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We study the fixed point structure of the Higgs-Yukawa model, with its scalar being non-
minimally coupled to the asymptotically safe gravity, using the functional renormalization
group. We have obtained the renormalization group equations for the cosmological and
Newton constants, the scalar mass-squared and quartic coupling constant, and the Yukawa
and non-minimal coupling constants, taking into account all the scalar, fermion, and
graviton loops. We find that switching on the fermionic quantum fluctuations makes the
non-minimal coupling constant irrelevant around the Gaussian-matter fixed point with
the asymptotically safe gravity.

∗E-mail: odakin@phys.sci.osaka-u.ac.jp
†E-mail: masay@hep.s.kanazawa-u.ac.jp

1



1 Introduction

Construction of quantum gravity is one of the most important, and challenging, subjects in
physics. The general relativity is derived from the Einstein-Hilbert action

SEH =

∫
dDx
√
g

(
− 1

16πG
R+ λ

)
, (1)

where G and λ are the Newton and cosmological constants and we work with the Euclidean
action throughout this paper. The Einstein gravity (1) can accurately account for the macro-
scopic phenomena such as the perihelion precession of Mercury and the gravitational lens-
ing. Therefore we believe that the action (1) correctly describes the dynamics of gravity in
the long range. On the other hand, its quantization is quite difficult because of the non-
renormalizability. The asymptotically safe quantum gravity, suggested by Weinberg [1], is
one of the possible candidates of quantum gravity.

It is essential for the scenario of asymptotic safety that there exists a non-trivial ultraviolet
(UV) fixed point.1 Around the UV fixed point, two hypersurfaces are defined: the UV
and infrared (IR) critical surfaces.2 The UV critical surface consists of the renormalized
trajectories that are flowing out of the UV fixed point and is in general finite dimensional,
whereas the IR critical surface is its orthogonal complement and is infinite dimensional in
general. See Fig. 1.

The renormalization group (RG) flow of the renormalized trajectory on the UV critical
surface takes infinite steps of renormalization transformations near the UV fixed point. If
the IR physics is realized as a point on the UV critical surface, then the continuum limit
Λ → ∞ can be taken, and the theory is free from UV divergences. Furthermore, when the
dimension of the UV critical surface is finite, the theory is non-perturbatively renormalizable
even if it is non-renormalizable in perturbation theory; see e.g. Refs. [2, 3, 4, 5, 6]. The idea of
the asymptotic safety has been applied not only to gravity but also to the extra-dimensional
model [7, 8, 9, 10] and to the Higgs-Yukawa model in flat spacetime [11, 12, 13, 14, 15]. The
quantum Einstein gravity theory is asymptotically safe if there exists the UV critical surface
including the Newton constant. We will further review the concept of the asymptotic safety
in section 2.

In earlier study the exsistence of UV fixed point of the Newton constant G has been
studied by an ϵ-expansion in 2 + ϵ dimensions [1, 16]. The fixed point of the dimensionless
rescaled Newton constant G̃ := GΛϵ is found as G̃∗ = 3ϵ/38 when ignoring the cosmological
constant λ. The dimensionful Newton constant G vanishes asymptotically around the fixed
point if ϵ > 0, that is, G ≃ G̃∗/Λϵ → 0 for Λ→∞. Then the theory is asymptotically free.

The ϵ expansion method has difficulties in applying to arbitrary space-time dimensions
and in analyzing the theory in detail. The functional renormalization group (FRG) [17, 18,
19, 20, 21, 22] is useful for such purposes. After its pioneering application to the quantum
Einstein gravity given by Reuter [23], the UV fixed point and the RG flow structure of the

1 In general we call a fixed point “UV” if it has a relevant direction. (Throughout this paper, we call an
operator “relevant” if its coupling constant departs from the fixed point in the flow from UV to IR.) Sometimes
“IR fixed point” is defined by the condition that all the directions become either irrelevant or marginal around
it. Here instead we call a fixed point “IR”, even when there exists a relevant direction around it, if the RG
flow from the UV fixed point is attracted toward it, as is the case for the Wilson-Fisher fixed point. See Fig. 1.

2 Usually, “critical surface” refers to what is called the “IR critical surface” here. In the literature on the
asymptotic safety, the wording “UV critical surface” is used frequently, and we put “IR” on what is usually
called “critical surface”, in order to distinguish it from the other.
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Figure 1: Schematic figure for the RG flow in the theory space. The arrows indicate the
direction from UV to IR. The left (red) and right (purple) points, labelled IRFP and UVFP,
are the IR and UV fixed points, respectively. The UV critical surface (green) is the finite-
dimensional subspace spanned by the renormalized trajectories that are flowing out of the UV
fixed point. Under the asymptotic safety, our low energy effective theory is one of the points
on the renormalized trajectory. The right (blue) surface is the IR critical surface, which is
generally infinite dimensional; see footnote 2. The other (orange) generic flows cannot be used
to construct an asymptotically safe theory. The left (yellow) surface is a finite-dimensional
subspace spanned by the relevant directions around the IR fixed point.
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Einstein gravity have been investigated in Refs. [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], and its extended models with matters are
studied in Refs. [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]; see also
Refs. [65, 66, 67, 68, 69, 70] for reviews.3 The existence of the UV fixed point and the
stability of the dimension of the UV critical surface when extending the theory space have
been studied in Refs. [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90]. For
example in Ref. [87], the f(R) gravity that has powers of the Ricci scalar R up to order R34

is studied, and it has been shown that the number of dimensions of the UV critical surface
is stable to be three, namely, the relevant operators are λ, R and R2. Furthermore, the
Higgs mass was predicted to be ≃ 126GeV before the Higgs discovery by requiring the Higgs
quartic coupling to vanish around the Planck scale in the context of the asymptotically safe
gravity [91]. These results encourage the asymptotic safety scenario for the quantum gravity.

The purpose of this paper is to contribute to the investigation whether the asymptotically
safe gravity can have a large non-minimal coupling ξ between R and a scalar field in the IR
limit. Such a large non-minimal coupling plays a crucial role in the Higgs inflation scenario [92,
93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103]; see Ref. [104] for a phenomenological study in
a concrete model of the Higgs inflation under the asymptotically safe gravity.4 In the first
attempts of Higgs inflation [92, 93], it was necessary to have an extremely large value of ξ of
order 104–105 to account for the cosmological data. Later it has been pointed out [96, 97]
that it is possible to have a successful Higgs inflation with smaller ξ ∼ 10, given the criticality
of the Higgs potential, i.e., the fact that both the Higgs quartic coupling and its beta function
can vanish at around the Planck scale ∼ (32πG)−1/2 ≃ 1018GeV; see also Ref. [95]. For the
criticality of the Higgs potential in the Standard Model, it is essential that the Higgs field
has the large Yukawa coupling to the top quark. Therefore, it is important to understand the
asymptotic safety in a Higgs-Yukawa system which is non-minimally coupled to the gravity.

In Refs. [49, 51, 52, 114, 115], the authors have analyzed a simplified scalar-gravity system
without fermions, taking into account the non-minimal coupling ξ between a neutral scalar
and the Ricci scalar, under the local potential approximation (LPA) in FRG: The non-minimal
coupling is shown to be relevant around the UV fixed point. In Ref. [53], the authors have
analyzed a simplified Higgs-Yukawa system with the same neutral scalar and an additional
fermion and without ξ, in the flat spacetime. We combine these two approaches and analyze
the running of ξ and the Yukawa coupling under the influence of the fermionic quantum
fluctuations, in the simplified Higgs-Yukawa system that is non-minimally coupled to gravity.
We find that ξ becomes irrelevant by inclusion of the fermions.

This paper is organized as follow: We briefly review the concept of asymptotic safety in
the next section. In section 3, we introduce the Higgs-Yukawa model which is non-minimally
coupled to gravity. In Sec. 4, we show explicitly the RG equations of the model. In section 5,
we present the methods and results of the numerical analysis. In Sec. 6, we give summary and
discussions. In appendix A, we briefly sketch how the Wetterich equation is derived from the
cutoff dependence of the effective action equipped with the cutoff function. In appendix B,
we list the formulae for supermatrix. In appendix C, we rewrite the Wetterich equation into
suitable form to be used in our application, using the supermatrix formula. In appendix D, we

3 In Refs. [71, 72, 47], the issue of gauge dependence has been discussed.
4 In Refs. [105, 106], the asymptotically safe gravity has been applied to the Starobinsky R2 inflation model.

In Ref. [107], it has been claimed that the Higgs potential becomes flat above a certain transition scale under
the asymptotic safety. See Refs. [108, 109, 110, 111] for attempts of the so-called asymptotically safe inflation,
and also Refs. [112, 113].
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review the heat kernel expansion techniques which are used to sum up the eigenvalues of the
differential operators. In appendix E, we show the explicit derivations of the beta functions
in our system.

2 Asymptotic safety

In this section we explain the basic idea of the asymptotic safety. We start from a system
described by an effective action

ΓΛ =

∫
dDx

∞∑
i

gi,Λ

ΛDOi
−D
Oi, (2)

where gi,Λ are the dimensionless coupling constants, Oi are operator bases, and DOi is the
dimension of Oi. Let us write the RGE for the coupling constant gi,Λ

−Λ
∂gi,Λ
∂Λ

= βi(gΛ) , (3)

where βi(gΛ) is the abbreviation for βi(g1,Λ, g2,Λ, . . . ). The fixed point g∗ is given by the
solution to the vanishing beta functions:

βi(g
∗) = 0. (4)

In many cases, there exists the trivial (Gaussian) fixed point: g∗i = 0 for all i.
Here we consider the case that the coupled equation (4) has a non-trivial fixed point with

g∗j ̸= 0 for some j and that this is the UV fixed point, namely, there exists a relevant direction
flowing out of this point. The resultant RG flows, given by Eq. (3), are as schematically shown
in Fig. 1. As said in Introduction, the IR critical surface separates the theory space (the space
of coupling constants) into two phases, and is spanned by an infinite number of irrelevant
operators. On the other hand, the UV critical surface (the green renormalized trajectories
in Fig. 1) controls the IR physics. That is, an arbitrary RG flow from the neighborhood of
UV fixed point approaches this hypersurface at IR scales. In other words, when we fix the
physics at IR scales and take the continuum limit Λ → ∞, the theory on the renormalized
trajectory approaches the UV non-trivial fixed point and dose not diverge from it.

To conclude, such an RG flow can be a candidate of the UV complete theory. Furthermore,
if the dimension of the UV critical surface is finite, the theory is renormalizable: The finite
number of parameters spanning the UV critical surface determine all other parameters.5 Note
that a perturbative expansion can be done only at the vicinity of the trivial fixed point g∗i,Λ = 0
and that we need a non-perturbative method to analyze the whole structure the RG flows to
find out the fixed points.

To see the renormalizability of the theory, we evaluate the critical exponents θi of the
coupling constants by linearizing the RGEs (3) around the fixed point g∗i,Λ:

gi,Λ = g∗i,Λ +

∞∑
j=0

ζij

(
Λ0

Λ

)θj

, (5)

5The renormalizability in low energy region is guaranteed by an existence of the stable hypersurface with
finite dimention. It is known as the Polchinski theorem; see [116, 117, 118] for the scalar theory and [119] for
QED.
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where Λ0 is a UV cutoff scale.6 The RG flow going away from the fixed point has a critical
exponent with positive real part,7 and is on the UV critical surface. Therefore, we can
examine whether the UV critical surface is finite dimensional or not, by investigating the
number of positive critical exponents. We will investigate the fixed point structure and the
critical exponent of our theory in Sec. 5.

Let us illustrate the situation with the case where the UV critical surface is spanned by a
single operator O1. The dimensionful parameter G1,Λ reads

g∗1,Λ = ΛDO1
−DG1,Λ. (6)

When DO1 −D > 0, the dimensionful parameter G1,Λ at vicinity of the UV fixed point goes
to zero in the UV limit Λ → ∞. That is, the theory becomes asymptotically free. When
DO1 = D, the coupling constant G1,Λ is dimensionless and the theory becomes asymptotically
non-free.8 To summarize, the asymptotic safety is a generalization of the asymptotic freedom.
We have ζ1j = g1,Λδ1j with a positive critical exponent Re(θ1) > 0, while the others are
negative, and g1,Λ becomes a single physical free parameter of the theory.

