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The dielectric constants of the quantum paraelectrics SrTiO3 and KTaO3 are measured be-

tween 4 and 325 K. Their temperature dependences are analyzed on the basis of the Barrett

and Vendik models. The former model deals with a ferroelectric optical mode coupled with

other optical modes, whereas the latter deals with the mode coupled with acoustic modes.

In addition, the latter contains a measure of the density of defects and inhomogeneity. The

dielectric constants at low temperatures can be accurately described using Vendik’s formula;

however, they cannot be accurately described using Barrett’s formula, even after the introduc-

tion of a measure of the density of defects and inhomogeneity. A critical quantum paraelectric

region has been introduced recently between a classical region and a quantum paraelectric

one. We point out that the critical region is where a low-temperature approximation is well

realized for the model with the coupling between the ferroelectric and acoustic modes.

1. Introduction

Barrett extended Slater’s classical theory of dielectric constants to BaTiO3 more than 60

years ago by the quantum mechanical treatment of ionic polarizability.1) This leads to a well-

known expression, Barrett’s formula, which is given as

ε(T ) =
C

(T1/2)coth(T1/2T ) − T0
+ ε0, (1)
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where C is the Curie constant, T0 is the paraelectric Curie temperature, T is the sample

temperature, and ε0 is a temperature-independent constant, which was not included in the

original formula. T1 = hν/kB, where kB is the Boltzmann constant, h is the Planck constant,

and hν is the energy level difference of the harmonic part in the potential energy of the Ti ion.

The system remains in a paraelectric state even at T=0 (a quantum paraelectric state) using

this formula at T0 < T1/2. Later, this equation was derived lattice-dynamically on the basis

of a model with a ferroelectric optical mode coupled with other optical modes, as mentioned

in Ref. 2.

In 1979, Müller and Burkard measured the dielectric constant of monodomain SrTiO3

along [110] between 0.3 and 300 K.2) They analyzed the data on the basis of Eq. (1) with-

out ε0 as follows. The computed curve near 16 K diverged from the observed values and

reached extremely low values at lower temperatures at T1 of 80 K, where C = 8.0 × 104 K

and T0=35.5 K. The temperature-independent dielectric constant at low temperatures was ob-

tained by changing T1 from 80 to 77.8 K, although the fit became poor between 4 and 70 K.

This report has been widely considered a fundamental starting point for understanding quan-

tum paraelectrics. For KTaO3, Samara and Morosin measured the temperature dependence

of the dielectric constant of KTaO3 between 4 and 500 K in 1973.3) They reported that the

data fitted Eq. (1) very well over the entire temperature range. However, discrepancies were

reported between several measurements and Eq. (1).

Various alternative models, in addition to the Barrett model, have been proposed to ex-

plain the quantum paraelectric state. In 1972, Vendik proposed a ferroelectric soft mode in

SrTiO3 represented as the motion of two sublattices coupled by a nonlinear elastic interac-

tion.4) He derived an equation to compute the square of the soft-mode frequency ω̃2(T ). This

equation was later derived in a different but more general manner as5)

ω̃2(T ) = ω2
0 +

9ℏ2

4kBTD
A
[
1
2
+

2
(TD/T )2

∫ TD/T

0

x
ex − 1

dx
]
, (2)

where ω0 is the frequency of the harmonic lattice vibration, A is the coupling constant in

the fourth-order anharmonic term of the Hamiltonian, and kBTD is the highest energy of the

acoustic mode that couples with the harmonic lattice vibration. Equation (2) can be approxi-

mated as ω̃2(T ) ∝ (T 2 − const.) for T ≪ TD and ω̃2(T ) ∝ (T − const.′) for T ≫ TD. In 1997,

Vendik and Zubko extended ε(T ) on the basis of Eq. (2), introducing the relation ξ2 = ξ2
B + ξ

2
S ,

as6)

ε(T ) =
C/T0[ √

ξ2 + η3 + ξ
]2/3
+
[ √
ξ2 + η3 − ξ]2/3−η + ε0, (3)
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where ξB is the normalized bias field, ξS is a measure of the density of defects and inhomo-

geneity, and

η =
TD

2T0

[
1
2
+

2
(TD/T )2

∫ TD/T

0

x
ex − 1

dx
]
−1. (4)

ε0 in Eq. (3) was not included in the original formula. They analyzed the dielectric constant

of SrTiO3 below 180 K, whereas Zubko analyzed that of KTaO3 below 80 K.7)

Recently, the quantum fluctuations of electrical polarization have been proposed to pro-

duce a “rather unconventional” temperature dependence of the inverse dielectric constant at

low temperatures, 1/ε ∝ T 2, in a quantum critical regime in the vicinity of a ferroelectric

quantum critical point (QCP),8, 9) where an extended quantum critical theory was applied.

