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REMARKS ON THE GAUSS IMAGES OF COMPLETE MINIMAL
SURFACES IN EUCLIDEAN FOUR-SPACE

REIKO AIYAMA, KAZUO AKUTAGAWA, SATORU IMAGAWA, AND YU KAWAKAMI

Dedicated to Professor Hiroo Naitoh on his 65th birthday

Abstract. We perform a systematic study of the image of the Gauss map for complete

minimal surfaces in Euclidean four-space. In particular, we give a geometric interpre-

tation of the maximal number of exceptional values of the Gauss map of a complete

orientable minimal surface in Euclidean four-space. We also provide optimal results for

the maximal number of exceptional values of the Gauss map of a complete minimal La-

grangian surface in the complex two-space and the generalized Gauss map of a complete

nonorientable minimal surface in Euclidean four-space.

1. Introduction

The study of geometric aspects of value distribution theory of complex analytic map-

pings has achieved many important advances. One of the most brilliant results in the

study is to give a geometric interpretation of the precise maximum for the number of ex-

ceptional values of a nonconstant holomorphic map from the complex plane C to a closed

Riemann surface Σγ of genus γ. Here we call a value that a function or a map never

attains an exceptional value of the function or map. In fact, Ahlfors [1] and Chern [6]

proved that the least upper bound for the number of exceptional values of a nonconstant

holomorphic map from C to Σγ coincides with the Euler characteristic of Σγ by using

Nevanlinna theory (see also [26, 33, 34, 36]). In particular, for a nonconstant meromor-

phic function on C, the geometric interpretation of the maximal number 2 of exceptional

values is the Euler characteristic of the Riemann sphere C := C ∪ {∞}. We remark that

if the closed Riemann surface is of γ ≥ 2, then such a map does not exist because the

Euler characteristic is negative.

There exist several classes of immersed surfaces in 3-dimensional space forms whose

Gauss maps have value-distribution-theoretical property. For instance, Fujimoto [11,

Theorem I] proved that the Gauss map of a nonflat complete minimal surface in Euclidean

3-space R3 can omit at most 4 values. The fourth author and Nakajo [25] obtained the
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maximal number of exceptional values of the Lagrangian Gauss map of a weakly complete

improper affine front in the affine 3-space R3 is 3, unless it is an elliptic paraboloid. We

note that an improper affine front is also called an improper affine map in [30]. We here

call it an improper affine front because Nakajo [32] and Umehara and Yamada [40] showed

that an improper affine map is a front in R3. Moreover, we [22, 23] gave similar result for

flat fronts in H3. In [21], we obtained a geometric interpretation for the maximal number

of exceptional values of their Gauss maps. To be precise, we gave a curvature bound for

the conformal metric ds2 = (1 + |g|2)m|ω|2 on an open Riemann surface Σ, where m is a

positive integer, ω is a holomorphic 1-form and g is a meromorphic function on Σ ([21,

Theorem 2.1]) and, as a corollary of the theorem, proved that the precise maximal number

of exceptional values of the nonconstant meromorphic function g on Σ with the complete

conformal metric ds2 is m+ 2 ([21, Corollary 2.2 and Proposition 2.4]). We remark that

the geometric meaning of the 2 in m + 2 is the Euler characteristic of C ([21, Remark

2.3]). Since the induced metric from R3 of a minimal surface is ds2 = (1 + |g|2)2|ω|2

(i.e., m = 2), the maximal number of exceptional values of the Gauss map g of a nonflat

complete minimal surface in R3 is 4 (= 2 + 2). For the Lagrangian Gauss map ν of

a weakly complete improper affine front, because ν is meromorphic, dG is holomorphic

and the complete metric dτ 2 = (1 + |ν|2)|dG|2 (i.e., m = 1), the maximal number of

exceptional values of the Lagrangian Gauss map of a weakly complete improper affine

front is 3 (= 1 + 2), unless it is an elliptic paraboloid.