We comment on the dimension of an operator and its coupling constant. The beta function
of g1,Λ is typically given as9

βg1,Λ = − (DO1 −D) g1,Λ + Lg21,Λ, (7)

where L is a loop factor and we have ignored the contributions from other couplings. Note
that the anomalous dimension from the field renormalization is ignored throughout this paper
as we are taking the LPA. Around the trivial fixed point g∗1,Λ = 0, the first term (the so-called
canonical scaling term) in Eq. (7) becomes dominant. The coefficient − (DO1 −D) is the
dimension of g1,Λ, and the dimension of the operator is simply DO1 . On the other hand, at
the non-trivial fixed point, we get g∗1,Λ = (DO1 −D) /L, and the beta function is rewritten as

βg1,Λ = (DO1 −D)
(
g1,Λ − g∗1,Λ

)
+ L

(
g1,Λ − g∗1,Λ

)2
. (8)

The dimension of operator is effectively changed to D − (DO1 −D) = 2D −DO1 .
Let us consider the case of the gravity in D = 4. The operator O1 = R and its coupling

constant g1,Λ = 1/16πG have the canonical dimension DO1 = 2 and − (DO1 −D) = 2,
respectively. At the non-trivial fixed point, the effective dimension of the operator becomes
2D −DO1 = 6, and that of the gravitational coupling constant g1,Λ has been changed from
the canonical dimension − (DO1 −D) = 2 to the value DO1 −D = −2. The critical exponent
DO1−D in Eq. (8) is physically the effective dimension of the coupling around the non-trivial
fixed point.

There are attempts to read off the number of effective degrees of freedom (namely the
spectral dimension) from the RG flows of the theory, in order to test whether the asymp-
totically safe gravity can be achieved or not: Such attempts have been made in Refs. [120,
121, 122, 69, 123] using the FRG and in Refs. [124, 125] using the lattice simulation; see also
Refs. [126, 127, 128, 129, 130] for related studies.

6 An explicit derivation is shown in Sec. 5.
7 The imaginary part of the critical exponent corresponds to the mixing with other couplings when flowing

out of the UV fixed point.
8 If the fixed point g∗1,Λ is a trivial UV fixed point g∗1,Λ = 0 with DO1 = D, the coupling constant G1,Λ in

the UV limit, and the theory becomes asymptotically free. This is the case for the quantum chromodynamics.
9 The FRG is one-loop exact and the term of O

(
g31,Λ

)
does not appear in general.
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3 Non-minimal Higgs-Yukawa model

3.1 The model

As a toy model for the Higgs inflation scenario under the asymptotically safe gravity, we study
a Higgs-Yukawa model with a real scalar field ϕ̂ and with Nf-flavors of Dirac fermions ψ̂,
where its flavor index is suppressed. We write the metric ĝµν and the volume element

√
ĝ.

We decompose the integration variables ĝµν , ϕ̂ and ψ̂ in the functional integral over all field
configurations according to

ĝµν = gµν + hµν ,

ϕ̂ = ϕ+ φ,

ψ̂ = ψ + χ, (9)

where gµν , ϕ and ψ are fixed background fields so that the integration over ĝµν , ϕ̂ and ψ̂ may
be replaced by an integration over hµν , φ and χ, respectively.

We write the truncated effective action in Euclidean space:

ΓΛ[gµν , ϕ, ψ; hµν , φ, χ] =

∫
d4x
√
ĝ

{
VΛ

(
ϕ̂2
)
− FΛ

(
ϕ̂2
)
R̂+

1

2
ĝµν ∂µϕ̂ ∂ν ϕ̂+ ψ̂ /̂Dψ̂ + yΛϕ̂ψ̂ψ̂

}
+ SGF + Sgh, (10)

where /̂D is the general covariant derivative on spinor fields that includes the spin connection;
SGF and Sgh are the gauge fixing and ghost terms, respectively, shown below; and the widehat
symbol ̂ denotes that the corresponding quantity is made of the metric ĝµν and veirbein êaµ.

We have imposed the Z2 symmetry: ϕ̂→ −ϕ̂ and ψ̂ → γ5ψ̂.
10

We expand the scalar potential and the non-minimal coupling of ϕ̂ to the gravity:

VΛ

(
ϕ̂2
)
= λ̂0(Λ) + λ̂2(Λ) ϕ̂

2 + λ̂4(Λ) ϕ̂
4 + · · · , (11)

FΛ

(
ϕ̂2
)
= ξ̂0(Λ) + ξ̂2(Λ) ϕ̂

2 + ξ̂4(Λ) ϕ̂
4 + · · · . (12)

In more conventional language, λ̂0 is the cosmological constant; λ̂2 = m2/2 gives the mass
parameter of the scalar field; and ξ̂0 = 1/16πG the Newton constant. The non-minimal
coupling ξ̂2 plays a crucial role in the Higgs inflation scenario [92]; see also Ref. [104].

We employ the following gauge-fixing and ghost actions for the diffeomorphisms [23, 49,
51, 52]

SGF =
1

2α

∫
dDx
√
g F
(
ϕ2
)
gµνΣµΣν , (13)

Sgh =

∫
dDx
√
g C̄µ

[
−gµρ∂2 − 1− β

2
∂µ∂ρ +Rµρ

]
Cρ, (14)

where Cµ and C̄µ are the ghost and anti-ghost fields for the diffeomorphisms, respectively; α
and β are gauge parameters; and

Σµ := ∂νhνµ −
β + 1

D
∂µh, (15)

10 A background ϕ ̸= 0 breaks this Z2 symmetry. In this paper, we restrict our attention to the case ϕ = 0.
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with h being the trace part of the fluctuation gµνhµν . Throughout this paper, the expres-
sion without the widehat symbol ̂ indicates that the indices are raised and lowered by the
background metric gµν , and expressions such as R and /D are written in terms of gµν and the
background vierbein eaµ.

3.2 Two-point functions

We collectively write the background fields Φ := (gµν , ϕ, ψ) and the fluctuations Υ :=(
hµν , φ, χ, Cµ, C̄µ

)
.11 The effective action is written as ΓΛ[Φ;Υ], which is expanded as

ΓΛ[Φ;Υ] = ΓΛ[Φ] + Γ
(1)
Λ [Φ;Υ] + Γ

(2)
Λ [Φ;Υ] +O

(
Υ3
)
, (16)

where Γ
(n)
Λ [Φ;Υ] contains the terms of order Υn.

To derive the beta functions for the Higgs-Yukawa model, we need to evaluate the Γ
(2)
Λ

terms. After some computations, we obtain

Γ
(2)
Λ [Φ;Υ] =

1

2

∫
d4x
√
g

[
− 1

2
F
(
ϕ2
)
hµν∂2hµν +

1

2
F
(
ϕ2
)
h∂2h− F

(
ϕ2
)
h∂µ∂νh

µν + F
(
ϕ2
)
hµν∂µ∂ρh

ρ
ν

+

(
1

4
h2 − 1

2
hµνh

µν

)(
V
(
ϕ2
)
+ yϕψψ − F

(
ϕ2
)
R
)

+ F
(
ϕ2
)
hhµνRµν − F

(
ϕ2
)
h ν
ρ h

µρRµν − F
(
ϕ2
)
hµνRρµσνh

ρσ

− 1

16
h µ
ρ ∂νhσµψγ

ν [γρ, γσ]ψ

]
+

∫
d4x
√
g φ

[
− 2ϕF ′(ϕ2) {∂µ∂ν − ∂2gµν}hµν
+ h

{
ϕV ′(ϕ2)+ 1

2
yψψ − ϕF ′(ϕ2)R}+ hµν

{
2ϕF ′(ϕ2)+Rµν

}]
+

∫
d4x
√
g h

[
1

2
yϕ
(
ψχ+ χψ

) ]
+

1

2

∫
d4x
√
g φ

[ {
−∂2 + 2V ′(ϕ2)+ 4ϕ2V ′′(ϕ2)}−R{2F ′(ϕ2)+ 4ϕ2F ′′(ϕ2)} ]φ

+

∫
d4x
√
g

[
1

4

(
−∂µh+ ∂νh

ν
µ

) (
ψγµχ− χγµψ

) ]
+

∫
d4x
√
g φ

[
y
(
ψχ+ χψ

) ]
+

∫
d4x
√
g χ

[
/∂ + yϕ

]
χ+ SGF + Sgh, (17)

where SGF and Sgh are given in Eqs. (13) and (14), respectively,12 and the prime symbol ′

denotes a derivative with respect to ϕ2 so that

Vϕ = 2ϕV ′, Vϕϕ = 2V ′ + 4ϕ2V ′′,

Fϕ = 2ϕF ′, Fϕϕ = 2F ′ + 4ϕ2F ′′. (18)

Inserting (19) into hµν of (17), we get the two-point functions for each field. We write down
their explicit forms below.

11 The ghost Cµ and anti-ghost C̄µ are treated as fluctuations only.
12 They are already bilinear terms of the fluctuations.
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3.3 York decomposition

We decompose the graviton fluctuation as [131]

hµν = h⊥µν + ∂µξ̃ν + ∂ν ξ̃µ +

(
∂µ∂ν −

1

D
gµν∂

2

)
σ̃ +

1

D
gµνh, (19)

where ∂2 := gµν∂µ∂ν ; h
⊥
µν is the transverse and traceless tensor field with spin 2; ξ̃µ is the

transverse vector field with spin 1; and σ̃ and h := gµνhµν are the scalar fields with spin 0.
These fields satisfy the following conditions: gµνh⊥µν = 0, ∂νh⊥µν = 0, and ∂µξ̃µ = 0.

We decompose the ghosts into the transverse and scalar components:

Cµ = C⊥
µ + ∂µC̃,

C̄µ = C̄⊥
µ + ∂µC̄, (20)

where C̃, C̄ are spin-0 scalar fields and C⊥
µ , C̄⊥

µ are spin-1 transverse vector fields that satisfy

∂µC⊥
µ = ∂µC̄⊥

µ = 0.
In order to absorb the Jacobean of the path integral measure from the above decomposi-

tions, we redefine several components of the fluctuations as follows:

ξµ =

√
−∂2 − R

D
ξ̃µ, σ =

√
−∂2 − R

D − 1

√
−∂2 σ̃, C =

√
−∂2 C̃; (21)

see e.g. Ref. [70].
To summarize, the degrees of freedom in our system are the spin two h⊥µν , the spin one

ξµ, C
⊥
µ , C̄⊥

µ the spin half ψ, and the spin zero σ, h, ϕ, C, C̄.

3.4 Explicit form of two-point functions

For bosonic fields, we obtain

ΓBB =

Γh⊥
µνh

⊥
ρσ

0 0

0 Γξµξν 0
0 0 ΓSS

 , (22)

with

Γh⊥
µνh

⊥
ρσ

= (gµρgνσ)sym

[
F

2

(
p2 +

2R

3

)
− V + Y

2

]
+ (spin connection term), (23)

Γξµξν = gµν
[
F

α

(
p2 +

2α− 1

4
R

)
− V − Y

]
+ (spin connection term), (24)

ΓSS =



σ h φ

σ 3F
16

(
3−α
α p2 + α−1

α R
)
− 3(V+Y )

8
3F
16

β−α
α

√
p2 − R

3

√
p2 −3Fφ

4

√
p2 − R

3

√
p2

h 3F
16

β−α
α

√
p2 − R

3

√
p2 − F

16
3α−β2

α p2 + V+Y
8 −3Fφ

4

(
p2 + R

3

)
+

Vφ

2 +
Yφ

2

φ −3Fφ

4

√
p2 − R

3

√
p2 −3Fφ

4

(
p2 + R

3

)
+

Vφ

2 +
Yφ

2 p2 + Vφφ −RFφφ

,
(25)
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where (· · · )sym indicates that the indices inside parentheses are properly symmetrized;13 we

write a minus of the d’Alembertian in the de Sitter space p2 := −∂2; the over-left-arrow
←−

denotes that the differential operator acts on the left; and Y := yϕψψ and Yϕ := yψψ are the
Yukawa interaction and its derivative with respect to ϕ, respectively. The “spin connection
term” in Eqs. (23) and (24) is coming from the derivatives of the spin connection with respect
to the metric, which only affect operators involving higher powers of ψ and ψ; such operators
are truncated in our effective action.