The QCP is the point where a ferroelectric phase transition occurs by tuning a parameter at

zero temperature. The parameter is either the hydrostatic pressure or an alternative chemical

or isotropic substitution. A crossover between the quantum critical and quantum paraelectric

regions was argued to exist, which decreased and disappeared at the QCP with a continu-

ous change in the tuning parameter. The T 2 dependence of 1/ε was explained by the self-

consistent phonon treatment of the soft ferroelectric optical mode.8) The difference between

the detailed temperature dependences of 1/ε at low temperatures for SrTiO3 and KTaO3 was

explained by the difference between the values of their tuning parameters compared with the

values at their QCPs.8, 10) Anharmonic interactions were taken into account between different

wavevector modes of the transverse-optical branch in previous studies.8, 9) Then the behavior

of the dielectric constant at very low temperatures follows Eq. (1). However, the quantum

criticality theory was later revised to include the coupling of the electric polarization field

with acoustic phonons.10)

Several disagreements exist in the results of the analyses and interpretations based on

these different models. A thorough examination of the digital data is necessary to investi-

gate these models in detail. A structural phase transition at ∼ 105 K in SrTiO3 produces a

multidomain distribution in a sample. The dielectic constants at low temperatures depend on

the distribution which can be different from sample to sample because a monodomain crystal

shows a large anisotropy of dielectic constants at low temperatures.11) Thus, we performed

careful measurements of the dielectric constants of SrTiO3 and KTaO3 between 4 and 325

K. We analyzed their temperature dependences on the basis of these models to determine the

most appropriate model.

3/19



J. Phys. Soc. Jpn.

2. Experimental Details

The investigated sample of KTaO3 was a top-seed-flux-grown crystal. A 10 × 10 × 0.5

mm3 plate with epi-polished (100) surfaces was supplied by MTI Corp. (USA). The inves-

tigated samples of SrTiO3 were Verneuil-grown crystals. A 10 × 10 × 0.5 mm3 plate with

mirror-polished (100) surfaces was supplied by Furuuchi Chemical Corp. (Japan). A plate

with (110) surfaces was cut from a single-crystal boule obtained from Nakazumi Crystals

Corp. (Japan). The (110) surfaces were finely polished using coated papers. These plates

were cut to a size of 5 × 5 × 0.5 mm3. Electrodes with a typical area of 11.5 mm2 were

formed on the surfaces by gold evaporation. A (100) plate of SrTiO3 with an electrode area

of 2.0 mm2 was also prepared to examine the effectiveness of corrections.

The dielectric constants ε′ (real part) and ε” (imaginary part) were measured using a pre-

cision LCR meter (HP 4284A) with an applied voltage of 500 mV. Measurements with an

applied voltage of 5 mV were also performed to ensure a linear response to the applied elec-

tric field for the (100) plate of SrTiO3. Measurements were performed for both heating and

cooling processes. The temperature of the samples was controlled in the temperature range

of 4–325 K using a helium closed-circuit refrigerator (Daikin Industries, CG308SBR).12)

An open/short/load correction method was adopted for the LCR meter, because preliminary

measurements revealed that the normal open/short correction was insufficient for the high-

dielectric-constant states of these materials, even in low-frequency measurements. A regu-

larly used sample holder was also modified to ensure more precise measurements as follows.

Two pairs of coaxial cables from the LCR meter used in a four-wire method were extended

to the neighborhood of the sample. The longer distance between the sample and the end of

the pair of coaxial cables was about 3 cm.

Least-squares fitting calculations of Barrett’s formula were performed using the computer

program KaleidaGraph. We also performed the least-squares fitting of Vendik’s formula using

the computer program Gnuplot, where a recursive-definition technique was employed for an

integral function; no approximate expressions of the integral function were used.