On the other hand, Fujimoto [11, Theorem II] also obtained an optimal estimate for the

number of exceptional values of the Gauss map of a nonflat complete (orientable) minimal

surface in R4, and Hoffman and Osserman [16] gave a similar result for a nonflat algebraic

minimal surface in R4 (by algebraic minimal surface, we mean a complete minimal surface

of finite total curvature). Recently, we [20] gave an effective estimate for the number of

exceptional values of the Gauss map for a special class of complete minimal surfaces in R4

that includes algebraic minimal surfaces (this class is called the pseudo-algebraic minimal

surfaces. For the corresponding result in R3, see [24]). This also provided a geometric

interpretation of the Fujimoto and Hoffman-Osserman results for this class, because the

estimate is described in terms of geometric invariants. However, from [20], it was still

not possible to understand a geometric interpretation for general class. Moreover there

has been no unified explanation for the study of the image of the Gauss map of complete

minimal surfaces in R4 including nonorientable case.

The purpose of this paper is to perform a systematic study of the image of the Gauss

map for complete minimal surfaces in R4. The paper is organized as follows: In Section

2, we give an optimal estimate for the size of the image of the holomorphic map G =

(g1, . . . , gn) : Σ → (C)n := C× · · · ×C︸ ︷︷ ︸
n

on an open Riemann surface Σ with the complete

conformal metric ds2 =
∏n

i=1(1 + |gi|2)mi|ω|2, where ω is a holomorphic 1-form on Σ and
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each mi (i = 1, · · · , n) is a positive integer (Theorem 2.1 and Proposition 2.2). The result

is a generalization of [21, Corollary 2.2]. In Section 3.1, applying the result, we give a

geometric interpretation of the Fujimoto result [11, Theorem II] for the maximal number of

exceptional values of the Gauss map G = (g1, g2) of a complete orientable minimal surface

inR4, that is, the maximal number deeply depends on the induced metric fromR4 and the

Euler characteristic of C. In Section 3.2, after reviewing basic facts, we give the maximal

number of exceptional values of the nonconstant part of the Gauss map of a complete

minimal Lagrangian surface in the complex two-space C2 (Corollary 3.3). In Section 3.3,

we study the value distribution of the generalized Gauss map of a complete nonorientable

minimal surface in R4. Recently the study of complete nonorientable minimal surfaces

has attracted a lot of attention (for example, see [4], [5], [28], [37], [38] and [39], for a good

survey see [29]). In [14], the geometry and topology of complete nonorientable maximal

surfaces with lightlike singularities in the Lorentz-Minkowski 3-space are studied. In this

paper, we give an effective estimate for the maximal number of exceptional values of the

generalized Gauss map of a complete nonorientable minimal surface in R4 (Corollary 3.4).

Moreover, by using the argument of López-Mart́ın [27], we construct examples showing

that the estimate is shrap (Proposition 3.5 and Remark 3.6).

2. Main theorem

We first state the main theorem of this paper.

Theorem 2.1. Let Σ be an open Riemann surface with the conformal metric

(1) ds2 =
n∏

i=1

(1 + |gi|2)mi|ω|2,

where G = (g1, . . . , gn) : Σ → (C)n := C× · · · ×C︸ ︷︷ ︸
n

is a holomorphic map, ω is a holomor-

phic 1-form on Σ and each mi (i = 1, · · · , n) is a positive integer. Assume that gi1 , . . . , gik
(1 ≤ i1 < · · · < ik ≤ n) are nonconstant and the others are constant. If the metric ds2 is

complete and each gil (l = 1, · · · , k) omits qil > 2 distinct values, then we have

(2)
k∑

l=1

mil

qil − 2
≥ 1.

We note that Theorem 2.1 also holds for the case where at least one of m1, . . . ,mn is

positive and the others are zeros. For instance, we assume that g := gi1 is nonconstant

and the others are constant. If m := mi1 is a positive integer and the others are zeros,

then the inequality (2) coincides with

m

q − 2
≥ 1 ⇐⇒ q ≤ m+ 2,

where q := qi1 . The result corresponds with [21, Corollary 2.2]. Moreover if all mi are

zeros, then the metric ds2 = |ω|2 is flat and complete on Σ. We thus may assume that
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each gil is a nonconstant meromorphic function on C because there exists a holomorphic

universal covering map π : C → Σ and each gil is replaced by gil ◦ π. By the little

Picard theorem, we have each gil can omit at most 2 distinct values. We remark that the

geometric interpretation of the precise maximum 2 for the number of exceptional values

of a nonconstant meromorphic function on C is the Euler characteristic of the Riemann

sphere C ([1], [6]).

