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ABSTRACT 

The sequential 1,4-elimination reaction of (E)-4-alkoxy-2-butenyl benzoates and 

[1,2]-Wittig rearrangement gave (2Z,4E)-2,4-pentadien-1-ols stereoselectively. 

Z-Selective formation of intermediary vinyl ethers, whose stereochemistry was well 

elucidated by the “syn-effect,” was achieved by treatment of the 2-butenyl benzoates 
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with KOH in the presence of Pd catalyst. The subsequent [1,2]-Wittg rearrangement by 

use of n-BuLi proceeded with retention of the stereochemistry of the intermediary vinyl 

ethers. 

 

INTRODUCTION 

Stereoselective synthesis of carbon-carbon double bonds as ubiquitous and versatile 

two-carbon units is among the most important and challenging tasks in organic 

chemistry.1 Consequently, a large number of synthetic methodologies have been 

reported, e.g., 1) Wittig reaction, which utilizes the characteristics of phosphorus,2 2) 

Peterson reaction, which utilizes silicon,3 3) Julia olefination, which utilizes sulfones,4,5 

4) reduction or carbometalation of alkynes, which takes advantage of organometallic 

reagents,6 and 5) olefin metathesis, which is realized by the use of Grubbs catalysts.7 

However, these reactions depend on new C–C bond formation or reductive olefin 

formation from alkynes. On the other hand, while the elimination reaction is also a 

powerful method for the preparation of olefins, the stereochemistry of the products 

generally depends on the reaction pathway, i.e., E2 anti-elimination, syn-elimination, or 
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E1 elimination. Therefore, few methods have been reported for stereoselective synthesis 

of olefins using simple elimination reactions.8 

In our laboratory, stereoselective formation of sterically unfavorable (Z)-olefins was 

investigated with various types of elimination and isomerization reactions by treatment 

with a base.9 We proposed that Z-selectivity was achieved by the “syn-effect,” namely a 

stereoelectronic effect owing to σC-H→π*
C=C interaction as depicted in Scheme 1, in 

which the transition state of the 1,4-elimination of an allylic sulfone is depicted.9c 

Furthermore, it was found that Z-selectivity based on the “syn-effect” was enhanced 

when the δ-substituent (R1 in Scheme 1) was an electron-withdrawing alkoxy or 

halogen group. 

 

Scheme 1. Concept of the ‘‘Syn-effect’’: σ→π * Interaction in the Elimination 
Reaction of Allylic Sulfones 
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This methodology could then be applied to a stereoselective synthesis of (Z)-olefins 

in combination with C–C bond formation. We have reported a sequential 

1,4-elimination reaction of δ-benzyloxy-substituted allylic sulfones followed by 

[1,2]-Wittig rearrangement10 to give (Z)-dienyl alcohols (2,4-pentadien-1-ols), which 

are useful synthetic intermediates due to the presence of both an allylic alcohol moiety 

and a diene moiety (Scheme 2a).11 However, the reaction was limited to only 

α,α-disubstituted allylic sulfones. When an α-monosubstituted allylic sulfone was 

subjected to the reaction, the elimination of the benzyloxy group proceeded 

preferentially via deprotonation of the more acidic α-proton (Scheme 2b).12 In this 

situation, the stereocontrolled preparation of 

(2Z)-5-monosubstituted-2,4-pentadien-1-ols still remained to be solved. Previously, we 

found that (1Z,3E)-1,3-dienes were produced stereoselectively in the Pd-catalyzed 

elimination reaction of acyclic (E)-allylic acetates with a base.9g We anticipated this 

protocol would be applicable to the sequential 1,4-elimination reaction and [1,2]-Wittig 

rearrangement. Herein we describe the sequential reaction of stereoselective 

1,4-elimination of (E)-4-alkoxy-2-butenyl benzoates via the π-allylic palladium 
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complex and subsequent [1,2]-Wittig rearrangement to afford (2Z, 

4E)-5-monosubstituted-2,4-pentadien-1-ols (Scheme 2c). 

Scheme 2. Z-Selective Synthesis of Dienyl Alcohols 
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RESULTS AND DISCUSSION 

We chose (E)-4-benzyloxy-1-phenyl-2-butenyl benzoate (1a) as a model substrate 

for the optimization of the reaction conditions.13,14 Under our previously reported 

conditions for allylic acetates using DBU, the Pd-catalyzed [1,4]-elimination reaction of 

1a did not proceed reproducibly. Deactivation of the Pd(0) complex by molecular 

oxygen contamination was suspected as the cause. In order to prevent this deactivation, 
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degassed THF was used as the solvent, and the 1,4-elimination reaction was found to 

proceed reproducibly. After the 1,4-elimination by treatment with DBU,15 an excess 

amount of n-BuLi was added to the reaction mixture to give the desired (2Z,4E)-dienyl 

alcohol 2a in good yield with high Z-selectivity at the C2–C3 double bond (Table 1, 

Entry 1).16 However, a large excess (12 equiv) of n-BuLi was required to complete the 

[1,2]-Wittig rearrangement.17 The search for a base that did not react with n-BuLi 

revealed that NaOt-Bu could reduce the amount of n-BuLi to 7 equiv for the 

[1,2]-Wittig rearrangement (Entry 2). However, the desired product 2a was not obtained 

with NaOt-Bu or KOt-Bu purified by sublimation (Entries 3 and 4). We supposed the 

actual base might be NaOH or KOH, which was generated by partial hydrolysis of 

NaOt-Bu or KOt-Bu. Therefore, we employed NaOH and KOH as bases for the initial 

elimination. To our delight, elimination proceeded18 reproducibly and further treatment 

with n-BuLi (6 equiv) gave 2a in good yield with excellent Z-selectivity at the C2–C3 

double bond (Entries 5 and 6). 
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Table 1. Optimization of Reaction Conditions 

PhO
OBz

Ph

Base 
(3 equiv)
[Pd(dppe)2] 
(5 mol%)

0 °C
5 min

degassed THF
rt, 18 h

n-BuLi
(n equiv)

OH

Ph
Ph

2
3

4

5

1a 2a  

Entry Base n Yield/%    Z/Ea 

1 DBU 12   84   10/1 

2 NaOt-Bu  7  < 82   10/1 

3 NaOt-Bub - complicated   - 

4 KOt-Bub - complicated   - 

 5c NaOH  6   73   10/1 

 6c KOH  6   68 >20/1 

aThe ratios were determined by 400 MHz 1H NMR spectra. Stereochemistries at C4=C5 

were E.  

bSublimed NaOt-Bu or KOt-Bu was used. 

cMS4A was added after elimination reaction. 