Other parts are given by

ΓBF =



χ χT

h⊥µν 0 0

ξµ −1
4

√←−p 2
(
ψγµ

)
−1

4

√←−p 2 (γµψ)T

σ − 3
16

(←−
∂µ

) (
ψγµ

)
− 3

16

(←−
∂µ

)
(γµψ)T

h y
2ϕψ −

3
16

(←−
∂µ

) (
ψγµ

)
−y

2ϕψ
T − 3

16

(←−
∂µ

)
(γµψ)T

φ yψ −yψT


, (26)

ΓFB =


h⊥µν ξµ σ h φ

χT 0 1
4

(
ψγµ

)T√
p2 3

16

(
ψγµ

)T
∂µ −y

2ϕψ
T
+ 3

16

(
ψγµ

)T
∂µ −yψT

χ 0 1
4 (γ

µψ)
√
p2 3

16 (γ
µψ) ∂µ

y
2ϕψ + 3

16 (γ
µψ) ∂µ yψ

, (27)

ΓFF =

[
Γphys
FF 0

0 Γghost
FF

]
, (28)

where T denotes the transposition of the spinor indices and

Γphys
FF =


χ χT

χT 0 −
(←−
/DT + yϕ

)
χ /D + yϕ 0

, (29)

Γghost
FF =



C⊥
ν C̄⊥

ν C C̄

C⊥
µ 0 −gµν

(
p2 − R

4

)
0 0

C̄⊥
µ gµν

(
p2 − R

4

)
0 0 0

C 0 0 0 −
[(

2− 1+β
2

)
p2 − R

2

]
C̄ 0 0

(
2− 1+β

2

)
p2 − R

2 0

.
(30)

13 Explicitly, (gµρgνσ)sym = 1
4
(gµρgνσ + gνρgµσ + gνσgµρ + gµσgνρ).
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3.5 Explicit form of cutoff functions

We write down the cutoff function for the bosons in the non-minimal Higgs-Yukawa model:

RBB =

Rh⊥
µνh

⊥
ρσ

0 0

0 Rξµξν 0
0 0 RSS

 , (31)

with

Rh⊥
µνh

⊥
ρσ

= (gµρgνσ)sym
F

2
RΛ

(
p2
)
, (32)

Rξµξν = gµν
F

α
RΛ

(
p2
)
, (33)

RSS =


σ h φ

σ 3F
16

3−α
α RΛ

(
p2
)

3F
16

β−α
α KΛ

(
p2
)

−3Fϕ

4 KΛ

(
p2
)

h 3F
16

β−α
α KΛ

(
p2
)
− F

16
3α−β2

α RΛ

(
p2
)
−3Fϕ

4 RΛ

(
p2
)

φ −3Fϕ

4 KΛ

(
p2
)

−3Fϕ

4 RΛ

(
p2
)

RΛ

(
p2
)

, (34)

where we employ the optimized cutoff function [132]:

RΛ

(
p2
)
:=
(
Λ2 − p2

)
θ
(
Λ2 − p2

)
, (35)

KΛ

(
p2
)
:=

√
p2 +RΛ(p2)−

R

3

√
p2 +RΛ(p2)−

√
p2 − R

3

√
p2. (36)

Note that

∂RΛ

(
p2
)

∂Λ
= 2Λ θ

(
Λ2 − p2

)
, (37)

∂KΛ

(
p2
)

∂Λ
=

Λ
(
2Λ2 − R

3

)
θ
(
Λ2 − p2

)√
p2 + (Λ2 − p2) θ(Λ2 − p2)

√
p2 − R

3 + (Λ2 − p2) θ(Λ2 − p2)
. (38)

More explicitly,

RΛ

(
p2
)
=

{
Λ2 − p2,
0,

∂RΛ

(
p2
)

∂Λ
=

{
2Λ for p2 < Λ2,

0 for p2 ≥ Λ2,
(39)

KΛ

(
p2
)
=

{√
Λ2 − R

3

√
Λ2 −

√
p2 − R

3

√
p2,

0,

∂KΛ

(
p2
)

∂Λ
=


2Λ2−R

3√
Λ2−R

3

for p2 < Λ2,

0 for p2 ≥ Λ2.

(40)

The cutoff function for fermions is given by

RFF =

[
Rphysical 0

0 Rghost

]
, (41)
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Figure 2: The propagators in the truncated effective action

where

Rphysical =


χ χT

χT 0 −
←−
/DT

(√
1 +

RΛ(p2+R
4 )

p2+R
4

− 1

)
χ

(√
p2+R

4
+RΛ(p2+R

4 )
p2+R

4

− 1

)
/D 0

, (42)

Rghost =



C⊥
ν C̄⊥

ν C C̄

C⊥
µ 0 −gµνRΛ

(
p2
)

0 0

C̄⊥
µ gµνRΛ

(
p2
)

0 0 0

C 0 0 0 −
(
2− 1+β

2

)
RΛ

(
p2
)

C̄ 0 0
(
2− 1+β

2

)
RΛ

(
p2
)

0

.
(43)

For Rphysical, we have employed the so-called type II cutoff function [43] in order to give the
correct sign of the fermionic quantum corrections for the non-minimal potential F (ϕ2).

We have spelled out the two-point and cutoff functions. From them, we can construct the
inverse propagators as in Fig. 2. The vertex structures included in ΓFB and ΓBF are shown

12



Figure 3: The vertices with fermion in external or internal line

in Fig. 3.

4 RG equations

4.1 Computational methods

There are two methods to compute the beta functions for VΛ, FΛ and YΛ. One is a direct
evaluation of the Wetterich equation by algebraic matrix manipulation from the expression

∂

∂Λ
ΓΛ =

1

2
Tr

[
M−1

BB

∂RBB

∂Λ

]
− 1

2
Tr

[(
MFF −MFBM−1

BBMBF

)−1
(
∂RFF

∂Λ
+MFBM−1

BB

∂RBB

∂Λ
M−1

BBMBF

)]
,

(44)

where MΥΥ = ΓΥΥ + RΥΥ as in Eq. (119); explicit forms of the cutoff functions RΥΥ are
given in Sec. 3.5; and ΓΥΥ can be read off as the coefficients of the quadratic terms of the
fluctuations Υ in Eq. (17). For the detailed derivation of Eq. (44), see Appendix C. We
evaluate this expression employing the de-Donder gauge α = 0, β = 1 after taking the inverse
and the trace.

13



Figure 4: One loop contribution to V and F . The gray circle denotes the mixing of scalar
fields.
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The other is a one-loop diagrammatic computation, obtained by rewriting the Wetterich
equation as

∂tΓΛ =
1

2
Tr

∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
h⊥h⊥

+
1

2
Tr′

∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
ξξ

+
1

2
Tr′′

∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
SS

− Tr
∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
χχ

− Tr
∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
C̄⊥C

− Tr
∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
C̄C

, (45)

where we write

∂t := −Λ
∂

∂Λ
(46)

and each prime symbol ′ on the trace denotes a subtraction of a negative eigenvalue of the
differential operator from the trace.14 We see that each term in Eq. (45) can be represented
by the corresponding diagram in Fig. 4. Detailed computations are shown in Appendix E. In
Appendix D, we summarizes the values of the heat kernel coefficients used in Appendix E.

4.2 Running of V and F

As explained above, we compute the beta function for V and F . Its diagrammatic and
algebraic derivations are shown in Appendices E and C, respectively. The final results for the

14 Since the negative eigenvalues arise from order R2, we ignore it hereafter; see appendix of Ref. [70] for
details.
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beta functions are

∂tV =
Λ4

192π2

[
− 6− 30V

Ψ
− 6(Λ2Ψ+ 24ϕ2Λ2F ′Ψ′ + FΛ2Σ1)

∆

+ ∂tF

(
4

F
+

5Λ2

Ψ
+

Λ2Σ1

∆

)
+ ∂tF

′ 24ϕ
2Λ2Ψ′

∆

]
+

Nf

8π2
Λ6

Σ3
, (47)

∂tF = − Λ2

2304π2

{
150 +

120Λ2F (3Λ2F − V )

Ψ2

− 24

∆
(Λ2Ψ+ 24ϕ2Λ2F ′Ψ′ + FΛ2Σ1)

− 36

∆2

[
− 4ϕ2(6Λ4F ′2 +Ψ′2)∆

+ 4ϕ2ΨΨ′ (7Λ2F ′ − V ′) (Σ1 − Λ2
)

+ 4ϕ2Σ1

(
7Λ2F ′ − V ′) (2ΨV ′ − VΨ′)+ (2Λ4Ψ2 + 48Λ4F ′ϕ2ΨΨ′ − 24Λ4Fϕ2Ψ′2)Σ2

]
+
∂tF

F

[
30− 10Λ2F (7Ψ + 4V )

Ψ2

+
6

∆2

(
Λ2FΣ1∆+ 4ϕ2V ′Ψ′∆− 24Λ4Fϕ2Ψ′2Σ2 − 4ϕ2Λ2FΨ′Σ1

(
7Λ2F ′ − V ′)) ]

− ∂tF ′ 24Λ
2ϕ2

∆2

((
Λ2F ′ + 5V ′)∆− 2

(
7F ′Λ2 − V ′)ΨΣ1 − 12Λ2ΨΨ′Σ2

)}
+

Nf

48π2
Λ4

Σ3
, (48)

where we employ the notations

Ψ := FΛ2 − V,
Σ1 := Λ2 + 2V ′ + 4ϕ2V ′′,

Σ2 := 2F ′ + 4ϕ2F ′′,

Σ3 := Λ2 + y2ϕ2,

∆ := 12ϕ2Ψ′2 +ΨΣ1. (49)

In the case of Nf = 0, these results (47) and (48) agree with those in Ref. [51]. On the
other hand, we also reproduce the result in Ref. [53] when we put the vanishing non-minimal
coupling, i.e. F = ξ̂0 in Eq. (50). We get the RGE for each coupling constant by expanding
V (ϕ2) and F (ϕ2) into polynomials of the squared scalar field ϕ2:

V
(
ϕ2
)
=

∞∑
n=0

λ̂2nϕ
2n, F

(
ϕ2
)
=

∞∑
n=0

ξ̂2nϕ
2n. (50)

To investigate the fixed point structure, we define the rescaled dimensionless coupling con-
stants:

λ2n := λ̂2nΛ
2n−4, ξ2n := ξ̂2nΛ

2n−2. (51)
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The cutoff Λ disappears from RGEs for these dimensionless coupling constants, and there
remain the so-called canonical scaling terms:

∂tλ2n = − (2n− 4)λ2n + fluctuations, ∂tξ2n = − (2n− 2) ξ2n + fluctuations, (52)

where “fluctuations” indicate the loop contributions, which are one-loop exact. Note that the
coefficient of the canonical scaling term becomes the dimension of the coupling constant in
the LPA.

4.3 Running of scalar and gravitational coupling constants

We have considered the truncation of full system by restricting to the functional form (10).
Now we truncate the series in Eq. (50) up to λ̂4 and to ξ̂2. We can read off the beta functions
for ξ0, λ0, ξ2, λ2, and λ4 from Eqs. (47) and (48). We show the results in the symmetric
phase ϕ = 0:

∂tξ0 = 2ξ0 −
1

384π2

[
25− 4

1 + 2λ2
− 24ξ2

(1 + 2λ2)
2 +

8ξ0 (7ξ0 − 2λ0)

(ξ0 − λ0)2

]
+

1

1152π2
∂tξ0 − 2ξ0

ξ0

17ξ20 + 18λ0ξ0 − 15λ20
(ξ0 − λ0)2

+
Nf

48π2
, (53)

∂tλ0 = 4λ0 −
1

32π2

[
2 +

1

1 + 2λ2
+

6λ0
ξ0 − λ0

]
+
∂tξ0 − 2ξ0
96π2ξ0

5ξ0 − 2λ0
ξ0 − λ0

+
Nf

8π2
, (54)

∂tξ2 = −
1

576π2

[
1 + 2λ2
ξ0 − λ0

(
9 +

39ξ0
ξ0 − λ0

+
60ξ20

(ξ0 − λ0)2

)
+

3 (3 + 32ξ2)

ξ0 − λ0
− 6ξ0 (11 + 2ξ2)

(ξ0 − λ0)2

− 60ξ20 (1 + 2ξ2)

(ξ0 − λ0)3
+

216ξ2 (1 + 2ξ2)
2

(1 + 2λ2)
3 (ξ0 − λ0)

+
9 [λ0 (5− 2ξ2)− 2ξ0 (1 + 2ξ2)] (1 + 2ξ2)

(1 + 2λ2) (ξ0 − λ0)2

+
27 (1 + 2ξ2)

(
1− 10ξ2 − 16ξ22

)
(1 + 2λ2)