The inequality (2) is optimal because there exist the following examples.

Proposition 2.2. Let Σ be the complex plane punctured at p − 1 distinct points

α1, . . . , αp−1 or the universal cover of that punctured plane. We set

ω =
dz∏p−1

j=1(z − αj)

and the map G = (g1, . . . , gn) is given by

gi1 = · · · = gik = z (1 ≤ i1 < · · · < ik ≤ n)

and the others are constant. Then all gil (l = 1, · · · , k) omit p distinct values α1, . . . , αp−1,∞
and the metric (1) is complete if and only if

p ≤ 2 +
k∑

l=1

mil .

In particular, there exist examples which satisfy the equality of (2).

Proof. A divergent path Γ in Σ must tend to one of the points α1, . . . , αp−1 or ∞.

Thus we have∫
Γ

ds =

∫
Γ

n∏
i=1

(1 + |gi|2)mi/2|ω| = C

∫
Γ

∏k
l=1(1 + |z|2)mil

/2∏p−1
j=1 |z − αj|

|dz| = ∞

when p ≤ 2 +
∑k

l=1mil . Here C is some constant. Then the equality of (2) holds if and

only if p = 2 +
∑k

l=1mil . □

Before proceeding to the proof of Theorem 2.1, we recall the notion of chordal distance

between two distinct values in C and two function-theoretic lemmas. For two distinct

values α, β ∈ C, we set

|α, β| := |α− β|√
1 + |α|2

√
1 + |β|2

if α ̸= ∞ and β ̸= ∞, and |α,∞| = |∞, α| := 1/
√

1 + |α|2. We note that, if we take v1,

v2 ∈ S2 with α = ϖ(v1) and β = ϖ(v2), we have |α, β| is a half of the chordal distance

between v1 and v2, where ϖ denotes the stereographic projection of the 2-sphere S2 onto

C.
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Lemma 2.3. [13, (8.12) in page 136] Let g be a nonconstant meromorphic function on

∆R = {z ∈ C; |z| < R} (0 < R ≤ +∞) which omits q values α1, . . . , αq. If q > 2, then

for each positive η with η < (q − 2)/q, there exists a positive constant C ′ depending on q

and L := mini<j |αi, αj| such that

(3)
|g′z|

(1 + |g|2)
∏q

j=1 |g, αj|1−η
≤ C ′ R

R2 − |z|2
.

Lemma 2.4. [12, Lemma 1.6.7] Let dσ2 be a conformal flat-metric on an open Riemann

surface Σ. Then, for each point p ∈ Σ, there exists a local diffeomorphism Φ of a disk

∆R = {z ∈ C; |z| < R} (0 < R ≤ +∞) onto an open neighborhood of p with Φ(0) = p such

that Φ is an isometry, that is, the pull-back Φ∗(dσ2) is equal to the standard Euclidean

metric ds2E on ∆R and that, for a specific point a0 with |a0| = 1, the Φ-image Γa0 of the

curve La0 = {w := a0s; 0 < s < R} is divergent in Σ.

Proof of Theorem 2.1. Assume that each gil (l = 1, · · · , k) omits qil distinct values,

αl
1, . . . , α

l
qil
. After a suitable Möbius transformation for each gil , we may assume that

α1
qi1

= · · · = αk
qik

= ∞. Suppose that each qil > 2 and

(4)
k∑

l=1

mil

qil − 2
< 1.

Then, by (4), we ultimately suppose that qil > mil + 2 for each il (l = 1, · · · , k). Taking
some positive number η with

(5) 0 < η <
qil − 2−mil

qil

for each il (l = 1, · · · , k). We set

λil :=
mil

qil − 2− qilη
(l = 1, · · · , k).

For a sufficiently small number η, we have

(6) Λ :=
k∑

l=1

λil =
k∑

l=1

mil

qil − 2− qilη
< 1

and

(7)
λil

1− Λ
> 1 (l = 1, · · · , k).