 

Under the optimized conditions, the sequential 1,4-elimination reaction and 

[1,2]-Wittig rearrangement of various substrates were performed (Table 2). Benzyl type 

ethers 1b–1d with o-, m-, and p-methyl groups produced the corresponding 
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(2Z,4E)-dienyl alcohols 2b–2d (Entries 2-4). When 2-butenyl benzoates 1e and 1f, 

bearing electron-donating or electron-withdrawing groups on the aromatic ring were 

employed, the desired products were also obtained with excellent Z-selectivities (Entries 

5 and 6). 4-(2-Naphthylmethyloxy)butenyl benzoate 1g was also converted into the 

corresponding (2Z,4E)-dienyl alcohol 2g (Entry 7). Next, we examined the generality of 

the sequential reaction for (E)-2-butenyl benzoates bearing various substituents at the 

α-position of the butenyl group. The desired products 2h–2j were obtained in good 

yields with excellent Z-selectivities from 2-butenyl benzoates 1h–1j bearing an aryl or 

t-Bu substituent on the α-carbon (Entries 8–10). However, in the case of a benzoate 1k 

with an i-Pr group at the α-position of the butenyl group, dienyl alcohol 2k was 

obtained in low yield, while excellent Z-selectivity was retained. In this case, 

by-product 3, derived from deprotonation of not Hδ but Hβ’ followed by [1,2]-Wittig 

rearrangement, was obtained (Scheme 3).19 
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Table 2. Scope of Substrates 

RO
OBz

Ar

KOH
(3 equiv)
[Pd(dppe)2] 
(5 mol%)

0 °C
5 min

degassed THF
rt, 18 h

n-BuLi
(6 equiv)

OH

R
Ar

2
3

4

5

1 2  

Entry Ar R  Yield/%    Z/Ea 

1 Ph Ph a 68 >20/1 

2 2-MeC6H4 Ph b 65   18/1 

3 3-MeC6H4 Ph c 58 >20/1 

4 4-MeC6H4 Ph d 63 >20/1 

5 4-MeOC6H4 Ph e 71   19/1 

6 4-ClC6H4 Ph f 63   15/1 

7 2-Naph Ph g 68 >20/1 

8 Ph 4-MeC6H4 h 72 >20/1 

9 Ph 2-Naph i 67    17/1 

10 Ph t-Bu j 53 >20/1 

11 Ph i-Pr k 34 >20/1 

aThe ratios were determined by 400 MHz 1H NMR spectra. Stereochemistries at C4=C5 

were E. 
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Scheme 3. Generation of By-product 3 in the Reaction of 2-Butenyl Benzoate 1k 

Bearing an Isopropyl Substituent at the $-Position 
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In conclusion, we achieved a stereoselective synthesis of (2Z,4E)-2,4-pentadien-1-ols 

via sequential 1,4-elimination reaction and [1,2]-Wittig rearrangement starting from 

(E)-4-alkoxy-2-butenyl benzoates. The present method would be applicable in synthetic 

chemistry, because the stereochemistry can be predicted correctly by universal 

stereoelectronic effects.20 Development of other Z-selective reactions based on this 

strategy is currently underway in our laboratory. 
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Experimental Section 

General Method. 1H NMR spectra were recorded on a 400 MHz NMR spectrometer. 

Chemical shifts δ are reported in ppm using TMS as an internal standard. Data are 

reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = 

quartet, m = multiplet), coupling constant (J) and integration. 13C NMR spectra were 

recorded on a 100 MHz NMR spectrometer. The chemical shifts are reported relative to 

CDCl3 (δ = 77.0 ppm). The wavenumbers of maximum absorption peaks in IR spectra 

are presented in cm−1. HRMS (EI positive, ESI-TOF) spectra were measured with 

quadrupole and TOF mass spectrometers. All of the melting points were measured with 

a micro melting point apparatus. THF was freshly distilled from sodium diphenylketyl. 

THF used for 1,4-elimination was degassed by three freeze-pump-thaw cycles prior to 

use. DMF was distilled and stored over drying agents.  

 

(E)-4-Alkoxy-2-butenyl benzoates 1 were prepared from the corresponding propargyl 

ethers and aldehydes according to the following scheme. 
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OAr
OAr R

OH1) n-BuLi (1.0 equiv)
2) RCHO (1.1 equiv)

OAr R

OH

OAr R

OBz

Red-Al (2.0 equiv)

BzCl (1.0 equiv)
Et3N (2.0 equiv)

DMAP (0.5 equiv)

4

5

1

THF, –40 °C to rt

DMF, rt

THF, –78 °C to rt

 

Representative Procedure for Preparation of 4-Alkoxy-2-butyn-1-ol 4a:  

To a solution of benzyl propargyl ether (4.00 g, 27.4 mmol) in THF (45 mL), n-BuLi 

(16.9 mL of 1.62 M solution in hexane, 27.4 mmol) was added dropwise at –78 °C. 

After stirring for 20 min, benzaldehyde (3.19 g, 30.1 mmol) was added and the resulted 

solution was stirred for 30 min at –78 °C, warmed to rt, and stirred for 3 h.21 The 

reaction mixture was quenched with a sat. aq solution of NH4Cl. After evaporating the 

solvent, the aqueous layer was separated and extracted with Et2O. The combined 

organic extracts were washed with H2O, brine, and dried over Na2SO4. The crude 

product was purified by silica gel column chromatography (hexane/AcOEt = 5/1) to 

give 4a (6.01 g, 87%) as an oil. 

 

In a similar manner, 4-alkoxy-2-butyn-1-ols 4b–4k were prepared from the 
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corresponding propargyl ethers. 

 

4-(Benzyloxy)-1-phenyl-2-butyn-1-ol (4a)21 

1H NMR (400 MHz, CDCl3): 2.25 (d, J = 5.9 Hz, 1H), 4.27 (d, J = 1.8 Hz, 2H), 4.61 (s, 

2H), 5.53 (d, J = 5.9 Hz, 1H) 7.28－7.41 (m, 8H), 7.55 (d, J = 7.3 Hz, 2H). 13C NMR 

(100 MHz, CDCl3): 57.0, 63.9, 71.3, 81.8, 86.3, 126.3, 127.6, 127.8, 128.0, 128.1, 

128.2, 136.8, 140.2. IR (neat): 3390, 3062, 3030, 2857, 2227, 1644, 1494, 1454, 1387, 

1354, 1313, 1264, 1193, 1120, 1071, 1026, 918, 738, 698 cm–1. HRMS (EI): Calcd for 

C17H16O2 [M+ ]: 252.1150. Found: 252.1155. 

 

4-((2-Methylbenzyl)oxy)-1-phenyl-2-butyn-1-ol (4b) 

4b (3.63 g, 91% from 15.0 mmol of 2-methylbenzyl propargyl ether) was obtained as an 

oil. 1H NMR (400 MHz, CDCl3): 2.25 (d, J = 6.0 Hz, 1H), 2.34 (s, 3H), 4.28 (d, J = 1.8 

Hz, 2H), 4.60 (s, 2H), 5.53 (d, J = 6.0 Hz, 1H) 7.15－7.24 (m, 3H), 7.25－7.43 (m, 4H) 

7.54 (d, J = 6.9 Hz, 2H). 13C NMR (100 MHz, CDCl3): 18.6, 57.3, 64.2, 69.8, 82.2, 86.4, 

125.6, 126.4, 128.0, 128.1, 128.4, 129.0, 130.1, 134.9, 136.9, 140.3. IR (neat): 3391, 
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3063, 3029, 2864, 2235, 1604, 1493, 1454, 1353, 1262, 1189, 1121, 1072, 945, 918, 

843, 809, 745, 699 cm–1. HRMS (EI): Calcd for C18H18O2 [M+ ]: 266.1307. Found: 

266.1313. 