3. Results

We did not observe any difference between the results obtained for the heating and cooling

processes. In addition, no difference could be detected between the dielectric constants of

SrTiO3 along [100] obtained by applying voltages of 5 and 500 mV, which ensured a linear

response to the applied electric field in the present measurements.

Figure 1 indicates the dielectric constant ε′ (real part) of KTaO3 along [100] as a func-
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Fig. 1. (Color online) Dielectric constant ε′ (real part) of KTaO3 along [100] as a function of heating temper-

ature. The inset shows the results for the dielectric constant ε” (imaginary part). The dielectric constants were

measured at frequencies of 1 kHz, 10 kHz, 100 kHz, and 1 MHz.

tion of heating temperature for frequencies of 1 kHz, 10 kHz, 100 kHz, and 1 MHz. The

inset shows the dielectric constant ε” (imaginary part). We could not detect any frequency

dependences of the real parts. The imaginary parts were very small, but they showed peaks at

different temperatures, that depended on the frequency. The temperature dependences of the

real parts were essentially the same as those reported in Ref. 3, although the values for the

real part were 15% smaller than our results.

The dielectric constant ε′ (real part) of SrTiO3 along [100] is delineated in Fig. 2 as a

function of heating temperature for frequencies of 1 kHz, 10 kHz, 100 kHz, and 1 MHz. The

inset shows the results for the dielectric constant ε” (imaginary part). The electrode area of

the specimen was 2.0 mm2. The temperature dependences of the real parts for the specimen

with an electrode area of 11.5 mm2 were the same as those shown in Fig. 2, although the

values were about 13% smaller than those shown in Fig. 2.

Figure 3 shows the dielectric constant ε′ (real part) of SrTiO3 along [110] as a function of

heating temperature for frequencies of 1 kHz, 10 kHz, 100 kHz, and 1 MHz. The inset shows

the results for the dielectric constant ε” (imaginary part).

4. Analysis

An enhancement of the dielectric constant ε” (imaginary part) below ∼20 K was observed

in KTaO3 and SrTiO3. Peaks were detected between ∼45 and ∼65 K, depending on the mea-

sured frequency, in ε” for KTaO3. We detected no clear dispersion of the dielectric constant

ε′ (real part). A feeble dispersion of ε′ was found to exist at the temperatures of the peaks in
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Fig. 2. (Color online) Dielectric constant ε′ (real part) of SrTiO3 along [100] as a function of heating temper-

ature. The inset shows the results for the dielectric constant ε” (imaginary part). The dielectric constants were

measured at frequencies of 1 kHz, 10 kHz, 100 kHz, and 1 MHz.

Fig. 3. (Color online) Dielectric constant ε′ (real part) of SrTiO3 along [110] as a function of heating temper-

ature. The inset shows the results for the dielectric constant ε” (imaginary part). The dielectric constants were

measured at frequencies of 1 kHz, 10 kHz, 100 kHz, and 1 MHz.

ε” for KTaO3. Extrinsic origins are considered to cause the enhancement and peak of ε” as

discussed in Sect. 5.1. Thus, we did not take them into account in the analyses of ε′.

4.1 Analysis of KTaO3

Prior to the analyses using quantum mechanical formulae, the temperature dependence of

the real part of the dielectric constant ε′ of KTaO3 along [100] measured at 10 kHz on heat-

ing above 150 K was analyzed using the classical Curie–Weiss formula, ε = C/(T − T0) + ε0.

This analysis was conducted to determine whether the quantum mechanical formulae suffi-
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ciently shifted to the classical one in this temperature range. The values are listed in Table

I.

4.1.1 Analyses based on Barrett’s formula

The temperature dependence of ε′ for KTaO3 measured at 10 kHz was analyzed on the

basis of Barrett’s formula, Eq. (1), between 4 and 325 K. The result is delineated in Fig. 4

by the red line (1) for the left axis. The green line (2) is a fit for T1 and T0 using the values

given by Vogt13) based on the analysis of hyper-Raman scattering data. The brown line (3) is

a fit for T1 and T0 using the values given by Samara and Morosin.3) The obtained values and

corresponding values of χ2 from these fittings are listed in Table I.