2 (ξ0 − λ0)
+

108ξ0ξ2 (1 + 2ξ2)
2

(1 + 2λ2)
2 (ξ0 − λ0)2

+
72λ4

(1 + 2λ2)
2

1 + 12ξ2 + 2λ2
1 + 2λ2

]
+
∂tξ0 − 2ξ0
1152π2ξ0

[
1 + 2λ2
ξ0 − λ0

(
3 +

18ξ0
ξ0 − λ0

+
20ξ20

(ξ0 − λ0)2

)
+

15ξ2
ξ0
− 6 (1 + ξ2)

ξ0 − λ0
− 10ξ0 (3 + 4ξ2)

(ξ0 − λ0)2

− 20ξ20 (1 + 2ξ2)

(ξ0 − λ0)3
− 3 [λ0 − ξ0 (5− 4ξ2)] (1 + 2ξ2)

(1 + 2λ2) (ξ0 − λ0)2
+

36ξ0ξ2 (1 + 2ξ2)
2

(1 + 2λ2)
2 (ξ0 − λ0)2

]
+

∂tξ2
1152π2ξ0

[
− 15 +

54ξ0
ξ0 − λ0

+
20ξ20

(ξ0 − λ0)2
− 6ξ0 (7 + 2ξ2)

(1 + 2λ2) (ξ0 − λ0)
− 144ξ0ξ2 (1 + 2ξ2)

(1 + 2λ2) (ξ0 − λ0)

]
− Nfy

2

48π2
, (55)

∂tλ2 = 2λ2 −
1

48π2

[
9λ0 (1 + 2ξ2)

2 (ξ0 − λ0)2
− 9 (2λ0 − ξ0) (1 + 2ξ2)

2

2 (1 + 2λ2) (ξ0 − λ0)2
− 9 (1 + 2ξ2)

2

2 (1 + 2λ2)
2 (ξ0 − λ0)

− 18λ4

(1 + 2λ2)
2

]
+
∂tξ0 − 2ξ0
96π2ξ0

[
− 2ξ2

ξ0
+

3ξ0 (1 + 2ξ2)

2 (ξ0 − λ0)2
− 3ξ0 (1 + 2ξ2)

2

2 (1 + 2λ2) (ξ0 − λ0)2

]
+

1

96π2
∂tξ2
ξ0

[
2− 3ξ0

ξ0 − λ0
+

6ξ0 (1 + 2ξ2)

(1 + 2λ2) (ξ0 − λ0)

]
− Nfy

2

8π2
, (56)
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∂tλ4 = −
1

48π2

[
9

4 (ξ0 − λ0)2

(
5 (1 + 2λ2) (1 + 4ξ2)− (1 + 2ξ2) (21 + 62ξ2) +

33 (1 + 2ξ2)
3

1 + 2λ2

− (1 + 2ξ2)
3 (23 + 24ξ2)

(1 + 2λ2)
2 +

6 (1 + 2ξ2)
4

(1 + 2λ2)
3

)

+
9ξ0 (ξ2 − λ2)2

(ξ0 − λ0)3

(
6
(1 + 2ξ2)

2

(1 + 2λ2)
2 − 10

1 + 2ξ2
1 + 2λ2

+ 5

)
− 72λ2λ4 (1 + 2ξ2) (1− 4λ2 + 6ξ2)

(ξ0 − λ0) (1 + 2λ2)
3

+
9ξ0λ4

(ξ0 − λ0)2

(
6
(1 + 2ξ2)

2

(1 + 2λ2)
2 − 8

1 + 2ξ2
1 + 2λ2

+ 3

)
+

216λ24
(1 + 2λ2)

3

]

+
∂tξ0 − 2ξ0
96π2ξ0

[
2ξ22
ξ20

+
3ξ0 (ξ2 − λ2)2

(ξ0 − λ0)3

(
6
(1 + 2ξ2)

2

(1 + 2λ2)
2 − 10

1 + 2ξ2
1 + 2λ2

+ 5

)

+
3ξ0λ4

(ξ0 − λ0)2

(
6
(1 + 2ξ2)

2

(1 + 2λ2)
2 − 8

1 + 2ξ2
1 + 2λ2

+ 3

)]

+
1

96π2
∂tξ2
ξ0

[
− 2ξ2

ξ0
− 24ξ0λ4 (1− 4λ2 + 6ξ2)

(1 + 2λ2)
2 (ξ0 − λ0)

− 3ξ0 (ξ2 − λ2)
(ξ0 − λ0)2

(
12

(1 + 2ξ2)
2

(1 + 2λ2)
2 − 21

1 + 2ξ2
1 + 2λ2

+ 10

)]
+
Nfy

4

8π2
. (57)

The last term of each beta function is coming from the fermionic fluctuation. The others
agree with the results in Ref. [51]. When y = 0, we see that the loop of ψ contributes only to
the beta functions of ξ0 and λ0.

In Ref. [53], the authors have studied the Higgs-Yukawa model without the non-minimal
coupling ξ2 = 0. We have checked that when ξ2 = 0, our RG equation for the scalar poten-
tial (47) reduces to theirs, namely the first line of Eq. (4) in Ref. [53], if we impose that the
dimensionful gravitational coupling constant ξ̂0 does not run, ∂tξ̂0 = ∂tξ0 − 2ξ0 = 0, in the
right hand side of the RG equation. (We write ξ0 = 1/16πG̃ where G̃ is the dimensionless
Newton constant.) Similarly, we can see that the RG equations for λ0 (54), for λ2 (56), and
for λ4 (57) reduce to Eq. (6) in Ref. [53] if we put λ0 = ξ2 = 0 and ∂tξ̂0 = 0.
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(I) (II) (III) (IV) (V)

(VI) (VII) (VIII) (IX)

(X) (XI) (XII) (XIII)

Figure 5: The corrections to the Yukawa coupling constant in our truncation. The black
dot and the gray circle denote the Yukawa interaction vertex and the mixing of scalar fields,
respectively.

4.4 Running of Yukawa coupling

By the same two methods described in Sec. 4.1, we obtain the RGE for Y , and read off the
beta function for the Yukawa coupling constant y in the symmetric phase ϕ = 0:

∂ty =
5yΛ6

32π2

(
∂tξ̂0
6
− ξ̂0

)
I[2, 0, 0]

+
yΛ6

32π2

[
24

(
ξ̂2 −

∂tξ̂2
6

)
I[1, 1, 0]−

(
ξ̂0 −

∂tξ̂0
6

)
I[2, 0, 0]− 12C

(
ξ̂0 −

∂tξ̂0
6

)
I[2, 1, 0]

− 12CI[1, 2, 0]

]
− y3Λ6

16π2
(I[0, 1, 2] + I[0, 2, 1])− yΛ8

128π2

[
I[1, 0, 2] +

(
ξ̂0 −

∂tξ̂0
8

)
I[2, 0, 1]

]

+
3yΛ8

40π2

[
I[1, 0, 2] +

(
ξ̂0 −

∂tξ̂0
7

)
I[2, 0, 1]− 1

2Λ2
I[1, 0, 1]

]

− 3yΛ8

20π2

[
−

(
ξ̂0 −

∂tξ̂0
7

)
CI[2, 1, 1] +

(
ξ̂2 −

∂tξ̂2
7

)
I[1, 1, 1]

− C
(
I[1, 2, 1] + I[1, 1, 2]− 1

2Λ2
I[1, 1, 1]

)]
, (58)
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where C = ξ̂2Λ
2 − λ̂2 and

I[ng, nb, nf ] :=
1

ΨngΣnb
1 Σ

nf

3

∣∣∣∣
ϕ=0

=
1

(ξ̂0Λ2 − λ̂0)ng(Λ2 + 2λ̂2)nb(Λ2)nf
. (59)

This is one of our main results.
The first term in the beta function corresponds to the diagram (I) in Fig. 5. The second

term includes the diagrams (III), (IV) and (V). The term in proportion to y3 corresponds
to the diagram (VI). The terms in fourth and fifth lines in the beta function correspond to
(VIII)(IX) and (X)(XI), respectively. The last terms correspond to (XII) and (XIII).

Using the dimensionless rescaled coupling constants λ2n, ξ2n introduced in Eq. (51), we
can easily rewrite the beta function of y by the replacements

∂tλ̂2n =
1

Λ2n−4
[∂tλ2n + (2n− 4)λ2n] , ∂tξ̂2n =

1

Λ2n−2
[∂tξ2n + (2n− 2) ξ2n] . (60)

Since the Yukawa coupling constant is dimensionless and its canonical scaling term vanishes
in its beta function in the LPA, we have been omitting the hat ˆ for y.

Let us try to put λ0 = ξ2 = 0 as in the end of Sec. 4.3. If we impose that the dimensionful
constant does not run, ∂tξ̂0 = Λ2( ∂tξ0 − 2ξ0) = 0, we obtain15

ẏ := −βy =
y3(1 + λ2)

8π2 (1 + 2λ2)
2 + G̃y

29− 4λ2 (1− 5λ2)

20π (1 + 2λ2)
2 . (61)

This is to compare with Eq. (6) in Ref. [53]. We see that the first term, which corresponds
to the diagram (VI) in Fig. 5, agrees each other, while the second term does not. To study
the fixed-point structure, we are rather interested in the limit where dimensionless coupling
constant does not run ∂tξ0 → 0, which results in

ẏ := −βy =
y3 (1 + λ2)

8π2 (1 + 2λ2)
2 + G̃y

2395 + 4λ2 (347 + 315λ2)

1120π (1 + 2λ2)
2 +O

(
G̃2
)
. (62)

However, the dimensionless cosmological constant λ0 is not vanishing at the UV fixed point,
and we will rely on the numerical computation in the next section.

5 Numerical Analysis

5.1 Fixed Point structure

The fixed points are defined by vanishing beta functions βi(g
∗) = 0 at which RG flows

completely stop. To study the behavior of the RG flow near the fixed point g∗, let us consider
the linearized flow equations. Let N be the dimension of our (truncated) coupling space. We
expand the beta function around g∗,

βi(g) = βi(g
∗) +

N∑
j=1

∂βi
∂gj

∣∣∣∣
g=g∗

(
gj − g∗j

)
+ · · · . (63)

15The difference of overall sign in the beta function is due to the sign convention for the dimensionless scale t.
Recall that in our notation, t = − log(Λ/Λ0).
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Using βi(g
∗) = 0 and neglecting the higher order terms in v := g−g∗, we obtain the linearlized

RGE

∂tvi =

N∑
j=1

∂βi
∂gj

∣∣∣∣
g=g∗

vj . (64)

Let us diagonalize the matrix

Mij :=
∂βi
∂gj

∣∣∣∣
g=g∗

(65)

by a constant matrix V so that

N∑
i,j=1

(
V −1

)
li

∂βi
∂gj

∣∣∣∣
g=g∗

Vjk = θkδlk, (66)

where k is not summed. That is, the kth eigenvalue of M is θk, and the corresponding
eigenvector is V (k) = (Vjk)j=1,...,N :

MV (k) = θkV
(k). (67)

Now Eq. (64) reduces to

∂tκi = θiκi, (68)

where the index i is not summed and we have written vi =
∑N

j=1 Vijκj . The solutions to
Eq. (68) are

κi(t) = Cie
θit, (69)

where Ci are constants. When we recover the original dimensionless coupling constants gi,
Eq. (69) reads

gi(t) = g∗i +

N∑
j=1

VijCj

(
Λ0

Λ

)θj

, (70)

which becomes Eq. (5) with ζij = CjVij . In general, a non-zero Im(θi) implies that the
corresponding coupling gi is mixed with other couplings in the RG flow from UV to IR,
Λ→ 0, i.e. t→∞. Let us see three cases in turn:

• For the directions with Re(θi) > 0, we see that κi grow when we increase t in the flow
from UV to IR. Then gi become the couplings of the relevant operators, and the factor
Ci become physical free parameters. When we vary ratios of Ci, the direction of the
flow to IR changes, and we get a different IR physics.

• For the directions with Re(θi) = 0, the solutions (69) generally become oscillatory, and
the corresponding operators are marginal.

• For the directions with Re(θi)< 0, the solutions shrink to the UV fixed point, and hence
they are the coupling of the irrelevant operators.