 

4-((3-Methylbenzyl)oxy)-1-phenyl-2-butyn-1-ol (4c) 

4c (2.81 g, 86% from 12.3 mmol of 3-methylbenzyl propargyl ether) was obtained as an 

oil. 1H NMR (400 MHz, CDCl3): 2.21 (d, J = 5.9 Hz, 1H), 2.35 (s, 3H), 4.27 (d, J = 1.8 

Hz, 2H), 4.57 (s, 2H), 5.53 (d, J = 5.9 Hz, 1H), 7.11－7.17 (m, 2H), 7.23 (d, J = 7.4 Hz, 

1H), 7.32－7.42 (m, 3H), 7.55 (d, J = 6.9 Hz, 2H). 13C NMR (100 MHz, CDCl3): 21.1, 

57.0, 64.0, 71.3, 82.0, 86.4, 125.0, 126.4, 128.0, 128.1, 128.3, 128.4, 128.6, 136.8, 

137.8, 140.0. IR (neat): 3391, 3029, 2857, 2230, 1492, 1454, 1380, 1353, 1255, 1192, 

1157, 1120, 1078, 1003, 918, 785, 742, 698 cm–1. HRMS (EI): Calcd for C18H18O2 

[M+ ]: 266.1307. Found: 266.1305. 

 

4-((4-Methylbenzyl)oxy)-1-phenyl-2-butyn-1-ol (4d) 

4d (2.79 g, 92% from 11.4 mmol of 4-methylbenzyl propargyl ether) was obtained as an 
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oil. 1H NMR (400 MHz, CDCl3): 2.23 (d, J = 6.0 Hz, 1H), 2.34 (s, 3H), 4.24 (d, J = 1.8 

Hz, 2H), 4.57 (s, 2H), 5.53 (d, J = 6.0 Hz, 1H), 7.15 (d, J = 7.8 Hz, 2H), 7.23 (d, J = 7.8 

Hz, 2H), 7.32－7.41 (m, 3H), 7.55 (d, J = 6.9 Hz, 2H). 13C NMR (100 MHz, CDCl3): 

21.3, 57.3, 64.4, 71.6, 82.5, 86.8, 126.8, 128.4, 128.5, 128.7, 129.3, 134.2, 137.8, 140.7. 

IR (neat): 3392, 3029, 2857, 2230, 1903, 1515, 1493, 1453, 1382, 1354, 1309, 1262, 

1193, 1120, 1077, 1021, 945, 918, 843, 806, 754, 732, 699 cm–1. HRMS (EI): Calcd for 

C18H18O2 [M+ ]: 266.1307. Found: 266.1306. 

 

4-((4-Methoxybenzyl)oxy)-1-phenyl-2-butyn-1-ol (4e) 

4e (1.36 g, 89% from from 5.4 mmol of 4-methoxybenzyl propargyl ether) was obtained 

as an oil. 1H NMR (400 MHz, CDCl3): 2.21 (br, 1H), 3.80 (s, 3H), 4.23 (d, J = 1.2 Hz, 

2H), 4.54 (s, 2H), 5.53 (s, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 8.7 Hz, 2H) 7.32－

7.41 (m, 3H), 7.55 (d, J = 6.9 Hz, 2H). 13C NMR (100 MHz, CDCl3): 55.3, 57.1, 64.4, 

71.3, 82.5, 86.7, 113.9, 126.7, 128.4, 128.7, 129.3, 130.0, 140.7, 159.4. IR (neat): 3401, 

3062, 3031, 2837, 2226, 1612, 1585, 1512, 1493, 1455, 1354, 1302, 1249, 1175, 1118, 

1074, 1032, 918, 818, 759, 700 cm–1. HRMS (EI): Calcd for C18H18O3 [M+ ]: 282.1256. 
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Found: 282.1253. 

 

4-((4-Chlorobenzyl)oxy)-1-phenyl-2-butyn-1-ol (4f) 

4f (2.67 g, 85% from 11.0 mmol of 4-chlorobenzyl propargyl ether) was obtained as an 

oil. 1H NMR (400 MHz, CDCl3): 2.18 (br, 1H), 4.27 (d, J = 1.8 Hz, 2H), 4.57 (s, 2H), 

5.54 (s, 1H), 7.27－7.42 (m, 7H), 7.54 (d, J = 6.4 Hz, 2H). 13C NMR (100 MHz, 

CDCl3): 57.4, 64.2, 70.7, 82.0, 86.6, 126.4, 128.0, 128.2, 128.4, 129.2, 133.5, 135.5, 

140.3. IR (neat): 3378, 3031, 2861, 1598, 1540, 1491, 1455, 1408, 1354, 1262, 1193, 

1120, 1086, 1015, 918, 841, 806, 733, 699, 674 cm–1. HRMS (EI): Calcd for 

C17H15ClO2 [M+ ]: 286.0761. Found: 286.0765. 

 

4-(2-Naphthalenylmethoxy)-1-phenyl-2-butyn-1-ol (4g) 

4e (1.86 g, 73% from 8.4 mmol of 4-methoxybenzyl propargyl ether) was obtained as 

an oil. 1H NMR (400 MHz, CDCl3): 2.23 (br, 1H), 4.31 (d, J = 1.8 Hz, 2H), 4.78 (s, 2H), 

5.54 (s, 1H), 7.33－7.42 (m, 3H), 7.46－7.49 (m, 3H), 7.55－7.57 (m, 2H), 7.80－7.84 

(m, 4H). 13C NMR (100 MHz, CDCl3): 57.2, 64.3, 71.6, 82.3, 86.5, 125.8, 125.9, 126.0, 
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126.5, 126.9, 127.5, 127.8, 128.1, 128.2, 128.5, 132.9, 133.0, 134.5, 140.3. IR (neat): 

3381, 3057, 2854, 2230, 1601, 1509, 1492, 1454, 1355, 1271, 1173, 1123, 1078, 1003, 

918, 856, 818, 754, 699 cm–1. HRMS (EI): Calcd for C21H18O2 [M+ ]: 302.1307. Found: 

302.1305. 

 

4-(Benzyloxy)-1-(4-tolyl)-2-butyn-1-ol (4h) 

4h (2.13 g, 76% from 10.5 mmol of benzyl propargyl ether) was obtained as an oil. 1H 

NMR (400 MHz, CDCl3): 2.15 (d, J = 6.0 Hz, 1H), 2.36 (s, 3H), 4.27 (d, J = 1.8 Hz, 

2H), 4.61 (s, 2H), 5.49 (d, J = 6.0 Hz, 1H), 7.20 (d, J = 7.8 Hz, 2H), 7.29－7.38 (m, 5H), 

7.43 (d, J = 7.8 Hz, 2H). 13C NMR (100 MHz, CDCl3): 20.9, 57.1, 63.8, 71.3, 81.7, 86.7, 

126.3, 127.6, 127.9, 128.2, 128.9, 136.9, 137.5, 137.7. IR (neat): 3396, 3029, 2858, 

2235, 1511, 1496, 1454, 1354, 1264, 1196, 1178, 1114, 1071, 1026, 942, 821, 742, 699 

cm–1. HRMS (EI): Calcd for C18H18O2 [M+ ]: 266.1307. Found: 266.1300. 

 

4-(Benzyloxy)-1-(2-naphthalenyl)-2-butyn-1-ol (4i) 

4i (1.44 g, 81% from 5.8 mmol of benzyl propargyl ether) was obtained as an oil. 1H 
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NMR (400 MHz, CDCl3): 2.34 (br, 1H), 4.30 (d, J = 0.92 Hz, 2H), 4.63 (s, 2H), 5.69 (s, 

1H), 7.28－7.35 (m, 5H), 7.47－7.52 (m, 2H), 7.66 (d, J = 8.2 Hz, 1H), 7.82－7.89 (m, 

3H), 8.00 (s, 1H). 13C NMR (100 MHz, CDCl3): 57.1, 64.2, 71.4, 82.3, 86.4, 124.4, 

125.1, 126.0, 127.4, 127.7, 127.9, 127.9, 128.0, 128.2, 128.3, 132.9, 133.0, 136.9, 137.7. 