In the case of spectroscopic measurements, a least-squares fitting is usually performed on

ω or ω2, where the latter is proportional to 1/ε by the Lyddane–Sachs–Teller (LST) relation.

In a constant-weight least-squares fitting, a larger value is considered to be more important

than a smaller value. The quantum effects play an important role in the fitting of ε, while

the classical effects play an important role in the fitting of 1/ε. To see the difference, we

conducted a fitting to A/ε′, where the scale factor was set to 2554 (cm−2) × 714.3. The value

of A was determined from the frequency in Ref. 13 and the dielectric constant obtained at 100

K. The fitting equation was A/ε(T ), where ε0 was included in the denominator. The result of

the fitting with no constraints on A/ε is delineated in Fig. 4 by the red line (1’) for the right

axis. The parameters and χ2 values obtained by the fitting are listed in Table I.

4.1.2 Analyses based on Vendik’s formula and comparison with those based on Barrett’s

formula

To compare the analyses based on Barrett’s formula, Eq. (1), we first analyzed the data

using Vendik’s formula, Eq. (3), for ξ = 0, i.e.,

ε(T ) =
C/T0

η
+ ε0. (5)

The lines in Fig. 5 indicate the results of least-squares fittings under various conditions. The

red broken line shows the fit for ξ = 0, while the red solid line shows the fit for ξ , 0. The

black solid line delineates the result of the fitting with fixed values of TD and T0 given by

Zubko.7) The parameters and χ2 values obtained by these fittings are listed in Table I. The

values obtained by the fitting of A/ε(T ) for ξ , 0 are listed in the table, although the fit is not

delineated in Fig. 5 as it is impossible to distinguish the red line (1’) in Fig. 4.

ξ is not included in Barrett’s formula. The introduction of ξ greatly improved the fitting in

Vendik’s formula. To compare this result with the one obtained using Barrett’s formula under
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Fig. 4. (Color online) (Left) Results of fitting Barrett’s formula to the dielectric constant ε′ (real part) of

KTaO3 along [100], measured at 10 kHz on heating, where blue open circles are plotted at every 30 data points.

The inset is an expansion of the low-temperature values of ε′. (Right) Results of fitting the inverse of Barrett’s

formula to A/ε′, where the black open circles are plotted at every 100 data points, and A = 2554 (cm−2) × 714.3.

The red lines (1 and 1’) are fits with no constraints. The green line (2) is a fit of T1 and T0 using Vogt’s values.13)

The brown line (3) is a fit of T1 and T0 using Samara and Morosin’s values.3)

the same conditions, i.e., the introduction of ξ, η for Barrett’s formula is given as

η =
T1

2T0
coth
( T1

2T

)
−1. (6)

The result of the fitting by Eqs. (3) and (6) is delineated by the blue solid line in Fig. 5. To dis-

cuss the quantum fluctuation effect later, the measured inverse dielectric constant and inverse

of the red solid line are plotted against the square of the temperature up to approximately 32

K in the inset. The values obtained by this fitting and the χ2 values are listed in Table I.

4.2 Analysis of SrTiO3

Figure 6 shows a comparison between the values of the dielectric constant ε′ (real part)

of SrTiO3 along different directions for different samples. The scales of the vertical axes were

chosen to illustrate their maximum values. Maximum values of approximately 25,000 have

been reported for the dielectric constants of monodomain crystals.2, 11) However, a value of

about 43,000 based on dielectric measurement has been reported.14) In addition, a value of

about 40,000 has been estimated using hyper-Raman scattering measurements.14, 15) Our (100)

plate sample with a maximum value of 36,000 was estimated to be a monodomain crystal,

which required the introduction of a secondary order parameter, associated with the structural

transition at 105 K, to analyze the dielectric constant.