The relevant operators span the hypersurface called the renormalized trajectory or the UV
critical surface, and the number of such operators gives its dimension.
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5.2 Pure gravity

We first revisit the pure gravity case obtained in Refs. [49, 51, 52]. The beta functions for
the dimensionless gravitational coupling ξ0 and the dimensionless cosmological constant λ0
become

βξ0 = 2ξ0 −
1

384π2

[
21 +

8ξ0(7ξ0 − 2λ0)

(ξ0 − λ0)2

]
+
∂tξ0 − 2ξ0
1152π2ξ0

17ξ20 + 18ξ0λ0 − 15λ20
(ξ0 − λ0)2

, (71)

βλ0 = 4λ0 −
1

32π2

[
3 +

6λ0
ξ0 − λ0

]
+
∂tξ0 − 2ξ0
96π2ξ0

5ξ0 − 2λ0
ξ0 − λ0

. (72)

Solving the coupled equation βξ0 = 0 and βλ0 = 0, we find the non-trivial fixed point:

ξ∗0 = 2.38× 10−2, λ∗0 = 8.62× 10−3. (73)

Around the fixed point, the matrix (65) becomes:

M =


∂βξ0
∂ξ0

∂βξ0
∂λ0

∂βλ0

∂ξ0

∂βλ0

∂λ0


∣∣∣∣∣∣∣∣
ξ0=ξ∗0
λ0=λ∗0

=

(
4.79429 −6.42602
2.33613 −0.505996

)
. (74)

The eigenvalues for this matrix are θ1,2 = 2.14414± 2.82644i. We see that ξ0 and λ0 are the
relevant coupling constants around the UV fixed point. The corresponding eigenvectors are

V (1), V (2) =

(
0.856378

0.353177± 0.376673i

)
, V =

(
0.856378 0.856378

0.353177 + 0.376673i 0.353177− 0.376673i

)
.

(75)

That is,

ξ0(t) = ξ∗0 + 0.856378

(
Λ0

Λ

)2.14414
[
A cos

(
ln

(
Λ0

Λ

)2.82644
)

+B sin

(
ln

(
Λ0

Λ

)2.82644
)]

,

(76)

λ0(t) = λ∗0 +

(
Λ0

Λ

)2.14414
[
(0.353177A+ 0.376673B) cos

(
ln

(
Λ0

Λ

)2.82644
)

+ (−0.376673A+ 0.353177B) sin

(
ln

(
Λ0

Λ

)2.82644
)]

, (77)

where A := C1 + C2 and B := i (C1 − C2) are real constants that are free parameters of the
asymptotically safe theory. We see that the two relevant couplings mix with each other in
the RG flow to IR scales.

5.3 Scalar-gravity model

Next we turn to the extension of the system with the neutral scalar field [49, 51, 52]. This
section is still a review. In truncated theory space gi = {ξ0, λ0, ξ2, λ2, λ4}, we find the fixed
point

ξ∗0 = 2.38× 10−2, λ∗0 = 8.62× 10−3, ξ∗2 = 0, λ∗2 = 0, λ∗4 = 0. (78)
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The gravitational coupling constants have the same non-trivial fixed point, while the matter
fixed point is trivial, i.e. Gaussian. The fixed point (78) is called the Gaussian-matter fixed
point.16 The matrix (65) becomes

M =


4.85544 −6.51993 0.00766245 −0.00262748 0
2.40051 −0.570309 0.00234951 0.0055494 0

0 0 2.85544 −6.51993 −0.0157649
0 0 2.40051 −2.57031 0.0332964
0 0 0 0 −2.62692

 , (79)

and the eigenvalues and the corresponding eigenvectors are

θ1,2 = 2.143± 2.879i, V (1), V (2) =


0.8549

0.3557± 0.3776i
0
0
0

 , (80)

θ3,4 = 0.143± 2.879i, V (3), V (4) =


(−1.8059± 0.731i)× 10−3

(3.0723± 1.0763i)× 10−3

0.3557± 0.3776i
0.8549

0

 , (81)

θ5 = −2.627, V (5) =


2.0687× 10−5

2.7445× 10−5

−1.3805× 10−2

−1.3542× 10−2

0.999813

 . (82)

Several comments are in order:

• Since the vectors V (1) and V (2) have the values at only first and second rows, these
vectors correspond to the mixing between ξ0 and λ0. These coupling constants are
relevant as their critical exponents are positive: Re θ1 > 0 and Re θ2 > 0. We see that
the impact of scalar fluctuations to the gravitational couplings is not large since the
values of the critical exponents θ1,2 hardly change by its inclusion.

• Although the vectors V (3) and V (4) include the mixing of ξ0, λ0, ξ2 and λ2, the con-
tributions from the gravitational couplings ξ0 and λ0 are smaller than those from ξ2
and λ2. Therefore they are mainly ξ2 and λ2. These coupling constants are relevant
as their critical exponent is positive: Re θ3 > 0 and Re θ4 > 0. Note that the non-
minimal coupling constant ξ2 is marginal at the trivial fixed point g∗ = 0, and hence,
the gravitational effects have made it relevant.

• The scalar quartic coupling λ4 is irrelevant as its critical exponent is negative: Re θ5 < 0.
Although λ4 is marginal at the trivial fixed point, the gravitational effects make it
irrelevant at the UV fixed point.

16 It could be that the Gaussian-matter fixed point is a special property of the present truncation with LPA:
If we take into account the higher-derivative matter self-interactions, which are induced by the gravitational
fluctuations, then the matter self interaction might become non-vanishing at the fixed point [62].
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In this truncated theory space, the UV critical surface is spanned by the operators with ξ0, λ0,
ξ2 and λ2. Hence, these coupling constants are physical free parameters [49, 51]. In next part
we will see that the fermionic fluctuation makes ξ2 and λ2 irrelevant so that these couplings
cannot be physical free parameters anymore.

5.4 Inclusion of a fermion

Now let us extend the theory space to { gi }i=1,...,6 = { ξ0, λ0, ξ2, λ2, λ4, y } with Nf = 1.
Solving the coupled equation βgi = 0 with Eqs. (53)–(57), we again obtain the Gaussian-
matter fixed point:

ξ∗0 = 1.63× 10−2, λ∗0 = 3.72× 10−3, ξ∗2 = 0, λ∗2 = 0, λ∗4 = 0, y∗ = 0. (83)

Around this fixed point, the matrix (65) becomes

M =



3.6814 −5.39674 0.00776027 −0.00258676 0 0
1.99718 −0.663341 0.00295698 0.00534691 0 0

0 0 1.6814 −5.39674 −0.0155205 0
0 0 1.99718 −2.66334 0.0320815 0
0 0 0 0 −2.60696 0
0 0 0 0 0 −1.46426

 . (84)

The eigenvalues θi and eigenvectors V (i) of the matrix (84) are

θ1,2 = 1.50903± 2.46151i, V (1), V (2) =



0.854336
0.343899± 0.389672i

0
0
0
0

 , (85)

θ3,4 = −0.490968± 2.46151i, V (3), V (4) =



(−3.11425∓ 1.27885i)× 10−3

(−1.92736± 0.618506i)× 10−3

0.854329
0.343897∓ 0.389669i

0
0

 , (86)

θ5 = −2.60696, V (5) =



3.88533× 10−5

2.91974× 10−5

−1.65107× 10−2

−1.59949× 10−2

0.999736
0

 , (87)

θ6 = −1.46426, V (6) =



0
0
0
0
0
1

 . (88)
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Several comments are in order:

• We see from Eq. (84) that there is no mixing between the Yukawa coupling and the others
at this fixed point. As the critical exponent of y is negative, the Yukawa interaction is
irrelevant up to this truncation.

• The critical exponents Re θ1,2 for the gravitational constants, namely the Newton con-
stant g1 (= ξ0 = 1/16πG̃) and the cosmological constant g2 (= λ0), are substantially
reduced from those in Sec. 5.3 by the inclusion of fermions, even without the Yukawa
coupling. This is due to the last terms in Eqs. (53) and (54).

• We see from Eqs. (55)–(57) that when y = 0, the RG equations of the non-minimal
coupling g3 (= ξ2), the scalar mass-squared g4 (= λ2), and the scalar quartic coupling
g5 (= λ4) do not differ from those in the scalar gravity model in Sec 5.3. However, even
without the Yukawa coupling, the fermion loops do affect the gravitational constants
g1,2 as above. As a result, the critical exponents Re θ3,4 of g3,4 turn to negative from
the positive values in the scalar-gravity model. The non-minimal coupling g3 and the
scalar mass-squared g4 are both made irrelevant. These coupling constants are not on
the UV critical surface anymore.

On the last point, we note that the matter couplings λ2, λ4, ξ2, and y vanish at the
Gaussian-matter fixed point and hence that they do not affect the critical exponents Re θ3,4
of the non-minimal coupling g3 (= ξ2) and the mass-squared g4 (= λ2). What is important
for flipping the sign of the critical exponents is the fact that the fixed-point values for the
gravitational sector, g∗1 (= ξ∗0) and g

∗
2 (= λ∗0), are reduced by the fermion loops. Indeed, even

if we put Nf = 0 with the values (83), we still get Re θ3,4 = −0.508. Also, even if we put
Nf = 1 for the values (78) without fermion loop, we still obtain Re θ3,4 = 0.144, which is very
close to the true value 0.143 for Nf = 0. Finally for illustration, we show analytic formulae
for the submatrix of M in Eq. (84):

M33 =
51 (77− 8Nf)

(1152π2ξ∗0 − 17)2
−

27648π2
(
13824π2ξ∗0 − 104Nf + 797

)
(1152π2ξ∗0 − 17)3

λ∗0 +O
(
λ∗20
)
, (89)

M34 = −
12
(
27648π2ξ∗0 − 104Nf + 593

)
(1152π2ξ∗0 − 17)2

+
96
(
576π2ξ∗0

(
19584π2ξ∗0 + 739− 72Nf

)
+ 4275− 740Nf

)
ξ∗0 (1152π

2ξ∗0 − 17)3
λ∗0 +O

(
λ∗20
)
, (90)

M43 =
180 (77− 8Nf)

(1152π2ξ∗0 − 17)2

−
17 (−9667 + 1672Nf) + 3456π2ξ∗0

(
9667− 1672Nf + 4608π2ξ∗0

(
93− 4Nf + 576π2ξ∗0

))
32π2ξ∗20 (1152π2ξ∗0 − 17)3

λ∗0 +O
(
λ∗20
)
,

(91)

M44 =
−9667 + 1672Nf + 64π2ξ∗0

(
−8837 + 432Nf + 2304π2ξ∗0

(
576π2ξ∗0 − 71

))
32π2ξ∗20 (1152π2ξ∗0 − 17)2

+
258309− 44920Nf − 9216π2ξ∗0

(
−3641 + 414Nf − 144π2ξ∗0

(
6912π2ξ∗0 + 893− 24Nf

))
16π2ξ∗0 (1152π

2ξ∗0 − 17)3
λ∗0 +O

(
λ∗20
)
.

(92)
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6 Summary and discussions

In this paper we have investigated the fixed point structure of the Higgs-Yukawa model that is
non-minimally coupled to gravity, using the FRG. The full set of RG equations of this system
are obtained for the first time. We find a Gaussian-matter fixed point which is a non-trivial
UV fixed point for the gravitational coupling constants, namely the Newton and cosmological
constants, and is a trivial one for the other coupling constants among matters. It has been
known that the Gaussian-matter fixed point for the scalar-gravity system without fermion
has the non-minimal coupling ξ2 as relevant direction, together with the scalar mass-squared
(= λ2) [49, 51, 52]. We have found that the inclusion of fermion to this scalar-gravity system
makes both of them irrelevant, no matter whether the Yukawa coupling is turned on or not.
Therefore both of them in this toy model cannot be on the UV critical surface, and hence
cannot be the free parameters of the theory in the asymptotic safety scenario.

It is important to investigate whether the non-minimal coupling of the Higgs to the Ricci
scalar in the SM (and its extensions), ξ |H|2R, becomes relevant or not when we take into
account the large degrees of freedom, both bosonic and fermionic, that couple to the Higgs.
The large non-minimal coupling constant plays crucial role in the Higgs inflation scenario [92,
96]. If the non-minimal coupling becomes a free parameter in the asymptotic safety scenario
in the above sense, then we can use it to account for the cosmological data by the Higgs
inflation. In this toy model, we have found that the non-minimal coupling cannot be such a
free parameter. If this is the case for the SM too, then the Higgs inflation model is a cutoff
theory and cannot be a UV complete model within the asymptotically safe gravity scenario.