IR (neat): 3375, 3057, 2857, 2225, 1601, 1507, 1495, 1455, 1355, 1269, 1167, 1113, 

1071, 1025, 951, 903, 861, 821, 748, 699 cm–1. HRMS (EI): Calcd for C21H18O2 [M+ ]: 

302.1307. Found: 302.1306. 

 

6-(Benzyloxy)-2,2-dimethyl-4-hexyn-3-ol (4j)22 

4j (1.16 g, 42% from 11.9 mmol of benzyl propargyl ether) was obtained as an oil. 1H 

NMR (400 MHz, CDCl3): 1.01 (s, 9H), 1.72 (br, 1H), 4.07 (s, 1H), 4.23 (d, J = 1.8 Hz, 

2H), 4.60 (s, 2H), 7.26－7.36 (m, 5H). 13C NMR (100 MHz, CDCl3): 25.2, 35.6, 57.2, 

71.1, 71.3, 81.2, 86.3, 127.7, 128.0, 128.3, 137.2. IR (neat): 3446, 3030, 2956, 2867, 

2215, 1540, 1478, 1455, 1363, 1321, 1240, 1123, 1072, 1008, 936, 743, 698 cm–1. 

HRMS (EI): Calcd for C15H20O2 [M+ ]: 232.1463. Found: 232.1464. 
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6-(Benzyloxy)-2-methyl-4-hexyn-3-ol (4k)22 

4k (2.53 g, 94% from 12.3 mmol of benzyl propargyl ether) was obtained as an oil. 1H 

NMR (400 MHz, CDCl3): 1.01 (d, J = 7.3 Hz, 3H), 1.03 (d, J = 7.3 Hz, 3H), 1.60 (br, 

1H), 1.89 (br, 1H), 4.24 (d, J = 5.0 Hz, 2H) 4.23－4.25 (m, 1H), 4.60 (s, 2H), 7.28－

7.36 (m, 5H). 13C NMR (100 MHz, CDCl3): 17.3, 18.0, 34.2, 57.2, 67.6, 71.3, 81.1, 

86.4, 127.7, 128.0, 128.3, 137.1. IR (neat): 3402, 3031, 2962, 2872, 2215, 1496, 1455, 

1384, 1352, 1261, 1207, 1144, 1073, 1027, 936, 743, 699 cm–1. HRMS (EI): Calcd for 

C14H18O2 [M+ ]: 218.1307. Found: 218.1311. 

 

Representative Procedure for Preparation of (E)-4-Alkoxy-2-butenyl Benzoate 1a:  

To a solution of compound 4a (2.52 g, 10 mmol) in THF (20 mL), Red-Al (5.6 mL of 

3.6 M solution in toluene, 20 mmol) was added dropwise at –40 °C. The reaction 

mixture was warmed to room temperature and stirred for 3 h. The reaction mixture was 

quenched with a satd. aq solution of Na2SO4. After insoluble substrate was filtered off 

through celite, the solvent was evaporated. The residue was passed through silica gel 

short column (hexane/AcOEt = 2/1) to afford the almost pure (E)-2-buten-1-ol 5a23 
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(2.53 g). This material was used for the conversion to the corresponding benzoate 1a 

without further purification. To a solution of the obtained 5a (2.53 g) in DMF (40 mL) 

were added Et3N (2.02 g, 20 mmol), benzoyl chloride (1.40 g, 10 mmol), and DMAP 

(610 mg, 5 mmol) at rt and the resulted solution was stirred overnight. The reaction 

mixture was quenched with a sat. aq solution of NH4Cl. The aqueous layer was 

separated and extracted with AcOEt. The combined organic extracts were washed with 

H2O, brine, and dried over Na2SO4. The crude product was purified by silica gel column 

chromatography (hexane/AcOEt = 15/1) to give 1a (2.51 g, 70% for 2 steps) as an oil. 

 

In similar manner, (E)-4-alkoxy-2-butenyl benzoates 1b–1k were prepared from the 

corresponding 4-alkoxy-2-butyn-1-ols 4b–4k. 

 

(E)-4-(Benzyloxy)-1-phenyl-2-buten-1-yl benzoate (1a) 

1H NMR (400 MHz, CDCl3): 4.07 (d, J = 5.5 Hz, 2H), 4.52 (s, 2H), 5.96 (dt, J = 15.6, 

5.5 Hz, 1H), 6.04 (dd, J = 15.6, 6.0 Hz, 1H), 6.54 (d, J = 6.0 Hz, 1H), 7.26－7.58 (m, 

13H), 8.09 (d, J = 6.8 Hz, 2H). 13C NMR (100 MHz, CDCl3): 69.6, 72.3, 75.9, 127.0, 
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127.6, 127.7, 128.1, 128.3, 128.5, 128.6, 129.5, 129.6, 130.1, 130.6, 133.0, 137.9, 139.0, 

165.4. IR (neat): 3063, 3031, 2855, 1717, 1600, 1584, 1494, 1452, 1315, 1267, 1176, 

1107, 1069, 1025, 968, 751, 712 cm–1. HRMS (EI): Calcd for C24H22O3 [M+ ]: 358.1569. 

Found: 358.1573. 

 

(E)-4-((2-Methylbenzyl)oxy)-1-phenyl-2-buten-1-yl benzoate (1b) 

Starting from 5.0 mmol of 4b, almost pure 5b (1.22 g) was obtained. Then 708 mg of 

the intermediary 5b was used to give 1b (644 mg, 61% for 2 steps) as an oil. 1H NMR 

(400 MHz, CDCl3): 2.30 (s, 3H), 4.08 (d, J = 5.0 Hz, 2H), 4.50 (s, 2H), 5.97 (dt, J = 

15.6, 5.0 Hz, 1H), 6.05 (dd, J = 15.6, 5.5 Hz, 1H), 6.54 (d, J = 5.5 Hz, 1H), 7.15－7.58 

(m, 12H), 8.09 (d, J = 9.6 Hz, 2H). 13C NMR (100 MHz, CDCl3): 18.7, 69.7, 70.5, 75.8, 

125.6, 126.9, 127.7, 128.1, 128.3, 128.5, 129.6, 130.1, 130.6, 132.9, 135.8, 136.6, 139.0, 

165.3. IR (neat): 3063, 3031, 2855, 1719, 1601, 1493, 1452, 1314, 1266, 1176, 1107, 

1070, 1025, 968, 746, 712 cm–1. HRMS (EI): Calcd for C25H24O3 [M+ ]: 372.1725. 

Found: 372.1728. 

 



 

 22 

(E)-4-((3-Methylbenzyl)oxy)-1-phenyl-2-buten-1-yl benzoate (1c) 

Starting from 5.5 mmol of 4c, almost pure 5c (1.33 g) was obtained. Then 707 mg of 

the intermediary 5c was used to give 1c (678 mg, 69% for 2 steps) as an oil. 1H NMR 

(400 MHz, CDCl3): 2.33 (s, 3H), 4.06 (d, J = 5.5 Hz, 2H), 4.47 (s, 2H), 5.97 (dt, J = 

15.5, 5.5 Hz, 1H), 6.05 (dd, J = 15.5, 5.9 Hz, 1H), 6.54 (d, J = 5.9 Hz, 1H), 7.09－7.58 

(m, 12H), 8.09 (d, J = 7.3 Hz, 2H). 13C NMR (100 MHz, CDCl3): 21.3, 69.7, 72.4, 75.9, 

124.9, 127.0, 128.1, 128.2, 128.3, 128.4, 128.6, 129.6, 129.7, 130.1, 130.7, 133.0, 137.8, 

137.9, 139.0, 165.4. IR (neat): 3061, 3031, 2919, 2855, 1718, 1601, 1585, 1492, 1451, 

1314, 1266, 1176, 1158, 1107, 1069, 1025, 968, 907, 780, 757, 712 cm–1. HRMS (EI): 

Calcd for C25H24O3 [M+ ]: 372.1725. Found: 372.1721. 