In 1962, Sawaguchi et al. reported the results of dielectric measurements of SrTiO3 along

three directions, [100], [110], and [111], before the discovery of the structural transition. The
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Fig. 5. (Color online) Comparison of fittings of Vendik’s formula (red lines) and Barrett’s formula (blue lines)

to the dielectric constant ε′ (real part) of KTaO3 along [100], measured at 10 kHz on heating, where blue open

circles are plotted at every 30 data points. The black line delineates the fit of TD and T0 using the values given

by Zubko.7) The broken and solid lines are fits for ξ = 0 and ξ , 0, respectively. The inset shows a comparison

of the measured inverse dielectric constant and the inverse of the calculated value (the red solid line in the main

figure) against the square of the temperature up to approximately 32 K.

dielectric constants differed very little from specimen to specimen.16) Our result along [110]

was almost the same as their result along [110]. Hehlen et al. reported hyper-Raman scattering

data below 80 K,17) combined with the previously reported data above 80 K by Vogt.13) We ob-

tained the frequencies in Fig. 1 from Ref. 17. The squares of the average frequency, ω̃2, below

80 K were obtained by taking their degeneracy into account, i.e., ω̃2 = [ω2(A2u) + 2ω2(Eu)]/3.

The average values are expected to be free from the effects of structural transition. The tem-

perature dependence of A/ω̃2 is plotted using red open diamonds in Fig. 6, where A was

taken to be 129.1 (cm−2) × 18149 based on the dielectric constant and frequency at 6.9 K.

Our dielectric constant data along [110] agrees well with A/ω̃2. Thus, our (110) plate sample

was estimated to be almost an ideal random-domain crystal. Then, we analyzed the dielectric

constant and inverse of the dielectric constant along [110], without taking the effect of the

structural transition into account.

Prior to the analyses using quantum mechanical formulae, the temperature dependence of

ε′ measured at 10 kHz above 150 K was analyzed using the classical Curie–Weiss formula,
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Table I. Comparison of values obtained for KTaO3 by fitting Vendik’s formula and Barrett’s formula, as well

as the Curie–Weiss formula (T > 150 K) under various conditions, where ξ is a measure of the density of defects

and inhomogeneity. The scale factor A is equal to 2554 (cm−2) × 714.3. The numbers in parentheses indicate

the standard errors.

Formula C × 104 (K) TD or T1 (K) T0 (K) ε0 ξ χ2 × 105

Curie–Weiss (T > 150 K) 6.282 (1) — 4.54 (2) 54.27 (3) — —

Vendik (ξ = 0) 4.74 (2) 152.0 (5) 27.6 (2) 101.9 (6) — 43.95

Vendik (ξ , 0) 5.769 (3) 86.5 (1) 13.16 (3) 66.7 (2) 0.667 (3) 1.52

Vendik (ξ , 0; fixed TD & T0
1 ) 4.505 (2) 170 32.5 102.3 (4) 0.00 (9) 71.11

Barrett (ξ = 0) 6.032 (5) 51.39 (4) 11.80 (3) 55.2 (3) — 15.13

Barrett (ξ , 0) 6.155 (9) 42.4 (4) 9.9 (1) 51.7 (4) 0.99 (3) 10.47

A/Vendik (ξ , 0) 6.064 (2) 64.5 (3) 9.72 (3) 60.88 (4) 1.262 (7) 5.34

A/Barrett (ξ = 0) 5.916 (2) 50.77 (6) 11.96 (4) 62.23 (4) — 7.96
1These values were fixed at the values obtained by Zubko.7)

Fig. 6. (Color online) Comparison of the dielectric constants ε′ (real part) measured at 10 kHz on heating,

and inverse of square of soft-mode frequency for SrTiO3. The black open circles (left scale) and blue open

circles (right scale) are dielectric constants along [100] and [110], respectively. The circles are plotted at every

20 data points. The red open diamonds are the squares of the inverse frequencies obtained by the hyper-Raman

data,13, 17) scaled to the dielectric constant at 6.9 K along [110]. The frequencies below 80 K are average values

considering soft mode degeneracy.

ε = C/(T − T0) + ε0. The values are listed in Table II.

4.2.1 Analyses based on Barrett’s formula

The blue and red lines in Fig. 7 show the results of the least-squares fittings of Eq. (1)

to ε′ for SrTiO3 between 4 and 325 K for the left scale. The blue line delineates the result
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Fig. 7. (Color online) (Left) Results of fitting Barrett’s formula to the dielectric constant ε′ (real part) of

SrTiO3 along [110], measured at 10 kHz on heating, where blue open circles are plotted at every 30 data points.