Then we define a new metric

(8) dσ2 = |ω̂z|
2

1−Λ

k∏
l=1

(
1

|g′il|

qil−1∏
j=1

( |gil − αl
j|√

1 + |αl
j|2

)1−η
) 2λil

1−Λ

|dz|2

on Σ′ = {p ∈ Σ ; g′il ̸= 0 for each l}, where ω = ω̂zdz and g′il = dgil/dz. Take a point

p ∈ Σ′. Since dσ2 is flat, by Lemma 2.4, there exists an isometry Φ satisfying Φ(0) = p
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from a disk △R = {z ∈ C ; |z| < R} (0 < R ≤ +∞) with the standard Euclidean metric

ds2E onto an open neighborhood of p ∈ Σ′ with the metric dσ2, such that, for a specific

point a0 with |a0| = 1, the Φ-image Γa0 of the curve La0 = {w = a0s ; 0 < s < R} is

divergent in Σ′. For brevity, we denote gil ◦ Φ on △R by gil in the following. By Lemma

2.3, for each il, we get

(9) R ≤ C ′
il

1 + |gil(0)|2

|g′il(0)|

qil∏
j=1

|gil(0), αl
j|1−η < +∞,

that is, the radius R is finite. Hence

Ldσ(Γa0) =

∫
Γa0

dσ = R < +∞,

where Ldσ(Γa0) denotes the length of Γa0 with respect to the metric dσ2.

Now we prove that Γa0 is divergent in Σ. Indeed, if not, then Γa0 must tend to a point

p0 ∈ Σ\Σ′, where g′il(p0) = 0 for some il. Taking a local complex coordinate ζ := g′il in a

neighborhood of p0 with ζ(p0) = 0, we can write the metric dσ2 as

dσ2 = |ζ|−2λil
/(1−Λ)w |dζ|2,

with some positive function w. Since λil/(1− Λ) > 1, we have

R =

∫
Γa0

dσ > C̃

∫
Γa0

|dζ|
|ζ|λil

/(1−Λ)
= +∞.

Moreover, in the same way, if there exists a subset {l1, . . . , lm} in {1, · · · , k} such that

each gilj (j = 1, · · · ,m) have a zero at p0, we also get R = +∞ because

m∑
s=1

λils
1− Λ

> 1.

These contradict that R is finite.

Since Φ∗dσ2 = |dz|2, we have by (8)

|ω̂z| =
k∏

l=1

(
|g′il |

qil−1∏
j=1

(√1 + |αl
j|2

|gil − αl
j|

)1−η
)λil

.

By Lemma 2.3, we have

Φ∗ds = |ω̂z|
n∏

i=1

(1 + |gi|2)mi/2|dz|

≤ C1

(
k∏

l=1

|g′il|(1 + |gil|2)mil
/2λil

qil−1∏
j=1

(√
1 + |αl

j|2

|gil − αl
j|

)1−η)λil

|dz|

= C1

k∏
l=1

(
|g′il |

(1 + |gil |2)
∏qil

j=1 |gil , αl
j|1−η

)λil

|dz| ≤ C2

(
R

R2 − |z|2

)Λ

|dz|.
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Now we consider the geodesic distance d(p) with the respect to the metric ds2 from each

point p ∈ Σ to the boundary of Σ. Then we have

d(p) ≤
∫
Γa0

ds =

∫
La0

Φ∗ds ≤ C2

∫
La0

(
R

R2 − |z|2

)Λ

|dz| ≤ C2
R1−Λ

1− Λ
< +∞

because 0 < Λ < 1. This contradicts the assumption that the metric ds2 is complete. □

3. Applications

3.1. Gauss images of complete orientable minimal surfaces in R4. We first recall

some basic facts of minimal surfaces in R4. Details can be found, for example, [7, 9,

16, 17, 35]. Let X = (x1, x2, x3, x4) : Σ → R4 be an oriented minimal surface in R4.