 

(E)-4-((4-Methylbenzyl)oxy)-1-phenyl-2-buten-1-yl benzoate (1d) 

Starting from 6.4 mmol of 4d, almost pure 5d (1.45 g) was obtained. Then 570 mg of 

the intermediary 5d was used to give 1d (546 mg, 58% for 2 steps) as an oil. 1H NMR 

(400 MHz, CDCl3): 2.33 (s, 3H), 4.04 (d, J = 5.5 Hz, 2H), 4.46 (s, 2H), 5.95 (dt, J = 

15.5, 5.5 Hz, 1H), 6.02 (dd, J = 15.5, 6.0 Hz, 1H), 6.53 (d, J = 6.0 Hz, 1H), 7.10－7.58 
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(m, 12H), 8.10 (d, J = 7.3 Hz, 2H). 13C NMR (100 MHz, CDCl3): 21.1, 69.5, 72.2, 75.9, 

127.0, 127.9, 128.1, 128.3, 128.6, 129.0, 129.7, 130.2, 130.6, 133.0, 133.5, 134.9, 137.3, 

139.1, 165.5. IR (neat): 3031, 2921, 2856, 1719, 1601, 1515, 1493, 1451, 1315, 1267, 

1176, 1107, 1070, 1025, 969, 806, 756, 712 cm–1. HRMS (EI): Calcd for C25H24O3 

[M+ ]: 372.1725. Found: 372.1726.  

 

(E)-4-((4-Methoxybenzyl)oxy)-1-phenyl-2-buten-1-yl benzoate (1e) 

Starting from 3.6 mmol of 4e, almost pure 5e (986 mg) was obtained. Then 781 mg of 

the intermediary 5e was used to give 1e (619 mg, 56% for 2 steps) as an oil. 1H NMR 

(400 MHz, CDCl3): 3.80 (s, 3H), 4.03 (d, J = 5.5 Hz, 2H), 4.44 (s, 2H), 5.95 (dt, J = 

15.6, 5.5 Hz, 1H), 6.03 (dd, J = 15.6, 5.5 Hz, 1H), 6.54 (d, J = 5.5 Hz, 1H), 6.86 (d, J = 

8.7 Hz, 2H), 7.22－7.58 (m, 10H), 8.09 (d, J = 8.2 Hz, 2H). 13C NMR (100 MHz, 

CDCl3): 55.2, 69.4, 72.0, 75.9, 113.7, 127.0, 128.1, 128.3, 128.6, 129.4, 129.7, 130.0, 

130.2, 130.6, 133.0, 139.1, 159.2, 165.4. IR (neat): 3062, 3032, 2934, 2836, 1718, 1612, 

1585, 1512, 1493, 1452, 1361, 1314, 1266, 1175, 1107, 1026, 968, 820, 756, 713 cm–1. 

HRMS (EI): Calcd for C25H24O4 [M+ ]: 388.1675. Found: 388.1683. 
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(E)-4-((4-Chlorobenzyl)oxy)-1-phenyl-2-buten-1-yl benzoate (1f) 

Starting from 7.0 mmol of 4f, almost pure 5f (1.87 g) was obtained. Then 800 mg of the 

intermediary 5f was used to give 1f (783 mg, 67% for 2 steps) as an oil. 1H NMR (400 

MHz, CDCl3): 4.05 (d, J = 5.5 Hz, 2H), 4.46 (s, 2H), 5.95 (dt, J = 16.4, 5.5 Hz, 1H), 

6.03 (dd, J = 16.4, 5.9 Hz, 1H), 6.53 (d, J = 5.9 Hz, 1H), 7.25-7.59 (m, 12H), 8.09 (d, J 

= 8.9 Hz, 2H). 13C NMR (100 MHz, CDCl3): 69.8, 71.5, 75.8, 126.9, 128.1, 128.3, 

128.4, 128.6, 129.0, 129.3, 129.6, 130.1, 130.8, 133.0, 133.3, 136.5, 138.9, 165.4. IR 

(neat): 3062, 3032, 2854, 1718, 1600, 1584, 1491, 1451, 1396, 1314, 1267, 1200, 1176, 

1108, 1025, 1015, 968, 841, 807, 757, 712 cm–1. HRMS (EI): Calcd for C24H21ClO3 

[M+ ]: 392.1179. Found: 392.1175. 

 

(E)-4-(2-Naphthalenylmethoxy)-1-phenyl-2-buten-1-yl benzoate (1g) 

Starting from 5.5 mmol of 4g, almost pure 5g (1.35 g) was obtained. Then 802 mg of 

the intermediary 5g was used to give 1g (463 mg, 35% for 2 steps) as an oil. 1H NMR 

(400 MHz, CDCl3): 4.11 (d, J = 5.5 Hz, 2H), 4.67 (s, 2H), 5.98 (dt, J = 15.5, 5.5 Hz, 
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1H), 6.06 (dd, J = 15.5, 5.5 Hz, 1H), 6.55 (d, J = 5.5 Hz, 1H), 7.30－7.58 (m, 11H), 

7.75－7.84 (m, 4H), 8.09 (d, J = 8.2 Hz, 2H). 13C NMR (100 MHz, CDCl3): 69.7, 72.4, 

75.9, 125.7, 125.8, 126.0, 126.5, 127.0, 127.6, 127.8, 128.1, 128.3, 128.6, 129.5, 129.6, 

130.1, 130.7, 132.8, 132.9, 133.1, 135.4, 139.0, 165.4. IR (neat): 3058, 2852, 1716, 

1601, 1508, 1492, 1451, 1314, 1267, 1175, 1107, 1069, 1025, 966, 856, 818, 753, 712 

cm–1. HRMS (EI): Calcd for C28H24O3 [M+ ]: 408.1725. Found: 408.1729. 

 

(E)-4-(Benzyloxy)-1-(4-tolyl) -2-buten-1-yl benzoate (1h) 

Starting from 5.2 mmol of 4h, almost pure 5h (1.32 g) was obtained. Then 715 mg of 

the intermediary 5f was used to give 1h (615 mg, 58% for 2 steps) as an oil. 1H NMR 

(400 MHz, CDCl3): 2.34 (s, 3H), 4.06 (d, J = 5.0 Hz, 2H), 4.50 (s, 2H), 5.95 (dt, J = 

15.5, 5.0 Hz, 1H), 6.03 (dd, J = 15.5, 5.5 Hz, 1H), 6.50 (d, J = 5.5 Hz, 1H), 7.16-7.57 

(m, 12H), 8.08 (d, J = 6.8 Hz, 2H). 13C NMR (100 MHz, CDCl3): 21.2, 69.8, 72.3, 75.9, 

127.1, 127.6, 127.8, 128.3, 128.4, 128.6, 129.2, 129.3, 129.7, 130.2, 130.9, 133.0, 136.0, 

138.0, 165.5. IR (neat): 3030, 2921, 2857, 1717, 1601, 1514, 1495, 1452, 1315, 1267, 

1176, 1108, 1069, 1025, 968, 816, 737, 711 cm–1. HRMS (EI): Calcd for C25H24O3 
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[M+ ]: 372.1725. Found: 372.1730. 

