 130.1, 130.7, 132.8, 132.9, 133.1, 135.4, 139.0, 165.4. IR (neat): 3058, 2852, 1716, $1601,1508,1492,1451,1314,1267,1175,1107,1069,1025,966,856,818,753,712$ cm^{-1}. HRMS (EI): Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$: 408.1725. Found: 408.1729.

(()-4-(Benzyloxy)-1-(4-tolyl) -2-buten-1-yl benzoate (1h)

Starting from 5.2 mmol of $\mathbf{4 h}$, almost pure $\mathbf{5 h}(1.32 \mathrm{~g})$ was obtained. Then 715 mg of the intermediary $\mathbf{5 f}$ was used to give $\mathbf{1 h}\left(615 \mathrm{mg}, 58 \%\right.$ for 2 steps) as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $2.34(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{dt}, J=$ $15.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=15.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.57$ $(\mathrm{m}, 12 \mathrm{H}), 8.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.2, 69.8, 72.3, 75.9, 127.1, 127.6, 127.8, 128.3, 128.4, 128.6, 129.2, 129.3, 129.7, 130.2, 130.9, 133.0, 136.0, 138.0, 165.5. IR (neat): $3030,2921,2857,1717,1601,1514,1495,1452,1315,1267$, 1176, 1108, 1069, 1025, 968, 816, 737, $711 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3}$
$\left[\mathrm{M}^{+}\right]: 372.1725$. Found: 372.1730.

(E)-4-(Benzyloxy)-1-(2-naphthalenyl)-2-buten-1-yl benzoate (1i)

Starting from 4.8 mmol of $\mathbf{4 i}$, almost pure $\mathbf{5 i}(1.29 \mathrm{~g})$ was obtained. Then 667 mg of the intermediary $\mathbf{5 i}$ was used to give $\mathbf{1 i}\left(528 \mathrm{mg}, 53 \%\right.$ for 2 steps) as an oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.08(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 5.99(\mathrm{dt}, J=15.5,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.13(\mathrm{dd}, J=15.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.61(\mathrm{~m}, 11 \mathrm{H}), 7.80-$ $7.93(\mathrm{~m}, 4 \mathrm{H}), 8.12(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 70.7, 73.3, 77.0, 125.7, 127.10, 127.16, 127.19, 128.6, 128.7, 129.0, 129.3, 129.4, 130.6, 130.7, 131.1, 131.5, 133.9, 134.0, 137.3, 138.8, 166.4. IR (neat): 3059, 2853, 1717, 1601, 1508, 1452, 1361, 1314, 1266, 1175, 1106, 1069, 1025, 968, 858, 818, 749, $711 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$: 408.1725 . Found: 408.1727.

(E)-6-(Benzyloxy)-2,2-dimethyl-4-hexen-3-yl benzoate (1j)

Starting from 4.6 mmol of $\mathbf{4} \mathbf{j}$, almost pure $\mathbf{5 j}(866 \mathrm{mg})$ was obtained. Then 494 mg of the intermediary $\mathbf{5} \mathbf{j}$ was used to give $\mathbf{1} \mathbf{j}\left(328 \mathrm{mg}, \mathbf{3 7 \%}\right.$ for 2 steps) as an oil. ${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.02(\mathrm{~s}, 9 \mathrm{H}), 4.04(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=6.0,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dt}, J=4.5,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.38(\mathrm{~m}$, $5 \mathrm{H}), 7.45(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 25.9, 34.7, 69.7, 71.9, 81.4, 127.5, 127.7, 127.9, 128.3, $129.5,130.5,130.7,132.8,138.0,165.6$. IR (neat): 3063, 3031, 2965, 2868, 1718, 1601, 1452, 1395, 1365, 1316, 1270, 1176, 1111, 1069, 1025, 970, 736, $711 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$: 338.1882. Found: 338.1878.