In this paper, we have have studied the asymptotic safety of the simple Higgs-Yukawa
model with non-minimal coupling, in the symmetric phase ⟨ϕ⟩ = 0. In the Higgs inflation
using the SM criticality, the typical value of the Higgs field becomes close to the Planck
scale [99]. For such an application, it is important to extend our analysis to the broken phase
⟨ϕ⟩ ̸= 0.

We comment on the unitarity of gravity. The earlier studies indicate that the asymptoti-
cally safe quantum gravity would be described by the three dimensional UV critical surface,
spanned by the cosmological constant, R, and R2; see e.g. [69, 87]. It is worth studying
whether this remains the case or not if we include other forms of higher dimensional opera-
tors. For example, the operators RµνR

µν and RµνρσR
µνρσ have not been taken into account

in the literature although they give the same order of contribution as R2, due to technical
difficulties in distinguishing these three in the heat kernel expansions around the S4 back-
ground; see e.g. Refs. [27, 29, 73]. It is very important to include these terms beyond the
current truncation. If they turn out to take part in the UV critical surface then the UV
gravity is not unitary anymore in general.17 It might also be interesting if the theory still
remains meaningful under such a situation.

In this paper, we have limited ourselves within the LPA where we neglect the field renor-
malization and see only the local couplings without external momenta. LPA has been a useful
tool to investigate e.g. the vacuum structure of the quantum chromodynamics. Although we

17 The standard line of reasoning that higher-derivative gravity leads to ghost poles in the propagator and
thus violates unitarity is not necessarily applicable in the asymptotic safety context: Towards the UV, the
FRG propagators are still regularized and thus there are no ghost poles by construction, though this does not
mean that the theory is automatically unitary. The issue of unitarity can only be clarified once all fluctuations
are integrated out and the resulting vacuum state turns out to be stable (with Minkowski signature). These
aspects are discussed in more detail in Ref. [65]. We thank H. Gies for clarifying this point.
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expect that the LPA is applicable for sufficiently homogeneous field configurations, it is not
clear how good an approximation the LPA is for the analysis of the asymptotically safe gravity.
It would be useful to go beyond the LPA by taking into account the anomalous dimensions
from the field renormalization.

If the quartic scalar coupling λ4 has a non-trivial UV fixed point, namely, λ∗4 ̸= 0 and λ4ϕ
4

is relevant around the fixed point, then it becomes a solution to the triviality of the scalar ϕ4

theory; see e.g. [15, 133]. It would be interesting to study the triviality under the presence of
gravity extending the study in Refs. [58], by including e.g. the non-minimal coupling.

We comment on the so-called hierarchy problem of the Higgs mass-squared. Let us write
the dimensionful mass-squared m2(Λ) := 2λ2(Λ)Λ

2 at the scale Λ. This reduces to the bare
mass at the UV cutoff scale: m2(Λ0) = m2

0. For illustration purpose, let us switch off all the
coupling constants except for λ2 and y in the RG equation for the mass-squared (56), namely,
we take the limits λ0 → 0, ξ0 =

1
16πG̃

→∞, ξ2 → 0, and λ4 → 0:

−Λ ∂

∂Λ
m2 = −Nfy

2

4π2
Λ2. (93)

If we neglect the running of y, we get

m2
(
Λ2
)
≃ m2

0 −
Nfy

2

8π2
Λ2
0 +

Nfy
2

8π2
Λ2. (94)

At very low scales Λ≪ Λ0, the mass-sqaured becomesm2
(
Λ2
)
→ m2

0−
Nfy

2

8π2 Λ2
0 and we need the

fine-tuning between the bare mass-squared and the loop correction if we want m2
(
Λ2
)
≪ Λ2

0

(∼ m2
0). This is the fine-tuning problem.

This problem still remains in the SM, in principle, even under the asymptotically safe
gravity, e.g. considered in Ref [91]: Suppose we start from the UV cutoff scale much larger
than the Planck scale, Λ0 ≫ 1/

√
32πG. Naively, if the dimensionless mass-squared λ2(Λ)

turns to be irrelevant around the UV fixed point as in our result, one might expect that it
could be a solution to the hierarchy problem. However, even if we start from small λ2(Λ)
near the UV fixed point Λ ∼ Λ0, and further gets the exponential suppression due to its
irrelevance in the RG evolution departing from the UV fixed point along the UV critical
surface, eventually λ2(Λ) will mix with other relevant operators in the coupled non-linear
evolution down to the Planck scale, and the resultant mass will be of the order of the Planck
scale in general, λ2(Λ)Λ

2 ∼ 1/32πG. It would be interesting to look for a mechanism to keep
λ2(Λ) tiny for the scales down to the Planck scale. Then this sets the boundary condition at
the Planck scale for the subsequent RG evolution further down to the electroweak scale, in
which λ2(Λ)Λ

2 and 1/
√
32πG correspond tom2

0 and Λ0 in Eq. (94), respectively. If we further
manage to find a mechanism to make the sum of SM loop corrections, corresponding to the
second term in the right hand side of Eq. (94), to vanish, as is speculated by Veltman [134],
then the fine-tuning problem is solved. Note that the observed Higgs mass allows the Veltman
condition to be satisfied at the Planck scale and that the two loop correction to the Veltman
condition is negligibly small [135], although the theoretical explanation why it holds is still
missing. Similarly the cosmological constant problem is yet to be solved.
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Appendix

A Wetterich equation

We briefly sketch out the derivation of the Wetterich equation using a simple scalar theory
in flat spacetime without employing the background field method. Physically, we will derive
the effective action ΓΛ with the cutoff Λ, from the bare action S0 defined at the UV cutoff
scale Λ0. Note that in the asymptotic safety scenario, the UV finite theory is defined on the
finite dimensional UV critical surface that consists of the renormalized trajectories flowing
out of the UV fixed point: We define the bare theory at a point on one of such renormalized
trajectories. The choice of this point and the scale Λ0 assigned to it are more or less arbitrary,
given the point is right on the renormalized trajectory.18

We write the partition function

ZΛ[J ] = eWΛ[J ] :=

∫
[Dφ] e−S0[φ]−∆SΛ[φ]+J ·φ (95)

with the regulator term

∆SΛ[φ] :=
1

2

∫
d4p

(2π)4
φ(−p)TRΛ(p)φ(p) , (96)

where WΛ[J ] is the generating functional of connected diagrams; we write
∫
x :=

∫
d4x; and

we introduce the cutoff profile function

RΛ(p) ∼

{
Λ2 for p < Λ,

0 for p > Λ,
(97)

which suppresses the lower momentum modes with p < Λ and leaves the higher ones with
Λ < p < Λ0. That is, the low momentum modes with p < Λ are given the extra mass Λ in
the path integral (95) and are not effectively path-integrated in the partition function (95).
Therefore, Λ can be interpreted as a new UV cutoff scale in ZΛ[J ] in which the high momentum
modes with Λ < p < Λ0 are integrated out. Namely, Λ is the IR cutoff scale for the integrated
high momentum modes, and the UV cutoff scale for the unintegrated low momentum modes.

18 The asymptotic safety is somewhat contrary to the ordinary low-energy effective field theory picture
in the sense that we must define the theory right on the UV critical surface and that even an infinitesimal
displacement from it results in the divergence from it when we track back the renormalization flow toward UV
direction. That is, if we write down all the possible operators at IR scales allowed by symmetry, then there is
infinitesimally small chance to reach the asymptotically safe theory when we trace back the renormalization
group flow toward UV direction.
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We also introduce the position-space cutoff function RΛ(x, y) = RΛ(y, x) by

∆SΛ[φ] =
1

2

∫
x

∫
y
φ(x)TRΛ(x, y)φ(y) . (98)

The effective action ΓΛ is given by the Legendre transformation of WΛ:

ΓΛ[Φ] := JΦ
Λ · Φ−WΛ[J

Φ
Λ ]−∆SΛ[Φ], (99)

where JΦ
Λ is defined by

δWΛ

δJ(x)
[JΦ

Λ ] = Φ(x) . (100)

Then we get

δΓΛ

δΦ(x)
[Φ] =

∫
y

δJΦ
Λ (y)

δΦ(x)
Φ(y) + JΦ

Λ (x)−
∫
y

δWΛ

δJ(y)
[JΦ

Λ ]
δJΦ

Λ (y)

δΦ(x)
− δ∆SΛ
δΦ(x)

[Φ]

= JΦ
Λ (x)−

∫
y
RΛ(x, y)Φ(y) , (101)

and further

δ2ΓΛ

δΦ(x) δΦ(y)
[Φ] =

δJΦ
Λ (x)

δΦ(y)
−RΛ(x, y) . (102)

We similarly define ΦJ
Λ by

δWΛ

δJ(x)
[J ] = ΦJ

Λ(x) (103)

so that ΦJ
Λ = Φ if J = JΦ

Λ . Taking a functional derivative of Eq. (103), we get

δ2WΛ

δJ(x) δJ(y)
[J ] =

δΦJ
Λ(x)

δJ(y)
[J ], (104)

and hence

δ2WΛ

δJ(x) δJ(y)
[JΦ

Λ ] =
δΦJ

Λ(x)

δJ(y)
[JΛ

Φ ] =

(
δJΦ

Λ (x)

δΦ(y)
[Φ]

)−1

=

(
δ2ΓΛ

δΦ(x) δΦ(y)
[Φ] +RΛ(x, y)

)−1

,

(105)

where the inverse is in the functional space spanned by x and y and we have used Eq. (102)
in the last step.

We want to evaluate

dΓΛ[Φ]

dΛ
=

∫
x

dJΦ
Λ (x)

dΛ
Φ(x)−

dWΛ[J
Φ
Λ ]

dΛ
− d∆SΛ[Φ]

dΛ
. (106)

29



After some computation, the second term in Eq. (106) becomes19

−
dWΛ[J

Φ
Λ ]

dΛ
=

1

2

∫
x

∫
y

δ2WΛ

δJ(x) δJ(y)
[JΦ

Λ ]
dRΛ(x, y)

dΛ
+

d∆SΛ[Φ]

dΛ
−
∫
x

dJΦ
Λ (x)

dΛ
Φ(x) . (107)

Therefore,

dΓΛ[Φ]

dΛ
=

1

2

∫
x

∫
y

δ2WΛ

δJ(x) δJ(y)
[JΦ

Λ ]
dRΛ(x, y)

dΛ
. (108)

Putting Eq. (105) into Eq. (108), we get the Wetterich equation

dΓΛ[Φ]

dΛ
=

1

2

∫
x

∫
y

(
δ2ΓΛ

δΦ(x) δΦ(y)
[Φ] +RΛ(x, y)

)−1
dRΛ(x, y)

dΛ
. (109)

For general case including fermions, this expression becomes Eq. (117). We see that the
Wetterich equation is one-loop exact from its derivation.