By associating a local complex coordinate z = u +
√
−1v with each positive isothermal

coordinate system (u, v), Σ is considered as a Riemann surface whose conformal metric is

the induced metric ds2 from R4. Then

(10) △ds2X = 0

holds, that is, each coordinate function xi is harmonic. With respect to the local coordi-

nate z of the surface, (10) is given by

∂̄∂X = 0,

where ∂ = (∂/∂u −
√
−1∂/∂v)/2, ∂̄ = (∂/∂u +

√
−1∂/∂v)/2. Hence each ϕi := ∂xidz

(i = 1, 2, 3, 4) is a holomorphic 1-form on Σ. If we set

ω = ϕ1 −
√
−1ϕ2, g1 =

ϕ3 +
√
−1ϕ4

ϕ1 −
√
−1ϕ2

, g2 =
−ϕ3 +

√
−1ϕ4

ϕ1 −
√
−1ϕ2

,

then ω is a holomorphic 1-form and g1 and g2 are meromorphic functions on Σ. Moreover

the holomorphic map G := (g1, g2) : Σ → C×C coincides with the Gauss map of X(Σ).

We remark that the Gauss map of X(Σ) in R4 is the map from each point of Σ to its

oriented tangent plane, the set of all oriented (tangent) planes in R4 is naturally identified

with the quadric

Q2(C) = {[w1 : w2 : w3 : w4] ∈ P3(C) ; (w1)2 + · · ·+ (w4)2 = 0}

in P3(C), and the quadric Q2(C) is biholomorphic to the product of the Riemann spheres

C×C. Furthermore, the induced metric from R4 is given by

(11) ds2 = (1 + |g1|2)(1 + |g2|2)|ω|2.

Applying Theorem 2.1 to the metric ds2, we can get the Fujimoto theorem for the

Gauss map of complete orientable minimal surfaces in R4.

Theorem 3.1. [11, Theorem II] Let X : Σ → R4 be a complete orientable nonflat

minimal surface and G = (g1, g2) : Σ → C×C the Gauss map of X(Σ).
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(i) Assume that g1 and g2 are both nonconstant and omit q1 and q2 distinct values

respectively. If q1 > 2 and q2 > 2, then we have

(12)
1

q1 − 2
+

1

q2 − 2
≥ 1.

(ii) If either g1 or g2, say g2, is constant, then g1 can omit at most 3 distinct values.

Proof. We first show (i). Since g1 and g2 are both nonconstant and m1 = m2 = 1

from (11), we can prove the inequality (12) by Theorem 2.1. Next we show (ii). If we set

that g1 omits q1 values, then we obtain

1

q1 − 2
≥ 1

from Theorem 2.1 because m1 = 1. Thus we have q1 ≤ 3. □

Hence we reveal that the Fujimoto theorem depends on the orders of the factors (1 +

|g1|2) and (1 + |g2|2) in the induced metric from R4 and the Euler characteristic of the

Riemann sphere C.

3.2. Gauss images of complete minimal Lagrangian surfaces in C2. There exists

a complex representation for a minimal Lagrangian surface Σ (⊂ C2) in terms of holo-

morphic data. On the representation for the surface Σ, Chen-Morvan [8] proved that

there exists an explicit correspondence in C2 between minimal Lagrangian surfaces and

holomorphic curves with a nondegenerate condition. Indeed, this correspondence is given

by exchanging the orthogonal complex structure J in C2 to another one on R4 = C2.

For the complete case, this result can also be proved from [31, Theorem II] and the well-

known fact [15] that any minimal Lagrangian submanifold in Cn is stable. More generally,

Hélein-Romon [18, 19] and the first author [2, 3] proved that every Lagrangian surface

Σ in C2, not necessarily minimal, is represented in terms of a plus spinor (or a minus

spinor) of the spinC bundle (CΣ ⊕CΣ)⊕ (K−1
Σ ⊕KΣ) satisfying the Dirac equation with

potential (see [3, Section 1] for more details). Here, CΣ and KΣ denote respectively the

trivial complex line bundle and the canonical complex line bundle of Σ. Note that the

representation in terms of plus spinors in Γ(CΣ ⊕ CΣ) = Γ(Σ × C2) given by the first

author is a natural generalization of the one given by Chen-Morvan. Here we remark that

the Lagrangian angle of any minimal Lagrangian surface is constant. Combining these

results, we get the following:

Theorem 3.2. ([8], [2, 3]) Let Σ be a Riemann surface with an isothermal coordinate

z = u +
√
−1v around each point. Let F = (F1, F2) : Σ → C2 be a holomorphic map

satisfying |S1|2 + |S2|2 ̸= 0 everywhere on Σ, where S1 := (F2)
′
z = dF2/dz and S2 :=

−(F1)
′
z = −dF1/dz. Then

(13) f =
1√
2
e
√
−1β/2(F1 −

√
−1F2, F2 +

√
−1F1)
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is a minimal Lagrangian conformal immersion from Σ to C2 with constant Lagrangian

angle β ∈ R/2πZ. The induced metric ds2 on Σ by f and its Gaussian curvature Kds2

are respectively given by

(14) ds2 = (|S1|2 + |S2|2)|dz|2, Kds2 = −2
|S1(S2)z − S2(S1)z|
(|S1|2 + |S2|2)3

.

Conversely, every minimal Lagrangian immersion f : M → C2 with constant Lagrangian

angle β is congruent with the one constructed as above.

Set a meromorphic function g := −S2/S1. Then

G := (g, e
√
−1β) : Σ → C×C

can be regarded as the Gauss map of F (Σ) in R4 = C2 (cf. [16, 17]). Thus we get the

following result.

Corollary 3.3. The first component g of the Gauss map of a complete minimal La-

grangian surface in C2 which is not a Lagrangian plane can omit at most 3 values.

Proof. We assume that g omits q distinct values and set a holomorphic 1-form ω :=

S1dz on Σ. In terms of the data (ω, g) of Σ, the induced metric can be rewritten as

ds2 = (1 + |g|2)|ω|2, that is, m1 = 1 and m2 = 0. For this case, the first component g

of the Gauss map is nonconstant and the second one is constant. From Theorem 2.1, we

obtain q ≤ 1 + 2 = 3. □

3.3. Generalized Gauss images of complete nonorientable minimal surfaces in

R4. We first summarize some basic facts of nonorientable minimal surfaces in R4. For

more details, we refer the reader to [10] and [29]. Let X̂ : Σ̂ → R4 be a conformal minimal

immersion of a nonorientable Riemann surface Σ̂ in R4. If we consider the orientable

conformal double cover π : Σ → Σ̂, then the composition X := X̂ ◦ π : Σ → R4 is a

conformal minimal immersion of the orientable Riemann surface Σ in R4. Let I : Σ → Σ

denote the antiholomorphic order two deck transformation associated to the orientable

cover π : Σ → Σ̂, then I∗(ϕj) = ϕ̄j (j = 1, · · · , 4) or equivalently,

(15) g1 ◦ I = − 1

ḡ1
, g2 ◦ I = − 1

ḡ2
, I∗ω = g1g2ω.

Conversely, if (g1, g2, ω) is the Weierstrass data of an orientable minimal surface X : Σ →
R4 and I is an antiholomorphic involution without fixed points in Σ satisfying (15), then

the unique map X̂ : Σ̂ = Σ/⟨I⟩ → R4 satisfying that X = X̂ ◦ π is a nonorientable

minimal surface in R4.

The fact that gk ◦ I = −(ḡk)
−1 (k = 1, 2) implies the existence of a map ĝk : Σ̂ → RP2

satisfying ĝk ◦ π = π0 ◦ gk, where π0 : C → RP2 ≡ C/⟨I0⟩ is the natural projection and

I0 := −(z̄)−1 is the antipodal map of C. We call the map Ĝ = (ĝ1, ĝ2) : Σ̂ → RP2 ×RP2



10 R. AIYAMA, K. AKUTAGAWA, S. IMAGAWA, AND Y. KAWAKAMI

the generalized Gauss map of X̂(Σ̂). Applying Theorem 3.1 to the generalized Gauss map,

we get the following:

Corollary 3.4. Let X̂ : Σ̂ → R4 be a nonflat complete nonorientable minimal surface

and Ĝ = (ĝ1, ĝ2) the generalized Gauss map of X̂(Σ̂).