(E)-6-(Benzyloxy)-2-methyl-4-hexen-3-yl benzoate (1k)

Starting from 7.4 mmol of $\mathbf{4 k}$, almost pure $\mathbf{5 k}(1.58 \mathrm{~g})$ was obtained. Then 547 mg of the intermediary $\mathbf{5 k}$ was used to give $\mathbf{1 k}$ ($528 \mathrm{mg}, 57 \%$ for 2 steps) as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $1.00(\mathrm{~d}, J=6.9,3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.4,3 \mathrm{H}), 1.99-2.10(\mathrm{~m}, 1 \mathrm{H})$, $4.04(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 5.35(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{dd}, J=16.5,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.87(\mathrm{dt}, J=16.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.58(\mathrm{~m}, 8 \mathrm{H}), 8.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 18.0, 18.2, 32.2, 69.8, 72.0, 78.9, 127.5, 127.7, 128.2, 128.3, 129.1, 129.5, 130.0, 132.8, 138.0, 165.7. IR (neat): 3063, 3031, 2965, 2873, 1717,
$1601,1584,1494,1452,1387,1368,1270,1176,1111,1069,1025,971,738,712 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]: 324.1725$. Found: 324.1721.

Representative Procedure for Sequential 1,4-Elimination Reaction and [1,2]-Wittig

Rearrangement of (E)-2-Butenyl Benzoate 1a (Table 2, Entry 1). To a mixture of powdered $\mathrm{KOH}(21 \mathrm{mg}, 1.05 \mathrm{mmol})$ and $\left[\mathrm{Pd}(\mathrm{dppe})_{2}\right](16 \mathrm{mg}, 0.018 \mathrm{mmol})$ was added compound 1a (125 mg, 0.35 mmol) in THF (12 mL) dropwise at room temperature and the reaction mixture was stirred for 18 h . After MS4A was added and the resulting mixture was stirred for 30 min , the mixture was cooled to $0^{\circ} \mathrm{C}$ and $n-\operatorname{BuLi}(1.27 \mathrm{~mL}$ of 1.62 M solution in hexane, 2.1 mmol) was added. After 5 min , the reaction mixture was quenched with a sat. aq solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by silica gel column chromatography (hexane/AcOEt $=10 / 1$ with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to give 2a $(56 \mathrm{mg}, 68 \%, \mathrm{Z} / E=$ $>20 / 1$) as an oil.

In a similar manner, $(2 Z, 4 E)-2,4$-pentadien-1-ols $\mathbf{2 b} \mathbf{- 2} \mathbf{k}$ were obtained from $\mathbf{1 b} \mathbf{- 1 k}$.
(2Z,4E)-1,5-Diphenyl-2,4-pentadien-1-ol (2a) ${ }^{24}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=11.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}$,
$J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=15.5$,
$11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.45(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 70.0,123.6,125.9$,
$126.6,127.5,127.9,128.5,128.6,130.1,133.1,134.9,136.9,143.1$. IR (neat): 3366,

3027, 1599, 1492, 1449, 1280, 1073, 1027, 986, 945, 859, 740, $697 \mathrm{~cm}^{-1}$. HRMS (EI):

Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}\left[\mathrm{M}^{+}\right]:$236.1201. Found: 236.1207.

During the optimization of the reaction conditions, a mixture of $(2 Z, 4 E) \mathbf{- 2 a}$ and ($2 E, 4 E$)-isomer was obtained as shown in Table 1. Selected NMR data for the $(2 E, 4 E)$-isomer: ${ }^{25} \delta 5.32(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=15.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J$ $=15.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=15.6,10.5 \mathrm{~Hz}, 1 \mathrm{H})$.
(2Z,4E)-1-(2-Methylphenyl)-5-phenyl-2,4-pentadien-1-ol (2b)

2b $(56 \mathrm{mg}, 65 \%$ from $0.35 \mathrm{mmol} \mathbf{1 b})$ was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right): 1.92(\mathrm{br}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 5.62(\mathrm{dd}, J=8.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 1H), $6.28(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=11.0,15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24-7.59(\mathrm{~m}, 9 \mathrm{H})$. Selected data of $(2 E, 4 E)$-isomer; $5.51(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.81(\mathrm{dd}, J=6.4,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=11.0,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78(\mathrm{dd}, J=11.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.4, 67.4, 123.3, $125.3,126.4,126.6,127.5,128.0,128.7,130.4,130.5,132.3,134.9,135.1,136.9,141.2$. IR (neat): $3440,3024,1599,1489,1457,1372,1241,1158,1046,989,749,699 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right]: 250.1358$. Found: 250.1359.