(Right) Results of the fitting of the inverse of Barrett’s formula to A/ε′, where the black open circles are plotted

at every 100 data points, and A = 129.1 (cm−2) × 18149. The red lines are fits with no constraints. The blue

line is the result of the fit for T1 alone, where C, T0, and ε0 are fixed at the values obtained by the fit of the

Curie–Weiss formula above 150 K.

of the fitting using fixed values of C, T0, and ε0 obtained by fitting the Curie–Weiss formula

above 150 K, while the red line indicates the result of fitting with no constraints. The result

of the fitting to A/ε′, without constraints for the right scale, is shown in Fig. 7. The fitting

equation was A/ε(T ), where ε0 was included in the denominator. The parameters and χ2

values obtained by these fittings are listed in Table II.

4.2.2 Analyses based on Vendik’s formula and comparison with those based on Barrett’s

formula

Analyses based on Vendik’s formula were performed for the following three conditions:

ξ = 0; ξ , 0; and TD = 175 K, T0 = 42 K, and ξ , 0, where the temperatures are those ob-

tained for SrTiO3 based on the same formula in Ref. 6. The results of the fittings are shown

by a red broken line, red solid line, and black solid line, respectively, in Fig. 8. The fitting of

Barrett’s formula with ξ , 0 [ using Eqs. (3) and (6)] was also conducted for comparison. The

result is drawn using a blue solid line in Fig. 8, where the result for ξ = 0 is shown by a blue

broken line again. A comparison of the measured inverse dielectric constants along [110] and

[100] and the inverse of the red solid line (i.e., fit to ε′ along [110]) is plotted against the

square of the temperature up to 50 K in the inset. The values and χ2 values obtained by these

fittings are listed in Table II.
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Fig. 8. (Color online) Comparison of fittings of Vendik’s formula (red lines and black line) and Barrett’s

formula (blue lines) to the dielectric constant ε′ (real part) of SrTiO3 along [110], measured at 10 kHz on

heating, where blue open circles are plotted at every 20 data points. The broken and solid lines are fits for ξ = 0

and ξ , 0, respectively. The inset shows a comparison of the measured inverse dielectric constants along [110]

(blue open circles) and [100] (black open circles) and the inverse of the calculated value (red solid line, which

is the inverse of the red solid line in the main figure) against the square of the temperature up to approximately

50 K.

5. Discussion

5.1 Enhancements and peaks in dielectric constant ε” (imaginary part)

Enhancements of the dielectric constant ε” (imaginary part) were observed below ∼20

K for KTaO3 and SrTiO3. Peaks in the dielectric constant ε′ (real part) at 10–20 K and the

ferroelectric properties below these temperatures were frequently observed in the early stages

of the studies for both materials.18, 19) These ferroelectric phases were attributed to extrinsic

origins such as the impurities and conditions of the sample preparation18) or oxygen vacan-

cies.20) Recent crystals do not show such peaks. However, factors with extrinsic origins af-

fecting the damping of the ferroelectric soft modes at low temperatures might exist even in

recent crystals, causing the enhancement of ε” below ∼20 K in the present measurements.

Very small peaks in the dielectric constant ε” were detected between ∼45 and ∼65 K,

which depended on the measured frequency, for KTaO3 in addition to the enhancement.

A slight modulation of the temperature dependence of ε′ was observed around the corre-

sponding temperature, which cannot be described by Eq. (3). An anomaly in the exponent γ
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Table II. Comparison of values obtained for SrTiO3 by fitting Vendik’s formula and Barrett’s formula, as

well as the Curie–Weiss formula (T > 150 K), under various conditions, where ξ is a measure of the density of

defects and inhomogeneity. The scale factor A is 129.1 (cm−2) × 18149. The numbers in parentheses indicate

the standard errors.