 

(E)-4-(Benzyloxy)-1-(2-naphthalenyl)-2-buten-1-yl benzoate (1i) 

Starting from 4.8 mmol of 4i, almost pure 5i (1.29 g) was obtained. Then 667 mg of the 

intermediary 5i was used to give 1i (528 mg, 53% for 2 steps) as an oil. 1H NMR (400 

MHz, CDCl3): 4.08 (d, J = 5.5 Hz, 2H), 4.51 (s, 2H), 5.99 (dt, J = 15.5, 5.5 Hz, 1H), 

6.13 (dd, J = 15.5, 5.9 Hz, 1H), 6.71 (d, J = 5.9 Hz, 1H), 7.24－7.61 (m, 11H), 7.80－

7.93 (m, 4H), 8.12 (d, J = 7.3 Hz, 2H). 13C NMR (100 MHz, CDCl3): 70.7, 73.3, 77.0, 

125.7, 127.10, 127.16, 127.19, 128.6, 128.7, 129.0, 129.3, 129.4, 130.6, 130.7, 131.1, 

131.5, 133.9, 134.0, 137.3, 138.8, 166.4. IR (neat): 3059, 2853, 1717, 1601, 1508, 1452, 

1361, 1314, 1266, 1175, 1106, 1069, 1025, 968, 858, 818, 749, 711 cm–1. HRMS (EI): 

Calcd for C28H24O3 [M+ ]: 408.1725. Found: 408.1727. 

 

(E)-6-(Benzyloxy)-2,2-dimethyl-4-hexen-3-yl benzoate (1j) 

Starting from 4.6 mmol of 4j, almost pure 5j (866 mg) was obtained. Then 494 mg of 

the intermediary 5j was used to give 1j (328 mg, 37% for 2 steps) as an oil. 1H NMR 
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(400 MHz, CDCl3): 1.02 (s, 9H), 4.04 (d, J = 4.5 Hz, 2H), 4.50 (s, 2H), 5.28 (d, J = 6.0 

Hz, 1H), 5.84 (dd, J = 6.0, 15.5 Hz, 1H), 5.86 (dt, J = 4.5, 15.5 Hz, 1H), 7.26－7.38 (m, 

5H), 7.45 (dd, J = 7.8, 7.7 Hz, 2H), 7.57 (t, J = 7.8 Hz, 1H), 8.07 (d, J = 7.7 Hz, 2H). 

13C NMR (100 MHz, CDCl3): 25.9, 34.7, 69.7, 71.9, 81.4, 127.5, 127.7, 127.9, 128.3, 

129.5, 130.5, 130.7, 132.8, 138.0, 165.6. IR (neat): 3063, 3031, 2965, 2868, 1718, 1601, 

1452, 1395, 1365, 1316, 1270, 1176, 1111, 1069, 1025, 970, 736, 711 cm–1. HRMS 

(EI): Calcd for C22H26O3 [M+ ]: 338.1882. Found: 338.1878. 

 

(E)-6-(Benzyloxy)-2-methyl-4-hexen-3-yl benzoate (1k) 

Starting from 7.4 mmol of 4k, almost pure 5k (1.58 g) was obtained. Then 547 mg of 

the intermediary 5k was used to give 1k (528 mg, 57% for 2 steps) as an oil. 1H NMR 

(400 MHz, CDCl3): 1.00 (d, J = 6.9, 3H), 1.01 (d, J = 6.4, 3H), 1.99－2.10 (m, 1H), 

4.04 (d, J = 5.5 Hz, 2H), 4.50 (s, 2H), 5.35 (t, J = 6.4 Hz, 2H), 5.80 (dd, J = 16.5, 6.4 

Hz, 1H), 5.87 (dt, J = 16.5, 5.5 Hz, 1H), 7.26－7.58 (m, 8H), 8.06 (d, J = 8.2 Hz, 2H). 

13C NMR (100 MHz, CDCl3): 18.0, 18.2, 32.2, 69.8, 72.0, 78.9, 127.5, 127.7, 128.2, 

128.3, 129.1, 129.5, 130.0, 132.8, 138.0, 165.7. IR (neat): 3063, 3031, 2965, 2873, 1717, 
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1601, 1584, 1494, 1452, 1387, 1368, 1270, 1176, 1111, 1069, 1025, 971, 738, 712 cm–1. 

HRMS (EI): Calcd for C21H24O3 [M+ ]: 324.1725. Found: 324.1721. 

 

Representative Procedure for Sequential 1,4-Elimination Reaction and [1,2]-Wittig 

Rearrangement of (E)-2-Butenyl Benzoate 1a (Table 2, Entry 1). To a mixture of 

powdered KOH (21 mg, 1.05 mmol) and [Pd(dppe)2] (16 mg, 0.018 mmol) was added 

compound 1a (125 mg, 0.35 mmol) in THF (12 mL) dropwise at room temperature and 

the reaction mixture was stirred for 18 h. After MS4A was added and the resulting 

mixture was stirred for 30 min, the mixture was cooled to 0 °C and n-BuLi (1.27 mL of 

1.62 M solution in hexane, 2.1 mmol) was added. After 5 min, the reaction mixture was 

quenched with a sat. aq solution of NH4Cl. The aqueous layer was separated and 

extracted with Et2O. The combined organic extracts were washed with H2O, brine, and 

dried over Na2SO4. The crude product was purified by silica gel column 

chromatography (hexane/AcOEt = 10/1 with 1% Et3N) to give 2a (56 mg, 68%, Z/E = 

>20/1) as an oil. 
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In a similar manner, (2Z,4E)-2,4-pentadien-1-ols 2b–2k were obtained from 1b–1k. 

 

(2Z,4E)-1,5-Diphenyl-2,4-pentadien-1-ol (2a)24 

1H NMR (400 MHz, CDCl3): δ 2.04 (br s, 1H), 5.69 (dd, J = 11.0, 8.7 Hz, 1H), 5.81 (d, 

J = 8.7 Hz, 1H), 6.30 (t, J = 11.0 Hz, 1H), 6.64 (d, J = 15.5 Hz, 1H), 7.21 (dd, J = 15.5, 

11.0 Hz, 1H), 7.26－7.45 (m, 10H). 13C NMR (100 MHz, CDCl3): δ 70.0, 123.6, 125.9, 

126.6, 127.5, 127.9, 128.5, 128.6, 130.1, 133.1, 134.9, 136.9, 143.1. IR (neat): 3366, 

3027, 1599, 1492, 1449, 1280, 1073, 1027, 986, 945, 859, 740, 697 cm–1. HRMS (EI): 

Calcd for C17H16O [M+]: 236.1201. Found: 236.1207. 

During the optimization of the reaction conditions, a mixture of (2Z,4E)-2a and 

(2E,4E)-isomer was obtained as shown in Table 1. Selected NMR data for the 

(2E,4E)-isomer:25 δ 5.32 (d, J = 6.4 Hz, 1H), 6.00 (dd, J = 15.1, 6.4 Hz, 1H), 6.47 (dd, J 

= 15.1, 10.5 Hz, 1H), 6.58 (d, J = 15.6 Hz, 1H), 6.78 (dd, J = 15.6, 10.5 Hz, 1H). 