(2Z,4E)-1-(3-Methylphenyl)-5-phenyl-2,4-pentadien-1-ol (2c)

2c ($50 \mathrm{mg}, 58 \%$ from 0.35 mmol 1c) was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): 1.97(\mathrm{br}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 5.68(\mathrm{dd}, J=11.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, 1H), $6.29(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.23-$ $7.44(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.5, 70.1, 123.0, 123.4, 126.55, 126.61, 128.0, 128.4, 128.5, 128.7, 130.2, 133.1, 135.0, 137.0, 138.4, 143.1. IR (neat): 3331, 3025, 1605, 1489, 1448, 1306, 1152, 1029, 987, 946, 779, 754, $692 \mathrm{~cm}^{-1}$. HRMS (EI):

Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right]: 250.1358$. Found: 250.1347 .
(2Z,4E)-1-(4-Methylphenyl)-5-phenyl-2,4-pentadien-1-ol (2d)

2d ($55 \mathrm{mg}, 63 \%$ from $0.35 \mathrm{mmol} \mathbf{1 d}$) was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): 1.95(\mathrm{br}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 5.69(\mathrm{dd}, J=11.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.28(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.44(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 21.1, 70.0, 123.4, 125.8, 126.6, 127.9, 128.7, 129.3, 130.1, 133.2, 134.9, 137.0, 137.4, 140.2. IR (neat): 3421, 3024, 2920, 1604, 1512, 1492, 1449, 1374, 1242, 1178, 1044, 986, 811, 749, $693 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right]$: 250.1358. Found: 250.1363.

(2Z,4E)-1-(4-Methoxyphenyl)-5-phenyl-2,4-pentadien-1-ol (2e)

2e ($66 \mathrm{mg}, 71 \%$ from 0.35 mmol 1e) was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): 1.92(\mathrm{br}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.71(\mathrm{dd}, J=11.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.28(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ (dd, $J=15.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.44(\mathrm{~m}, 7 \mathrm{H})$. Selected data of ($2 E, 4 E$)-isomer; 5.29
$(\mathrm{m}, 1 \mathrm{H}), 5 ., 99(\mathrm{dd}, J=15.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=15.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=15.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 55.3, 69.7 , 114.0, 123.4, 126.6, 127.2, 127.9, 128.6, 129.8, 133.2, 134.8, 135.3, 136.9, 159.1. IR (neat): $3382,3026,2956,2834,1610,1584,1509,1449,1302,1247,1173,1033,986$, 946, 862, 830, 741, $692 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF): Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 289.1204. Found: 289.1198.

(2Z,4E)-1-(4-Chlorophenyl)-5-phenyl-2,4-pentadien-1-ol (2f)

2f ($59 \mathrm{mg}, 63 \%$ from $0.35 \mathrm{mmol} \mathbf{2 f}$) was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $1.98(\mathrm{br}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=9.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{t}$, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=15.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.42$ (m, 9H). Selected data of ($2 E, 4 E$)-isomer; $5.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (dd, $J=15.1$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=15.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=$ $16.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 69.3, 123.0, 126.6, 127.3, 128.1, 128.7, 130.6, 132.5, 133.3, 135.5, 136.8, 141.5. IR (neat): 3351, 3027, 1636, 1595, 1489, 1449, 1400, 1090, 1013, 986, 945, 861, 826, 744, $691 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for
$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{OCl}\left[\mathrm{M}^{+}\right]: 270.0811$. Found: 270.0814.

(2Z,4E)-1-(2-Naphthalenyl)-5-phenyl-2,4-pentadien-1-ol (2g)

$\mathbf{2 g}\left(68 \mathrm{mg}, 68 \%\right.$ from $0.35 \mathrm{mmol} \mathbf{1 g}$) was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): 2.09(\mathrm{br}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=11.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{t}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.55(\mathrm{~m}, 9 \mathrm{H}), 7.81-7.91(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 70.2, 123.3, 124.1, 124.3, 125.9, 126.2, 126.6, 127.6, 128.0, 128.4, 128.7, 130.4, 132.8, 132.9, 133.3, 135.2, 136.8, 140.4. IR (neat): 3447, 3024, 1599, 1507, 1492, 1449, 1371, 1242, 1158, 1123, 1046, 990, 896, 858, 818, 747, $693 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}$ [M $\left.{ }^{+}\right]$: 286.1358. Found: 286.1353.