Formula C × 104 (K) TD or T1 (K) T0 (K) ε0 ξ χ2

Curie–Weiss (T > 150 K) 8.022 (2) — 45.65 (2) 47.06 (6) — —

Vendik (ξ = 0) 9.19 (1) 273 (4) 64.1 (9) -100 (5) — 2.280 ×108

Vendik (ξ , 0) 7.91 (5) 281 (2) 67.1 (5) 5 (2) 0.0098 (3) 2.676 ×107

Vendik (ξ , 0; fixed TD & T0
2 ) 9.20 (2) 175 42 71 (4) 0.0315 (1) 1.253 ×109

Barrett (ξ = 0) 15.53 (6) 66.2 (2) 24.5 (2) -325 (4) — 4.917 ×108

Barrett (ξ , 0) 15.8 (2) 64 (2) 23.5 (6) -335 (6) 0.08 (3) 4.888 ×108

A/Vendik (ξ , 0) 6.992 (3) 298.9 (1) 72.32 (3) 65.33 (4) 0.00867 (3) 7.307 ×104

A/Barrett (ξ = 0) 7.755 (4) 125.9 (2) 57.21 (6) 48.6 (2) — 2.371 ×106

2These values were fixed at the values obtained by Vendik and Zubko.6)

obtained by a power law fit (δε′−1 ∼ T γ) was observed at 40 K in KTaO3,8) which was con-

sidered to be an extrinsic effect related to oxygen vacancies, where δε′−1 denotes the change

in the inverse dielectric constant ε′ from its zero temperature value. Detailed studies on the

anomaly of ε” for KTaO3 are desirable because they seem lacking compared with the studies

in SrTiO3.20)

5.2 Quantum paraelectric state in KTaO3

The present temperature dependence of the real part of the dielectric constant ε′ of KTaO3

was essentially the same as the dependence reported by Samara and Morosin,3) with only a

15% difference in the values. However, the results of the analyses based on Eq. (1) are very

different. Our fit shows saturation and deviates from the observations below 8 K as delineated

by the red line (1) in Fig. 4, in contrast to the very good fit between 4 and 500 K of their

analysis (Fig. 2 of Ref. 3). In addition, when using their values of T1 and T0, our fit deviates

from the observations below 15 K and saturates below 8 K, as shown by the brown line

(3) in Fig. 4. Although their values of T1 and T0 are 11% greater than ours, their values

of C and ε0 agree very well with our values if the 15% difference between the observed

dielectric constants is taken into account. The values are compared in Table III. To clarify the

cause of the discrepancy, we calculated the dielectric constants on the basis of their values

and compared them with their observations. This calculation shows the deviation from their

observations below 15 K, in contrast to their calculation.
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Vogt measured a soft-mode frequency of KTaO3 using hyper-Raman scattering,13) which

agreed well with the dielectric constant previously measured3) using the LST relation. He

analyzed the frequency using Barrett’s formula, combined with a high-temperature limit of

the soft-mode frequency, i.e., an analysis using [A/Eq.(1)]1/2. He reported an accurate re-

production of the data by this analysis. However, the dielectric constant at low temperatures

cannot be reproduced by Eq. (1) with the values in Ref. 3. We calculated the frequency using

the values represented in Ref. 13 and found that there were slight differences between the

calculated and observed frequencies at low temperatures.

Because (2T/T1)/coth(T1/2T ) > 0.99 for T1 = 51.4 K and T > 150 K, Eq. (1) is expected

to sufficiently shift to the Curie–Weiss formula. However, the values of T0 in Table III are at

least 2.6 times greater than the value presently obtained by applying the Curie–Weiss formula

for T > 150 K. This indicates that Eq. (1) is insufficient to describe the dielectric constant of

the quantum paraelectric state of KTaO3, in addition to its inability to describe the dielectric

constant at low temperatures.

Vendik’s formula, Eq. (3), can be fitted well to ε′ for KTaO3 at all the measured tem-

peratures. The formula contains ξ, a measure of the density of defects and inhomogeneity.

The introduction of ξ to Barrett’s formula only slightly improved the fitting of ε′, whose χ2

is seven times greater than that of the fit by Eq. (3). Thus, it can be concluded that Vendik’s

formula is more appropriate for describing the dielectric constant of the quantum paraelectric

state in KTaO3 than Barrett’s formula. The result of the fitting of Eq. (3) by Zubko7) was

very different from our result. The values of TD and T0 were 2 and 2.5 times greater than our

values, respectively. There might be two reasons for these differences. (1) The data used were

limited below 80 K and (2) ε0 was excluded from the equation they fitted.