 

(2Z,4E)-1-(2-Methylphenyl)-5-phenyl-2,4-pentadien-1-ol (2b) 

2b (56 mg, 65% from 0.35 mmol 1b) was obtained as an oil. 1H NMR (400 MHz, 
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CDCl3): 1.92 (br, 1H), 2.36 (s, 3H), 5.62 (dd, J = 8.7, 11.0 Hz, 1H), 5.95 (d, J = 8.7 Hz, 

1H), 6.28 (t, J = 11.0 Hz, 1H), 6.63 (d, J = 15.6 Hz, 1H), 7.21 (dd, J = 11.0, 15.6 Hz, 

1H), 7.24－7.59 (m, 9H). Selected data of (2E,4E)-isomer; 5.51 (d, J = 6.8 Hz, 1H), 

5.81 (dd, J = 6.4, 15.5 Hz, 1H), 6.43 (dd, J = 11.0, 15.5 Hz, 1H), 6.58 (d, J = 16.0 Hz, 

1H), 6.78 (dd, J = 11.0, 16.0 Hz, 1H). 13C NMR (100 MHz, CDCl3): 19.4, 67.4, 123.3, 

125.3, 126.4, 126.6, 127.5, 128.0, 128.7, 130.4, 130.5, 132.3, 134.9, 135.1, 136.9, 141.2. 

IR (neat): 3440, 3024, 1599, 1489, 1457, 1372, 1241, 1158, 1046, 989, 749, 699 cm–1. 

HRMS (EI): Calcd for C18H18O [M+ ]: 250.1358. Found: 250.1359. 

 

(2Z,4E)-1-(3-Methylphenyl)-5-phenyl-2,4-pentadien-1-ol (2c) 

2c (50 mg, 58% from 0.35 mmol 1c) was obtained as an oil. 1H NMR (400 MHz, 

CDCl3): 1.97 (br, 1H), 2.40 (s, 3H), 5.68 (dd, J = 11.0, 9.1 Hz, 1H), 5.78 (d, J = 9.1 Hz, 

1H), 6.29 (t, J = 11.0 Hz, 1H), 6.63 (d, J = 15.5 Hz, 1H), 7.08－7.12 (m, 1H), 7.23－

7.44 (m, 9H). 13C NMR (100 MHz, CDCl3): 21.5, 70.1, 123.0, 123.4, 126.55, 126.61, 

128.0, 128.4, 128.5, 128.7, 130.2, 133.1, 135.0, 137.0, 138.4, 143.1. IR (neat): 3331, 

3025, 1605, 1489, 1448, 1306, 1152, 1029, 987, 946, 779, 754, 692 cm–1. HRMS (EI): 
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Calcd for C18H18O [M+]: 250.1358. Found: 250.1347. 

 

(2Z,4E)-1-(4-Methylphenyl)-5-phenyl-2,4-pentadien-1-ol (2d) 

2d (55 mg, 63% from 0.35 mmol 1d) was obtained as an oil. 1H NMR (400 MHz, 

CDCl3): 1.95 (br, 1H), 2.34 (s, 3H), 5.69 (dd, J = 11.0, 9.1 Hz, 1H), 5.79 (d, J = 9.1 Hz, 

1H), 6.28 (t, J = 11.0 Hz, 1H), 6.63 (d, J = 15.1 Hz, 1H), 7.16－7.44 (m, 10H). 13C 

NMR (100 MHz, CDCl3): 21.1, 70.0, 123.4, 125.8, 126.6, 127.9, 128.7, 129.3, 130.1, 

133.2, 134.9, 137.0, 137.4, 140.2. IR (neat): 3421, 3024, 2920, 1604, 1512, 1492, 1449, 

1374, 1242, 1178, 1044, 986, 811, 749, 693 cm–1. HRMS (EI): Calcd for C18H18O [M+]: 

250.1358. Found: 250.1363. 

 

(2Z,4E)-1-(4-Methoxyphenyl)-5-phenyl-2,4-pentadien-1-ol (2e) 

2e (66 mg, 71% from 0.35 mmol 1e) was obtained as an oil. 1H NMR (400 MHz, 

CDCl3): 1.92 (br, 1H), 3.80 (s, 3H), 5.71 (dd, J = 11.0, 8.7 Hz, 1H), 5.77 (d, J = 8.7 Hz, 

1H), 6.28 (t, J = 11.0 Hz, 1H), 6.63 (d, J = 15.5 Hz, 1H), 6.90 (d, J = 8.6 Hz, 2H), 7.18 

(dd, J = 15.5, 11.0 Hz, 1H), 7.26－7.44 (m, 7H). Selected data of (2E,4E)-isomer; 5.29 
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(m, 1H), 5.,99 (dd, J = 15.1, 6.4 Hz, 1H), 6.46 (dd, J = 15.1, 10.5 Hz, 1H), 6.57 (d, J = 

15.5 Hz, 1H), 6.78 (dd, J = 15.5, 10.5 Hz, 1H). 13C NMR (100 MHz, CDCl3): 55.3, 69.7, 

114.0, 123.4, 126.6, 127.2, 127.9, 128.6, 129.8, 133.2, 134.8, 135.3, 136.9, 159.1. IR 

(neat): 3382, 3026, 2956, 2834, 1610, 1584, 1509, 1449, 1302, 1247, 1173, 1033, 986, 

946, 862, 830, 741, 692 cm–1. HRMS (ESI-TOF): Calcd for C18H18O2Na [M+Na+]: 

289.1204. Found: 289.1198. 

 

(2Z,4E)-1-(4-Chlorophenyl)-5-phenyl-2,4-pentadien-1-ol (2f) 

2f (59 mg, 63% from 0.35 mmol 2f) was obtained as an oil. 1H NMR (400 MHz, 

CDCl3): 1.98 (br, 1H), 5.62 (dd, J = 9.1, 10.5 Hz, 1H), 5.80 (d, J = 9.1 Hz, 1H), 6.31 (t, 

J = 10.5 Hz, 1H), 6.68 (d, J = 15.5 Hz, 1H), 7.20 (dd, J = 15.5, 10.5 Hz, 1H), 7.25-7.42 

(m, 9H). Selected data of (2E,4E)-isomer; 5.30 (d, J = 6.4 Hz, 1H), 5.94 (dd, J = 15.1, 

6.4 Hz, 1H), 6.46 (dd, J = 15.1, 11.0 Hz, 1H), 6.59 (d, J = 16.0 Hz, 1H), 6.77 (dd, J = 

16.0, 11.0 Hz, 1H). 13C NMR (100 MHz, CDCl3): 69.3, 123.0, 126.6, 127.3, 128.1, 

128.7, 130.6, 132.5, 133.3, 135.5, 136.8, 141.5. IR (neat): 3351, 3027, 1636, 1595, 1489, 

1449, 1400, 1090, 1013, 986, 945, 861, 826, 744, 691 cm–1. HRMS (EI): Calcd for 
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C17H15OCl [M+]: 270.0811. Found: 270.0814. 

 

(2Z,4E)-1-(2-Naphthalenyl)-5-phenyl-2,4-pentadien-1-ol (2g) 

2g (68 mg, 68% from 0.35 mmol 1g) was obtained as an oil. 1H NMR (400 MHz, 

CDCl3): 2.09 (br, 1H), 5.76 (dd, J = 11.0, 8.7 Hz, 1H), 5.98 (d, J = 8.7 Hz, 1H), 6.35 (t, 

J = 11.0 Hz, 1H), 6.67 (d, J = 15.1 Hz, 1H), 7.26－7.55 (m, 9H), 7.81－7.91 (m, 4H). 