(2Z,4E)-5-(4-Methylphenyl)-1-phenyl-2,4-pentadien-1-ol (2h)

2h $(63 \mathrm{mg}, 72 \%$ from $0.35 \mathrm{mmol} \mathbf{1 h})$ was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): 1.98(\mathrm{br}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 5.66(\mathrm{dd}, J=11.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.29(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.48(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 21.3, 70.0, 122.4, 125.9, 126.5, 127.6, 128.6, 129.4, 130.4,
132.4, 134.1, 135.0, 138.0, 143.1. IR (neat): 3293, 3023, 1630, 1603, 1509, 1490, 1453, 1343, 1287, 1191, 1017, 984, 954, 941, 908, 839, 806, 765, 735, $696 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right]: 250.1358$. Found: 250.1343 .

(2Z,4E)-5-(2-Naphthalenyl)-1-phenyl-2,4-pentadien-1-ol (2i)

$2 \mathbf{i}(67 \mathrm{mg}, 67 \%$ from $0.35 \mathrm{mmol} \mathbf{1 i})$ was obtained as an oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $2.05(\mathrm{br}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=11.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{t}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.48(\mathrm{~m}, 8 \mathrm{H}), 7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78-7.81(\mathrm{~m}, 4 \mathrm{H})$. Selected data of $(2 E, 4 E)$-isomer; $5.35(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.05(\mathrm{dd}, J=15.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=15.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=16.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{dd}, J=16.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 70.1, 123.5, 123.6, $125.9,126.1,126.4,126.9,127.6,127.7,128.0,128.3,128.6,130.3,133.10,133.15$, 133.5, 134.4, 135.2, 143.0. IR (neat): 3397, 3030, 1626, 1600, 1506, 1491, 1454, 1268, 1115, 1008, 985, 953, 851, 822, 750, $700 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right]$: 286.1358. Found: 286.1363.
$\mathbf{2 j}(44 \mathrm{mg}, 53 \%$ from $0.35 \mathrm{mmol} \mathbf{~ 1 j})$ was obtained an oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.06(\mathrm{~s}, 9 \mathrm{H}), 1.90(\mathrm{br}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=11.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.83(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=15.1,11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26-7.42(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 29.4, 33.5, 69.9, 119.5, 125.8, 127.4, 128.5, 130.5, 130.9, 143.4, 149.0. IR (neat): 3330, 3029, 2959, 2902, 2864, 1650, 1602, 1493, 1451, 1362, 1267, 1038, 985, 949, 743, $698 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$ $\left[\mathrm{M}^{+}\right]:$216.1514. Found: 216.1522 .

A mixture of $\mathbf{2 k}$ and $\mathbf{3}(40 \mathrm{mg}, 59 \%$ from $0.35 \mathrm{mmol} \mathbf{1 k}$) was obtained as an oil. The yields of $\mathbf{2 k}$ and $\mathbf{3}$ were determined by ${ }^{1} \mathrm{H}$ NMR spectrum of their mixture. After further separation of $\mathbf{2 k}$ and $\mathbf{3}$ by column chromatography, the physical properties were measured.
(2Z,4E)-6-Methyl-1-phenyl-2,4-heptadien-1-ol (2k)

2k (34\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.89(\mathrm{br}, 1 \mathrm{H}), 2.35-2.43(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=11.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=8.7$
$\mathrm{Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=15.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=15.1$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.42(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.20, 22.21, 31.4, $69.9,121.8,125.8,127.5,128.5,130.5,130.7,143.4,145.1$. IR (neat): $3331,3026,2958$, 2924, 1696, 1601, 1540, 1493, 1452, 1377, 1028, 986, 853, 746, $669 \mathrm{~cm}^{-1}$. HRMS (EI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right]:$202.1358. Found: 202.1367.

(E)-6-Methyl-1-phenyl-3,5-heptadien-1-ol (3)

3k (25\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.75 ($\mathrm{s}, 3 \mathrm{H}$), 1.78 ($\mathrm{s}, 3 \mathrm{H}$), 1.79 (br, 1 H), 2.80 (ddd, $J=13.2,12.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=13.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=12.4,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=15.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=15.1$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $18.3,26.0,44.3,76.7,124.2,126.5,127.4,128.5,129.6,132.0,136.3,137.9$. IR (neat): 3404, 3026, 2922, 2855, 1659, 1602, 1494, 1453, 1376, 1260, 1094, 1029, 986, 959 , 868, 801, 746, $700 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ONa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 225.1255$. Found: 225.1255.