(i) Assume that ĝ1 and ĝ2 are both nonconstant and omit q1 and q2 distinct points in

RP2 respectively. If q1 > 1 and q2 > 1, then

(16)
1

q1 − 1
+

1

q2 − 1
≥ 2.

(ii) If either ĝ1 or ĝ2, say ĝ2, is constant, then ĝ1 can omit at most 1 point in RP2.

The inequality (16) is optimal because there exist the following examples.

Proposition 3.5. There exist nonflat complete nonorientable minimal surfaces in R4

each of which components ĝi (i = 1, 2) of the generalized Gauss map Ĝ = (ĝ1, ĝ2) is

nonconstant and omits 2 distinct points in RP2.

Proof. We take 2 distinct points α, β in C\{0} and assume that α ̸= −(β̄)−1. Let Σ

be the complex plane punctured at 4 distinct points α, β, −(ᾱ)−1, −(β̄)−1. We set

ǧ1 = z, ǧ2 = z, ω̌ =
dz

(z − α)(z − β)(ᾱz + 1)(β̄z + 1)

on Σ. If we define Ǐ : Σ → Σ, Ǐ(z) = −(z̄)−1, then Ǐ is an antiholomorphic involution

without fixed points and the following inequalities hold:

(17) ǧ1 ◦ Ǐ = − 1
¯̌g1
, ǧ2 ◦ Ǐ = − 1

¯̌g2
, Ǐ∗ω̌ = ǧ1ǧ2ω̌.

Thus if we set

ϕ̌1 =
1

2
(1 + ǧ1ǧ2)ω̌, ϕ̌2 =

√
−1

2
(1− ǧ1ǧ2)ω̌, ϕ̌3 =

1

2
(ǧ1 − ǧ2)ω̌, ϕ̌4 = −

√
−1

2
(ǧ1 + ǧ2)ω̌,

then we easily show that Ǐ∗ϕ̌i = ϕ̌i (i = 1, · · · , 4). Moreover, these holomorphic 1-forms

satisfy that
∑4

i=1 ϕ̌
2
i ≡ 0 and

∑4
i=1 |ϕ̌i|2 is a complete conformal metric on Σ.

Let Σ̃ be a universal cover surface of Σ. By the uniformization theorem, we may assume

that Σ̃ is the unit disk D. Let π : D → Σ be the conformal universal covering map and

Ĩ a lift of Ǐ to D. If we set ϕ̃i := π∗(ϕi), then Ĩ∗(ϕ̃i) = ϕ̃i (i = 1, · · · , 4). Since Ǐ

is an antiholomorphic involution on Σ without fixed points, Ĩ2k+1 (k ∈ Z) is also an

antiholomorphic transformation on D without fixed points. From the argument of the

proof of Lemma 1 in [27], Ĩ2k (k ∈ Z\{0}) has no fixed points on D, ⟨Ĩ2⟩ ≃ Z, and

D/⟨Ĩ2⟩ is biholomorphic to the annulus A(R) = {z ∈ C ; R−1 < |z| < R} for a suitable

R > 1. Since (Ĩ2)∗(ϕ̃i) = ϕ̃i, each holomorphic 1-form ϕ̃i (i = 1, · · · , 4) can be induced

on the quotient D/⟨Ĩ2⟩. The corresponding holomorphic 1-forms on D/⟨Ĩ2⟩ are denoted

by ϕ1, ϕ2, ϕ3 and ϕ4, and obviously satisfy that
∑4

i=1 ϕ
2
i ≡ 0, ds2 :=

∑4
i=1 |ϕi|2 is a
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complete conformal metric on D/⟨Ĩ2⟩ ≃ A(R) and I∗(ϕi) = ϕ̄i (i = 1, · · · , 4), where
I : A(R) → A(R) induced by Ĩ. Then it holds that I(z) = −(z̄)−1 on A(R). Moreover

the two meromorphic functions

g1 =
ϕ3 +

√
−1ϕ4

ϕ1 −
√
−1ϕ2

and g2 =
−ϕ3 +

√
−1ϕ4

ϕ1 −
√
−1ϕ2

on A(R) omit 4 points α, β, −(ᾱ)−1 and −(β̄)−1 in C.