13C NMR (100 MHz, CDCl3): 70.2, 123.3, 124.1, 124.3, 125.9, 126.2, 126.6, 127.6, 

128.0, 128.4, 128.7, 130.4, 132.8, 132.9, 133.3, 135.2, 136.8, 140.4. IR (neat): 3447, 

3024, 1599, 1507, 1492, 1449, 1371, 1242, 1158, 1123, 1046, 990, 896, 858, 818, 747, 

693 cm–1. HRMS (EI): Calcd for C21H18O [M+]: 286.1358. Found: 286.1353. 

 

(2Z,4E)-5-(4-Methylphenyl)-1-phenyl-2,4-pentadien-1-ol (2h) 

2h (63 mg, 72% from 0.35 mmol 1h) was obtained as an oil. 1H NMR (400 MHz, 

CDCl3): 1.98 (br, 1H), 2.35 (s, 3H), 5.66 (dd, J = 11.0, 8.7 Hz, 1H), 5.82 (d, J = 8.7 Hz, 

1H), 6.29 (t, J = 11.0 Hz, 1H), 6.61 (d, J = 15.6 Hz, 1H), 7.13－7.48 (m, 10H). 13C 

NMR (100 MHz, CDCl3): 21.3, 70.0, 122.4, 125.9, 126.5, 127.6, 128.6, 129.4, 130.4, 
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132.4, 134.1, 135.0, 138.0, 143.1. IR (neat): 3293, 3023, 1630, 1603, 1509, 1490, 1453, 

1343, 1287, 1191, 1017, 984, 954, 941, 908, 839, 806, 765, 735, 696 cm–1. HRMS (EI): 

Calcd for C18H18O [M+]: 250.1358. Found: 250.1343. 

 

(2Z,4E)-5-(2-Naphthalenyl)-1-phenyl-2,4-pentadien-1-ol (2i) 

2i (67 mg, 67% from 0.35 mmol 1i) was obtained as an oil. 1H NMR (400 MHz, 

CDCl3): 2.05 (br, 1H), 5.73 (dd, J = 11.0, 9.1 Hz, 1H), 5.89 (d, J = 9.1 Hz, 1H), 6.37 (t, 

J = 11.0 Hz, 1H), 6.81 (d, J = 15.6 Hz, 1H), 7.32－7.48 (m, 8H), 7.66 (d, J = 7.8 Hz, 

1H), 7.78－7.81 (m, 4H). Selected data of (2E,4E)-isomer; 5.35 (d, J = 5.9 Hz, 1H), 

6.05 (dd, J = 15.1, 5.9 Hz, 1H), 6.54 (dd, J = 15.1, 9.6 Hz, 1H), 6.74 (d, J = 16.4 Hz, 

1H), 6.88 (dd, J = 16.4, 9.6 Hz, 1H). 13C NMR (100 MHz, CDCl3): 70.1, 123.5, 123.6, 

125.9, 126.1, 126.4, 126.9, 127.6, 127.7, 128.0, 128.3, 128.6, 130.3, 133.10, 133.15, 

133.5, 134.4, 135.2, 143.0. IR (neat): 3397, 3030, 1626, 1600, 1506, 1491, 1454, 1268, 

1115, 1008, 985, 953, 851, 822, 750, 700 cm–1. HRMS (EI): Calcd for C21H18O [M+]: 

286.1358. Found: 286.1363. 
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(2Z,4E)-6,6-Dimethyl-1-phenyl-2,4-heptadien-1-ol (2j) 

2j (44 mg, 53% from 0.35 mmol 1j) was obtained an oil. 1H NMR (400 MHz, CDCl3): 

1.06 (s, 9H), 1.90 (br, 1H), 5.51 (dd, J = 11.0, 8.7 Hz, 1H), 5.72 (d, J = 8.7 Hz, 1H), 

5.83 (d, J = 15.1 Hz, 1H), 6.10 (t, J = 11.0 Hz, 1H), 6.40 (dd, J = 15.1, 11.0 Hz, 1H), 

7.26－7.42 (m, 5H). 13C NMR (100 MHz, CDCl3): 29.4, 33.5, 69.9, 119.5, 125.8, 127.4, 

128.5, 130.5, 130.9, 143.4, 149.0. IR (neat): 3330, 3029, 2959, 2902, 2864, 1650, 1602, 

1493, 1451, 1362, 1267, 1038, 985, 949, 743, 698 cm–1. HRMS (EI): Calcd for C15H20O 

[M+]: 216.1514. Found: 216.1522. 

 

A mixture of 2k and 3 (40 mg, 59% from 0.35 mmol 1k) was obtained as an oil. The 

yields of 2k and 3 were determined by 1H NMR spectrum of their mixture. After further 

separation of 2k and 3 by column chromatography, the physical properties were 

measured. 

(2Z,4E)-6-Methyl-1-phenyl-2,4-heptadien-1-ol (2k) 

2k (34%). 1H NMR (400 MHz, CDCl3): 1.03 (d, J = 6.9 Hz, 3H), 1.04 (d, J = 6.9 Hz, 

3H), 1.89 (br, 1H), 2.35－2.43 (m, 1H), 5.50 (dd, J = 11.0, 8.7 Hz, 1H), 5.70 (d, J = 8.7 
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Hz, 1H), 5.80 (dd, J = 15.1, 6.8 Hz, 1H), 6.10 (t, J = 11.0 Hz, 1H), 6.43 (dd, J = 15.1, 

11.0 Hz, 1H), 7.25－7.42 (m, 5H). 13C NMR (100 MHz, CDCl3): 22.20, 22.21, 31.4, 

69.9, 121.8, 125.8, 127.5, 128.5, 130.5, 130.7, 143.4, 145.1. IR (neat): 3331, 3026, 2958, 

2924, 1696, 1601, 1540, 1493, 1452, 1377, 1028, 986, 853, 746, 669 cm–1. HRMS (EI): 

Calcd for C14H18O [M+]: 202.1358. Found: 202.1367. 

 

(E)-6-Methyl-1-phenyl-3,5-heptadien-1-ol (3) 

3k (25%). 1H NMR (400 MHz, CDCl3): 1.75 (s, 3H), 1.78 (s, 3H), 1.79 (br, 1H), 2.80 

(ddd, J = 13.2, 12.4, 6.8 Hz, 1H), 2.89 (dd, J = 13.2, 5.0 Hz, 1H), 4.40 (dd, J = 12.4, 5.0 

Hz, 1H), 5.62 (dd, J = 15.1, 6.8 Hz, 1H), 5.82 (d, J = 11.0 Hz, 1H), 6.44 (dd, J = 15.1, 

11.0 Hz, 1H), 7.20－7.26 (m, 3H), 7.29－7.33 (m, 2H). 13C NMR (100 MHz, CDCl3): 

18.3, 26.0, 44.3, 76.7, 124.2, 126.5, 127.4, 128.5, 129.6, 132.0, 136.3, 137.9. IR (neat): 

3404, 3026, 2922, 2855, 1659, 1602, 1494, 1453, 1376, 1260, 1094, 1029, 986, 959, 

868, 801, 746, 700 cm–1. HRMS (ESI-TOF): Calcd for C14H18ONa [M+Na+]: 225.1255. 

Found: 225.1255. 
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Supporting Information 

1H NMR and 13C NMR spectra of compounds 1–4. This material is available free of 

charge via the Internet at http://pubs.acs.org/. 
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