Supporting Information

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{1 - 4}$. This material is available free of charge via the Internet at http://pubs.acs.org/.

References and Notes

(1) Siau, W.-Y.; Zhang, Y.; Zhao, Y. Top. Curr. Chem. 2012, 327, 33-58.
(2) (a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863-927. (b) Vedejs, E.;

Peterson, M. J. Top. Stereochem. 1994, 21, 1-157. (c) Edmonds, M.; Abell, A. In

Modern Carbonyl Olefination; Takeda, T., Ed.; Wiley-VCH: Weinheim, 2004; Chapter
1.
(3) (a) Ager, D. J. Org. React. 1990, 42, 1-223. (b) van Staden, L. F.; Gravestock, D.;

Ager, D. J. Chem. Soc. Rev. 2002, 31, 195-200.
(4) (a) Blakemore, P, R.; Cole, W. J.; Kocieński, P. J.; Morley, A. Synlett 1998, 26-28.
(b) Blakemore, P, R. J. Chem. Soc., Perkin Trans. 1 2002, 2563-2585.
(5) Related carbonyl olefination: Takeda, T. TCIMAIL 2013, 156, 6-10; 2013, 157,

14-19; 2013, 158, 9-13.
(6) (a) Lindlar, H.; Dubuis, R. Org. Synth. 1973, V, 880-882. (b) Marek, I.; Chinkov, N.; Banon-Tenne, D. In Metal-Catalyzed Cross-Coupling Reactions, 2nd Ed.; de Meijere, A., Diederich, F., Eds.; WILEY-VCH: Weinheim, 2004; Chapter 7; pp 395-478. (c) Negishi, E. Bull. Chem. Soc. Jpn. 2007, 80, 233-257. (d) Negishi, E.; Huang, Z.; Wang, G.; Mohan, S.; Wang, C.; Hattori, H. Acc. Chem. Res. 2008, 41, 1474-1485.
(7) (a) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746-1787. (b)

Keitz, B. K.; Endo, K.; Herbert, M. B.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133,

9686-9688. (c) Meek, S. J.; O’Brien, R. V.; Llaveria, J.; Schrock, R. R.; Hoveyda, A. H.

Nature 2011, 471, 461-466. (d) Occhipinti, G.; Hansen, F. R.; Törnroos, K. W.; Jensen, V. R. J. Am. Chem. Soc. 2013, 135, 3331-3334.
(8) (a) Maeda, K.; Shinokubo, H.; Oshima, K.; Utimoto, K. J. Org. Chem. 1996, 61, 2262-2263. (b) Tayama, E.; Sugai, S. Tetrahedron Lett. 2007, 48, 6163-6166. (c) Prantz, K.; Mulzer, J. Angew. Chem., Int. Ed. 2009, 48, 5030-5033 and references cited therein.
(9) Related studies on the "syn-effect": (a) Hirata, T.; Sasada, Y.; Ohtani, T.; Asada, T.;

Kinoshita, H.; Senda, H.; Inomata K. Bull. Chem. Soc. Jpn. 1992, 65, 75-96 and
references cited therein. (b) Shibayama, A.; Nakamura, T.; Asada, T.; Shintani, T.;

Ukaji, Y.; Kinoshita, H.; Inomata, K. Bull. Chem. Soc. Jpn. 1997, 70, 381-396. (c)

Nakamura, T.; Guha, S. K.; Ohta, Y.; Abe, D.; Ukaji, Y.; Inomata, K. Bull. Chem. Soc.

Jpn. 2002, 75, 2031-2041. (d) Guha, S. K.; Shibayama, A.; Abe, D.; Ukaji, Y.; Inomata, K. Chem. Lett. 2003, 32, 778-779. (e) Guha, S. K.; Ukaji, Y.; Inomata, K. Chem. Lett.