Let f : C → C be a rational function given in Lemma 2 in [27], that is, the function f

satisfies the following three conditions:

(a) The only poles of f are 0 and ∞,

(b) f ◦ I0 = f̄ ,

(c) f has no zeros on the circle {z ; |z| = 1}.
Set ϕj = (φj/z)dz (j = 1, · · · , 4) and write the Laurent series expansion of φj as

φj(z) = aj0 +
∑
n>0

(ajnz
n + (−1)n+1ājnz

−n), aj0 ∈
√
−1R.

We easily check that the Laurent series expansion of f is written as

f(z) =
m∑

n=1

(bnz
n + (−1)nb̄nz

−n),

where m ∈ Z+. Let k be an odd positive number with k > m. Then it holds that

(18) Resz=0

([∑
n>0

(ajnz
kn + (−1)n+1ājnz

−kn)

]
f(z)

dz

z

)
= 0, j = 1, · · · , 4.

Furthermore, by the virtue of the property for f(z), we have

(19) Resz=0

(
aj0f(z)

dz

z

)
= 0, j = 1, · · · , 4.

We consider the covering Tk : A(R
1/k) → A(R), Tk(z) = zk and define the holomorphic

1-forms ψj (j = 1, · · · , 4) on A(R1/k) as follows:

ψj := f(z)T ∗
k (ϕj) = kf(z)φj(z

k)
dz

z
.

From (18) and (19), we deduce that each

∫ z

1

ψj is well-defined on A(R1/k). Moreover∑4
j=1 ψ

2
j ≡ 0 holds. Since k is odd, we have

(20) I∗(ψj) = ψ̄j, j = 1, · · · , 4,

where I : A(R1/k) → A(R1/k) is the lift of the previous involution in A(R). Indeed, I is

represented as I(z) = −(z̄)−1 here. We note that limk→∞R1/k = 1 and the zeros of f are

not on the circle {z ; |z| = 1}. Thus we take k large enough, we can assume that f never
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vanishes on the closure of A(R1/k). Furthermore, since the only poles of f are 0 and ∞,

there exists some real number c > 1 such that

1

c
< |f(z)| < c,

for any z ∈ A(R1/k). Hence
∑4

j=1 |ψj|2 ̸= 0, and if we define ds20 =
∑4

j=1 |ψj|2, then we

have
1

c2
T ∗
k (ds

2) ≤ ds20 ≤ c2T ∗
k (ds

2).

Since ds2 is complete, the metric T ∗
k (ds

2) and ds20 are also complete.

Therefore we obtain the conformal minimal immersion

X : A(R1/k) → R4, X(z) = Re

∫ z

1

(ψ1, ψ2, ψ3, ψ4)

and the induced metric ds20 is complete and each component of the Gauss map gi ◦ Tk
(i = 1, 2) omits 4 points in C. From (20), the immersion X induces a minimal immersion

from the Möbius strip A(R1/k)/⟨I⟩ to R4, and each component of the generalized Gauss

map omits 2 points in RP2. □

Remark 3.6. From a similar argument of the proof, we can show that there exist

nonflat complete nonorientable minimal surfaces in R4 one of which components of the

generalized Gauss map is nonconstant and omits 1 point inRP2 and the other is constant.

Finally, we deal with value distribution of the generalized Gauss map of complete

nonorientable minimal surfaces in R4 of finite total curvature. Applying [17, Theorem

6.9] (see also [20, Theorem 3.2]) to the generalized Gauss map, we get the following:

Proposition 3.7. Let X̂ : Σ̂ → R4 be a nonflat complete nonorientable minimal sur-

face of finite total curvature and Ĝ = (ĝ1, ĝ2) the generalized Gauss map of X̂(Σ̂).

(i) Assume that ĝ1 and ĝ2 are both nonconstant. Then at least one of them can omit

at most 1 point in RP2.

(ii) If either ĝ1 or ĝ2, say ĝ2, is constant, then ĝ1 can omit at most 1 point in RP2.

However we do not know whether Proposition 3.7 is optimal or not.
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