B Supertrace

A supertrace of a supermatrix

M =

[
MBB MBF

MFB MFF

]
(110)

is defined by

strM = trMBB − trMFF, (111)

19 Concretely,

−dWΛ[J
Φ
Λ ]

dΛ
=

1

Z[JΦ
Λ ]

∫
[Dφ] e−SΛ0

[φ]−∆SΛ[φ]+JΦ
Λ ·φ

(
d∆SΛ[φ]

dΛ
− dJΦ

Λ

dΛ
· φ

)
=

1

Z[JΦ
Λ ]

∫
[Dφ] e−SΛ0

[φ]−∆SΛ[φ]+JΦ
Λ ·φ

(∫
x

∫
y

1

2
φ(x)

dRΛ(x, y)

dΛ
φ(y)−

∫
x

dJΦ
Λ (x)

dΛ
φ(x)

)
=

(
1

Z[JΦ
Λ ]

∫
[Dφ] e−SΛ0

[φ]−∆SΛ[φ]+JΦ
Λ ·φ

∫
x

∫
y

1

2
φ(x)

dRΛ(x, y)

dΛ
φ(y)

)
−

∫
x

dJΦ
Λ (x)

dΛ

δWΛ

δJ(x)
[JΦ

Λ ]

=

(
1

Z[JΦ
Λ ]

∫
[Dφ] e−SΛ0

[φ]−∆SΛ[φ]+JΦ
Λ ·φ 1

2

∫
x

∫
y

φ(x)
dRΛ(x, y)

dΛ
φ(y)

)
−

∫
x

dJΦ
Λ (x)

dΛ
Φ(x)

=
1

2Z[JΦ
Λ ]

∫
x

∫
y

δ2Z

δJ(x) δJ(y)
[JΦ

Λ ]
dRΛ(x, y)

dΛ
−

∫
x

dJΦ
Λ (x)

dΛ
Φ(x)

=
1

2

∫
x

∫
y

(
δ2WΛ

δJ(x) δJ(y)
[JΦ

Λ ] + Φ(x)Φ(y)

)
dRΛ(x, y)

dΛ
−

∫
x

dJΦ
Λ (x)

dΛ
Φ(x)

=
1

2

∫
x

∫
y

δ2WΛ

δJ(x) δJ(y)
[JΦ

Λ ]
dRΛ(x, y)

dΛ
+

d∆SΛ[Φ]

dΛ
−

∫
x

dJΦ
Λ (x)

dΛ
Φ(x) ,

where we have used

δWΛ

δJ(x)
[J ] =

1

Z[J ]

δZΛ

δJ(x)
[J ],

δ2WΛ

δJ(x) δJ(y)
[J ] =

1

Z[J ]

δ2ZΛ

δJ(x) δJ(y)
[J ]− ΦJ

Λ(x)Φ
J
Λ(y) .
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which satisfies str(MN) = str(NM). A superdeterminant is defined by

sdetM = exp(str lnM) , (112)

satisfying

sdet(MN) = sdetM sdetN. (113)

We see

sdetM = sdet

[
MBB 0
MFB 1

]
sdet

[
1 M−1

BBMBF

0 MFF −MFBM
−1
BBMBF

]
=

detMBB

det
(
MFF −MFBM

−1
BBMBF

) . (114)

If we decompose the matrix as

M =

[
MBB −MBFM

−1
FFMFB MBFM

−1
FF

0 1

] [
1 0

MFB MFF

]
, (115)

we see

sdetM =
det
(
MBB −MBFM

−1
FFMFB

)
detMFF

. (116)

In this paper we use (114).

C Functional renormalization group for the effective action

In Appendix A, we have briefly reviewed the derivation of the Wetterich equation for a simple
scalar case. For general case including fermions, the Wetterich equation reads [136, 137]

∂

∂Λ
ΓΛ =

1

2
STrx,y

( −→
δ

δΦ(x)
ΓΛ

←−
δ

δΦ(y)
+RΛ(x, y)

)−1

· ∂
∂Λ
RΛ(y, x)

 . (117)

For later convenience, let us briefly review how to treat the supermatrix in the Wetterich
equation.

We separate the two-point function and the cutoff function RΛ into bosonic and fermionic
parts, respectively,[

ΓBB ΓBF

ΓFB ΓFF

]
:=

−→
δ

δΦ(x)
ΓΛ

←−
δ

δΦ(y)
,

[
RBB 0
0 RFF

]
:= RΛ(x, y) . (118)

We also define [
MBB MBF

MFB MFF

]
:=

[
ΓBB ΓBF

ΓFB ΓFF

]
+

[
RBB 0
0 RFF

]
. (119)
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Then we rewrite the Wetterich equation as

∂

∂Λ
ΓΛ =

∂̃

∂Λ

1

2
ln

(
SDet

[
MBB MBF

MFB MFF

])
=

1

2

∂̃

∂Λ

(
ln

[
DetMBB

]
− ln

[
Det

(
MFF −MFBM−1

BBMBF

)])
=

1

2

∂̃

∂Λ
Tr

[
lnMBB

]
− 1

2

∂̃

∂Λ
Tr

[
ln
(
MFF −MFBM−1

BBMBF

)]
, (120)

where ∂̃/∂Λ acts only on RBB and RFF and we used the formulation for supermatrix sum-
marized in Appendix B. Performing the derivative, we obtain

∂

∂Λ
ΓΛ =

1

2
Tr

[
M−1

BB

∂RBB

∂Λ

]
− 1

2
Tr

[(
MFF −MFBM−1

BBMBF

)−1
(
∂RFF

∂Λ
+MFBM−1

BB

∂RBB

∂Λ
M−1

BBMBF

)]
.

(121)

The first term in RHS of (121) is the fluctuations of bosonic fields. The second term includes
not only the fluctuations of fermionic fields but also the mixing of fermion and boson. We have
directly computed the algebraic expression in the right hand side of Eq. (121) to cross-check
the results in Sec. 3 that is obtained diagrammatically.

We may also expand the second term in Eq. (120) as

−1

2

∂̃

∂Λ
Tr

[
ln
(
MFF −MFBM−1

BBMBF

)]
= −1

2

∂̃

∂Λ
Tr

[
lnMFF + ln

(
1−M−1

FFMFBM−1
BBMBF

)]
= −1

2

∂̃

∂Λ

(
Tr

[
lnMFF

]
− Tr

[
M−1

FFMFBM−1
BBMBF

]
+ · · ·

)
= −1

2
Tr

[
M−1

FF

∂RFF

∂Λ

]
+

1

2
Tr

[
M−1

FF

∂RFF

∂Λ
M−1

FFMFBM−1
BBMBF

]
+

1

2
Tr

[
M−1

FFMFBM−1
BB

∂RBB

∂Λ
M−1

BBMBF

]
+ · · · ,

(122)

where the higher order terms, represented by dots, are all higher-dimensional operators being
already truncated in Eq. (10), and hence we neglect them in this paper. This expression (122)
is useful to compare with the Feynman diagramatic computation since the vertex structure
is clearer. It is especially useful when evaluating the beta function of the Yukawa coupling
constant. We have also used this expression to further cross-check the results in Sec. 3.

D Heat kernel trace

In this section we briefly review how to take the trace in the heat kernel expansion; see e.g.
Refs. [70, 138, 139] for more detailed reviews. Consider an arbitrary function W

(
p2
)
and its
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trace Tr
[
W
(
p2
)]
. Using the Laplace transformation, we get

Tr
[
W
(
p2
)]

=

∫ ∞

−∞
ds W̃ (s)Tr

[
e−s p2

]
. (123)

The trace in the right-hand side can be expanded as

Tr
[
e−s p2

]
=
∑
n=0

Bn

(
p2
)
s−(D−n)/2, (124)

where

Bn

(
p2
)
=

1

(4π)D/2

∫
dDx
√
g tr [bn] . (125)

The heat kernel coefficients bn are given by b0 = 1, b2 = R
6 1, etc., where 1 is the identity

on the spin representation of the field. Their explicit values are shown in Table 1. For higher
order (n > 2), see e.g., the appendix of [70]. By inserting (125) into the right-hand side of
(123), we obtain

Tr [W (p2)] =
1

(4π)D/2

{
QD

2
[W ]

∫
dDx
√
g tr[b̄0] +QD

2
−1[W ]

∫
dDx
√
gR tr[b̄2] +O(R2)

}
,

(126)

where b̄0 := 1, b̄2 := 1/6, and

Qn[W ] :=

∫ ∞

−∞
ds(−s)−nW̃ (s). (127)

Its Mellin transformation yields

Q0[W ] =W (0),

Qn[W ] =
1

Γ[n]

∫ ∞

0
dz zn−1W [z], (128)

where Γ[n] is the Gamma function. Thanks to above relations (126) and (128), the trace for
the eigenvalues of the derivative operator can be evaluated in curved space.

Table 1: heat kernel coefficients for the individual fields in D = 4
　 h⊥µν (spin 2) ξµ, C

⊥
µ (spin 1) ψ,ψ (spin 1/2) h, σ, ϕ, C, C̄ (spin 0)

tr[b̄0] =: b0 5 3 2 1

tr[b̄2] =: b2 −5

6

1

4

1

3

1

6

E Derivation of the beta functions

In this appendix we show the diagrammatic derivation of the beta functions.
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E.1 Bosonic contributions

We evaluate the first term in Eq. (121) corresponding to the boson loops:

1

2
Tr

[
M−1

BB

∂RBB

∂Λ

]
=

1

2
Tr

∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
h⊥h⊥

+
1

2
Tr′

∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
ξξ

+
1

2
Tr′′

∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
SS

.

(129)

We evaluate these contributions part by part using the explicit form of two-point functions
and cutoff functions exhibited in subsection 3.2.

E.1.1 The loop contribution of the transverse gravity field

The loop contribution of h⊥ field is evaluated:

1

2
Tr

∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
h⊥h⊥

=
1

2
Tr

1
2 (∂tF )RΛ + 1

2F (∂tRΛ)
1
2F (PΛ + 2

3R)−
1
2V −

1
2Y

=
1

2
Tr

(∂tF )RΛ + F (∂tRΛ)

FPΛ − V − Y
− 1

3
Tr

(∂tF )RΛ + F (∂tRΛ)

(FPΛ − V − Y )2
FR+O(R2).

(130)

Using the heat kernel expansion given in Appendix D, we evaluate the trace for O(R0),

1

2
Tr[W 1

h⊥ ] :=
1

2
Tr

(∂tF )RΛ + F (∂tRΛ)

FPΛ − V − Y

=
1

2

1

(4π)2

{
bh

⊥
0 Q2[W

1
h⊥ ]

∫
d4x
√
g + bh

⊥
2 Q1[W

1
h⊥ ]

∫
d4x
√
gR

}
+O(R2) (131)

with the functions

Q2[W
1
h⊥ ] =

1

Γ(2)

∫ ∞

0
dz zW 1

h⊥(z) =

∫ ∞

0
dz z

(∂tF )RΛ + F (∂tRΛ)

FPΛ − V − Y

=
Λ6

FΛ2 − V

[
1

6
(∂tF )− F

]
+

Λ6

(FΛ2 − V )2

[
1

6
(∂tF )− F

]
Y +O(Y 2), (132)

Q1[W
1
h⊥ ] =

1

Γ(1)

∫ ∞

0
dz WT1(z) =

∫ ∞

0
dz

(∂tF )RΛ + F (∂tRΛ)

FPΛ − V − Y

=
Λ4

FΛ2 − V

[
1

2
(∂tF )− 2F

]
+O(Y ), (133)

and for O(R),

−1

3
Tr[W 2

h⊥ ]R := −1

3
Tr

(∂tF )RΛ + F (∂tRΛ)

(FPΛ − V − Y )2
FR

=
1

3

1

(4π)2

{
bh

⊥
0 Q2[W

2
h⊥ ]

∫
d4x
√
gR

}
+O(Y,R2) (134)
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with

Q2[W
2
h⊥ ] =

1

Γ(2)

∫ ∞

0
dz z

(∂tF )RΛ + F (∂tRΛ)

(FPΛ − V )2
F

=
Λ6F

(FΛ2 − V )2

[
1

6
(∂tF )− F

]
. (135)

To summarize, we get the loop contributions of h⊥ field:

1

2
Tr

∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
h⊥h⊥

=
bh

⊥
0

2 (4π)2
Λ6

FΛ2 − V

[
1

6
(∂tF )− F

] ∫
d4x
√
g

+
1

(4π)2

{
bh

⊥
2

2

Λ4

FΛ2 − V

[
1

2
(∂tF )− 2F

]
− bh

⊥
0

3

Λ6F

(FΛ2 − V )2

[
1

6
(∂tF )− F

]}

×
∫

d4x
√
gR

+
bh

⊥
0

(4π)2
Λ6

(FΛ2 − V )2

[
1

6
(∂tF )− F

] ∫
d4x
√
gY +O(Y 2, R2).

(136)

The first, second and third term are the contribution to V , F and Y = yϕψψ, respectively.
The correction to the Yukawa interaction corresponds to the diagram (I) in Fig. 5.

E.1.2 The loop contribution of the gravity field with spin 1

We evaluate the loop contribution of ξ field:

1

2
Tr′

∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
ξξ

=
1

2
Tr′

(∂tF )RΛ + F (∂tRΛ)

F (PΛ + 2α−1
4 R)− α(V + Y )

=
1

2
Tr′

(∂tF )RΛ + F (∂tRΛ)

FPΛ − α(V + Y )
− 1

8
Tr′

(∂tF )RΛ + F (∂tRΛ)

(FPΛ − α(V + Y ))2
F (2α− 1)R+O(R2).