2003, 32, 1158-1159. (f) Guha, S. K.; Shibayama, A.; Abe, D.; Sakaguchi, M.; Ukaji, Y.; Inomata, K. Bull. Chem. Soc. Jpn. 2004, 77, 2147-2157. (g) Takenaka, H.; Ukaji, Y.; Inomata, K. Chem. Lett. 2005, 34, 256-257. (h) Takeda, N.; Chayama, T.; Takenaka, H.; Ukaji, Y.; Inomata, K. Chem. Lett. 2005, 34, 1140-1141. (i) Yamazaki, M.; Guha, S. K.; Ukaji, Y.; Inomata, K. Chem. Lett. 2006, 35, 514-515. (j) Yamazaki, M.; Guha, S. K.; Ukaji, Y.; Inomata, K. Bull. Chem. Soc. Jpn. 2008, 81, 740-753. (k) Inomata, K. J. Synth. Org. Jpn. 2009, 67, 1172-1182.
(10) (a) Rautenstrauch, V.; Büchi, G.; Wüest, H. J. Am. Chem. Soc. 1974, 96, 2576-2580. (b) Tomooka, K.; Yamamoto, H.; Nakai, T. Liebigs Ann./Recueil 1997, 1275-1281. (c) Tomooka, K. J. Syn. Org. Chem. Jpn. 2001, 59, 322-330. (d)

Giampietro, N. C.; Kampf, J. W.; Wolfe, J. P. J. Am. Chem. Soc. 2009, 131, 12556-12557. (e) Giampietro, N. C.; Wolfe, J. P. Angew. Chem., Int. Ed. 2010, 49, 2922-2924.
(11) Horii, S.; Ishimaru, I.; Ukaji, Y.; Inomata, K. Chem. Lett. 2011, 40, 521-523.
(12) Unpublished result.
(13) In order to reduce the amount of base for [1,2]-Wittig rearrangement, the benzoate was selected as a substrate without enolizable α-proton instead of the corresponding acetate.
(14) Related palladium catalyzed 1,4-elimination reaction of allylic compounds in the presence of a base to the corresponding 1,3-dienes: (a) Andersson, P. G.; Schab, S. Organometallics 1995, 14, 1-2. (b) Takacs, J. M.; Lawson, E. C.; Clement, F. J. Am. Chem. Soc. 1997, 119, 5956-5957 and references cited in ref 9g.
(15) When the reaction was quenched after the 1,4-elimination step, generation of a 10/1 mixture of ($1 Z, 3 E$)-1-benzyloxy-4-phenyl-1,3-butadiene and its $(1 E, 3 E)$-isomer ${ }^{26}$ was confirmed by ${ }^{1} \mathrm{H}$ NMR spectrum of the crude products.
(16) The stereochemistry of a double bond between C 4 and C 5 in the obtained dienol
was confirmed to be E-form. ${ }^{9 \mathrm{~g}}$ In the text, only the stereochemistry of $\mathrm{C} 2=\mathrm{C} 3$ was discussed.
(17) The deprotonation of DBU with excess amount of n-BuLi was confirmed by a deuterium-labeling experiment shown below.

(18) In the absence of Pd catalyst, 1,4-elimination did not proceed and 1a was recovered.
(19) When the reaction was quenched after the 1,4-elimination step, generation of a mixture of 1-benzyloxy-5-methyl-1,3-butadiene and 1-benzyloxy-5-methyl-2,4butadiene was confirmed by ${ }^{1} \mathrm{H}$ NMR spectrum of the crude products.
(20) Deslongchamps, G.; Deslongchamps, P. Org. Biomol. Chem. 2011, 9, 5321-5333.
(21) Reddy, N. P.; Reddy, T. C.; Aparoy, P.; Achari, C.; Sridhar, P. R.; Reddanna, P. Eur. J. Med. Chem. 2012, 47, 351-359.
(22) Ishikawa, T.; Mizuta, T.; Hagiwara, K.; Aikawa, T.; Kudo, T.; Saito, S. J. Org. Chem. 2003, 68, 3702-3705.
(23) Lauterwasser, F.; Gall, J.; Höfener, S.; Bräse, S. Adv. Synth. Catal. 2006, 348, 2068-2074.
(24) Furber, M.; Herbert, J. M.; Taylor, R. J. K. J. Chem. Soc., Perkin Trans. 1 1989, 683-690.
(25) Gallagher, W. P.; Terstiege, I.; Maleczka, Jr. R. E. J. Am. Chem. Soc. 2001, 123, 3194-3204.
(26) Markó, I. E.; Murphy, F.; Kumps, L.; Ates, A.; Touillaux, R.; Craig, D.;

Carballares, S.; Dolan, S. Tetrahedron 2001, 57, 2609-2619.