(137)

We obtain

1

2
Tr[W 1

ξ ] :=
1

2
Tr

(∂tF )RΛ + F (∂tRΛ)

FPΛ − α(V + Y )

=
1

2

1

(4π)2

{
bξ0Q2[W

1
ξ ]

∫
d4x
√
g + bξ2Q1[W

1
ξ ]

∫
d4x
√
gR

}
+O(R2), (138)

where

Q2[W
1
ξ ] =

1

Γ(2)

∫ ∞

0
dz z

(∂tF )RΛ + F (∂tRΛ)

FPΛ − α(V + Y )
=

Λ6

FΛ2 − α(V + Y )

[
1

6
(∂tF )− F

]
, (139)

Q1[W
1
ξ ] =

1

Γ(1)

∫ ∞

0
dz

(∂tF )RΛ + F (∂tRΛ)

FPΛ − α(V + Y )
=

Λ4

FΛ2 − αV

[
1

2
(∂tF )− 2F

]
, (140)
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and

−1

8
Tr[W 2

ξ ]R := −1

8
Tr

(∂tF )RΛ + F (∂tRΛ)

(FPΛ − α(V + Y ))2
F (2α− 1)R

= −1

8

1

(4π)2

{
bξ0Q2[W

2
ξ ]

∫
d4x
√
gR

}
+O(R2),

(141)

with

Q2[W
2
ξ ] =

1

Γ(2)

∫ ∞

0
dz z

(∂tF )RΛ + F (∂tRΛ)

(FPΛ − α(V + Y ))2
F (2α− 1)

=
Λ6F (2α− 1)

(FΛ2 − α(V + Y ))2

[
1

6
(∂tF )− F

]
. (142)

We get the loop contributions of ξ field:

1

2
Tr′

∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
ξξ

=
bξ0

2 (4π)2
Λ6

FΛ2 − α(V + Y )

[
1

6
(∂tF )− F

] ∫
d4x
√
g

+
1

(4π)2

{
bξ2
2

Λ4

FΛ2 − αV

[
1

2
(∂tF )− 2F

]
− bξ0

8

Λ6F (2α− 1)

(FΛ2 − α(V + Y ))2

[
1

6
(∂tF )− F

]}∫
d4x
√
gR. (143)

Obviously, when employing the de-Donder gauge α = 0, the terms with α vanish. Thus, the
correction exhibited as the diagram (II) in Fig. 5 does not contribute to the beta functions
in the de-Donder gauge.

E.1.3 The loop contribution of the gravity fields with spin 0 and the scalar field

Let us evaluate the spin 0 field loop contribution:

1

2
Tr′′

∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
SS

. (144)

We calculate the inverse matrix of Γ
(1,1)
Λ + RΛ, multiply as (Γ

(1,1)
Λ + RΛ)

−1 ∂tRΛ, and take
the de-Donder gauge to obtain

1

2
Tr′′

∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
SS

=
bS0

2 (4π)2
Q2[A]

∫
d4x
√
g +

1

2 (4π)2
{
bS2Q1[A] + bS0Q2[B]

}∫
d4x
√
gR

+
bS0

2(4π)2
Q2[C]

∫
d4x
√
gY +O(R2, Y 2), (145)
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where

bS0
2

1

(4π)2
Q2[A] =

bS0
(4π)2

1

Γ(2)

∫
dz z θ

(
Λ2 − z

)
×
[
− 2

2

FΛ2(Λ2Ψ+ 24ϕ2Λ2F ′2Ψ′ + FΛ2Σ1 + (ΨΣ1 + 12ϕ2Ψ′2))

FΛ2(ΨΣ1 + 12Ψ′2ϕ2)

+
1

2
(Λ2 − z)

(
FΛ2Σ1 + (ΨΣ1 + 12Ψ′2ϕ2)

FΛ2(ΨΣ1 + 12Ψ′2ϕ2)

)
∂tF

+
24

2
(Λ2 − z)

(
FΛ2ϕ2Ψ′

FΛ2(ΨΣ1 + 12Ψ′2ϕ2)

)
∂tF

′
]

=
bS0Λ

4

192π2

[
−6− 6(Λ2Ψ+ 24ϕ2Λ2F ′Ψ′ + FΛ2Σ1)

∆
+

(
Λ2Σ1

∆
+

1

F

)
∂tF +

(
24ϕ2Λ2Ψ′

∆

)
∂tF

′
]
,

(146)

bS2
2

1

(4π)2
Q1[A] =

bS2
(4π)2

1

Γ(1)

∫
dz θ

(
Λ2 − z

)
×
[
− 1− Λ2Ψ+ 24ϕ2Λ2F ′Ψ′ + FΛ2Σ1

∆

+
1

2
(Λ2 − z)

(
Σ1

∆
+

1

FΛ2

)
∂tF +

24

2
(Λ2 − z)

(
ϕ2Ψ′

∆

)
∂tF

′
]

=
bS2Λ

2

16π2

[
−1− Λ2Ψ+ 24ϕ2Λ2F ′Ψ′ + FΛ2Σ1

∆
+

1

4

(
Λ2Σ1

∆
+

1

F

)
∂tF +

24

4

(
Λ2ϕ2Ψ′

∆

)
∂tF

′
]
,

(147)
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and

bS0
2

1

(4π)2
Q2[B] =

bS0
(4π)2

1

Γ(2)

∫
dz zθ

(
Λ2 − z

)
×
[−∆2 + 4ϕ2(6Λ4F ′2 +Ψ′2)∆− 4ϕ2ΨΨ′ (7Λ2F ′ − V ′) (Σ1 − Λ2)

2Λ2∆2

+
−4ϕ2Σ1

(
7Λ2F ′ − V ′) (2ΨV ′ − VΨ′) + (−2Λ4Ψ2 − 48Λ4F ′ϕ2ΨΨ′ + 24Λ4Fϕ2Ψ′2)Σ2

2Λ2∆2

+ (Λ2 − z)

(
∆2 + 4ϕ2V ′Ψ′∆− 24Λ4Fϕ2Ψ′2Σ2 − 4ϕ2Λ2FΨ′Σ1

(
7Λ2F ′ − V ′)

4FΛ4∆2

)
∂tF

+ 4FΛ2(Λ2 − z)ϕ2
(
−12Ψ′(7F ′Λ2 − V ′)ϕ2 + (7F ′Λ2 − V ′)ΨΣ1 + 12Λ2ΨΨ′Σ2

4FΛ4∆2

)
∂tF

′
]

=
bS0

(4π)2

[
Λ2

4

−∆2 + 4ϕ2(6Λ4F ′2 +Ψ′2)∆− 4ϕ2ΨΨ′ (7Λ2F ′ − V ′) (Σ1 − Λ2)

∆2

+
Λ2

4

−4ϕ2Σ1

(
7Λ2F ′ − V ′) (2ΨV ′ − VΨ′)

∆2

+
Λ2

4

(−2Λ4Ψ2 − 48Λ4F ′ϕ2ΨΨ′ + 24Λ4Fϕ2Ψ′2)Σ2

∆2

+
Λ2

24

(
∆2 + 4ϕ2V ′Ψ′∆− 24Λ4Fϕ2Ψ′2Σ2 − 4ϕ2Λ2FΨ′Σ1

(
7Λ2F ′ − V ′)

F∆2

)
∂tF

+
Λ4

6
ϕ2
(
−12Ψ′(7F ′Λ2 − V ′)ϕ2 + (7F ′Λ2 − V ′)ΨΣ1 + 12Λ2ΨΨ′Σ2

∆2

)
∂tF

′
]
,

(148)

where Ψ, Σ1, Σ2 and ∆ are given in (49).
The order Y is given by

bS0
2(4π)2

Q2[C] =
Λ6

32π2

[
24

(
ξ2 −

∂tξ2
6

)
I[1, 1, 0]−

(
ξ0 −

∂tξ0
6

)
I[2, 0, 0]

− 12C

(
ξ0 −

∂tξ0
6

)
I[2, 1, 0]− 12CI[1, 2, 0]

]
, (149)

where we have introduced

I[ng, nb, bf ] =
1

(FΛ2 − V )ng (Λ2 + 2V ′ + 4ϕ2V ′′)nb(Λ2 + y2ϕ2)nf

∣∣∣∣
ϕ=0

, (150)

C = F ′Λ2−V ′|ϕ=0 = ξ2Λ
2−λ2, and omitted the hat on the dimensionful coupling constants.

These terms include the corrections from the diagrams (III), (IV) and (V) in Fig. 5.
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E.2 Fermionic contributions

We evaluate the fermionic loop contributions. From (122), we have

− 1

2
Tr

[
M−1

FF

∂RFF

∂Λ

]
+

1

2
Tr

[
M−1

FF

∂RFF

∂Λ
M−1

FFMFBM−1
BBMBF

]
+

1

2
Tr

[
M−1

FFMFBM−1
BB

∂RBB

∂Λ
M−1

BBMBF

]
.

(151)

The first term contributes to the beta functions of V and F and the second and third terms
contribute to the beta function of Yukawa coupling constant.

First we evaluate the first term:

−1

2
Tr

[
M−1

FF

∂RFF

∂t

]
= −1

2
Tr

[
Mphys

FF
−1 ∂R

phys
FF

∂t

]
− 1

2
Tr

[
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FF
−1 ∂R

ghost
FF

∂t

]
.

E.2.1 The physical fermion contributions

The physical part is calculated as
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FF
−1 ∂R
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∂t

]
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2
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Tr
[
ln
(
Mphys

FF

)]
= −1

2

∂̃

∂t
lnDet

(
0 − /DT −RΛ

(
/DT
)
− yϕ

/D +RΛ( /D) + yϕ 0

)

= −Tr ∂tRΛ

Γ
(1,1)
Λ +RΛ

∣∣∣∣∣
χχ

= −Tr

(
∂tR(2,1)

Λ

)(
−

√
PΛ(p2+R

4 )√
p2+R

4

/D + yϕ

)
(√

PΛ(p2+R
4 )√

p2+R
4

/D + yϕ

)(
−

√
PΛ(p2+R

4 )√
p2+R

4

/D + yϕ

)

= −Tr

(
1
2
∂tPΛ(p2+R

4 )√
PΛ(p2+R

4 )
√

p2+R
4

/D

)(
−

√
PΛ(p2+R

4 )√
p2+R

4

/D + yϕ

)
(

PΛ(p2+R
4 )

p2+R
4

(
p2 + R

4

)
+ y2ϕ2

)
= −Tr

1
2∂t PΛ

(
p2 + R

4

)
PΛ

(
p2 + R

4

)
+ y2ϕ2

= −1

2
Tr

∂tRΛ

PΛ

(
p2 + R

4

)
+ y2ϕ2

=: −1

2
Tr[Wf ]

= −1

2

1

(4π)2

{
bf0Q2[Wf ]

∫
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∫
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(152)
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where we have used − /D2 = p2 +R/4 and

Q2[Wf ] =
1

Γ(2)

∫ ∞

0
dz z

∂tPΛ

PΛ + y2ϕ2
=

∫ Λ2

0
dz z

−2Λ2
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−Λ6
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,
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0
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0
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−2Λ4
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.

We obtain
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]
= − bf0

2 (4π)2
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2 (4π)2
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∫
ddx
√
gR+O(R2). (153)

E.2.2 The ghost fields contributions

We evaluate the ghost field contributions:
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.

For spin 1 ghost field, we have
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+O(R2), (154)

with
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(155)

Q2

[
∂tRΛ

PΛ

]
=

1

Γ(2)

∫ ∞

0
dz z

∂tRΛ

PΛ
=

∫ Λ2

0
dz z
−2Λ2

Λ2
= −Λ4, (156)
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and
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We obtain the contributions of the ghost field with spin 1:
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For spin 0 ghost field, we have
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(161)

with
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(162)
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and
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We obtain the ghost field contributions:
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E.3 Contribution from both fermion and boson

We evaluate the terms

1
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Tr

[
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FF

∂RFF
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FFMFBM−1
BBMBF

]
+
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Tr

[
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∂Λ
M−1

BBMBF

]
, (168)

which contribute to the beta function of the Yukawa coupling constant. We obtain the
corrections (VI)–(XII) described by Fig. 5. Note that since the diagram (VII) vanishes when
employing the de-Donder gauge α = 0 and β = 1, we ignore it here.
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First, we evaluate the diagram (VI):
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Second, we evaluate the diagrams (VIII) and (IX) in Fig 5:
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where we employed the de-Donder gauge α = 0 and β = 1. Third, we evaluate the diagram
(X) in Fig 5:
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Finally, we evaluate the diagrams (XII) and (XIII):
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The beta functions for V , F and y in our truncated effective action are given as the
coefficients of

∫
d4x
√
g,
∫
d4x
√
gR, and

∫
d4xϕψψ =

∫
d4xY/y, respectively. Then we obtain

the beta functions (47), (48) and (58).
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