The values of TD and T0 obtained by fitting A/[Eq. (3)] to A/ε′ are 25% smaller than

the values obtained by fitting Eq. (3) to ε′, as listed in Table I. Thus, we should be careful

in comparing the results obtained by different methods. In addition, we should note that the

effect of ξ on the soft-mode frequency obtained by scattering experiments might be different

from that on the dielectric constant, because the former is a microscopic property, while the

latter is a macroscopic property.

5.3 Quantum paraelectric state in SrTiO3

Vogt suggested the occurrence of a ferroelectric phase transition in the absence of struc-

tural distortion in SrTiO3.13) He analyzed the hyper-Raman scattering data, including the

weighted-average frequency below the structural transition temperature, where the degener-
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Table III. Comparison of present values with those previously reported for KTaO3 by fitting Barrett’s for-

mula, as well as those of the Curie–Weiss formula (T > 150 K). The numbers in parentheses indicate the stan-

dard errors.

Formula C × 104 (K) T1 (K) T0 (K) ε0

Curie–Weiss (T > 150 K) 6.282 (1) — 4.54 (2) 54.27 (3)

Barrett (present) 6.032 (5) 51.39 (4) 11.80 (3) 55.2 (3)

Barrett (previous) 3 5.45 56.9 13.1 47.5

A/Barrett (present) 5.916 (2) 50.77 (6) 11.96 (4) 62.23 (4)

[A/Barrett]1/2 (previous) 4 — 55 14 —
3These values were fixed at the values obtained by Samara and Morosin.3) 4These values were fixed at the values

obtained by Vogt.13)

acy of the ferroelectric A2u and Eu modes was considered while computing their weights. The

analysis was made using Barrett’s formula, Eq. (1), including the temperature dependence

of T1 associated with the structural distortion. The result indicated that a ferroelectric phase

transition occurred at around 35 K if there was no structural distortion. However, the average

frequency based on the degeneracy is expected to be independent of the effect of structural

distortion, because the frequency exhibits a cubic symmetry. Thus, it is unnecessary to intro-

duce an order parameter associated with the structural distortion to the analysis of the average

frequency.

On the basis of an analysis of the results of precise hyper-Raman scattering experiments,

Yamanaka et al. concluded that the quantum paraelectric state of SrTiO3 was stabilized by

the structural distortion, and if there was no distortion, SrTiO3 would undergo a ferroelectric

phase transition at around 30 K.15) However, in this analysis, the frequencies of both the A2u

and Eu modes were higher than the frequency of the ferroelectric mode in the absence of the

structural distortion. This means that the A2u and Eu modes do not couple with the structural

transition. In other words, this was an anti-coupling solution of the equation they solved,

which has two solutions.

A random domain structure is a good approximation for the presently measured (110)

plate sample for the reason stated in Sect. 4.2. The temperature dependence of the real part

of the dielectric constant ε′ of SrTiO3 at low temperatures can be fitted well using Vendik’s

formula, whereas it cannot be fitted using Barrett’s formula, even if ξ is introduced to the

formula. The difference in the fittings is clear in Fig. 8. The fitting of Vendik’s formula, using

the temperatures TD and T0 from Refs. 6 and 21, shows a deviation below 20 K and a peak

at 10 K. The temperature of the peak can be confirmed using the condition ∂ε/∂T = 0 for
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Eq. (3), i.e., T for ξ2 = η3.6) Thus, the fitting, delineated by the black solid line in Fig. 8, was

accurately performed. The maximum values of the dielectric constants in Refs. 6 and 21 are

∼25,000, which are almost the same as those in monodomain crystals.2, 11) Thus, a random-

domain approximation is inadequate for the data in Refs. 6 and 21, and it is necessary to

introduce the effects of structural distortion in the analyses.

The values of TD and T0 obtained by the fitting of A/[Eq. (3)] to A/ε′ are about 7% greater

than the values obtained by fitting Eq. (3) to ε′. Thus, we should be careful when we compare

the results obtained by different methods. In addition, we should note that the effect of ξ on

the soft-mode frequency obtained by scattering experiments might be different from that on

the dielectric constant, even though the value is very small compared with that for KTaO3.

5.4 Comparison with analyses based on quantum critical theory

The nonclassical T 2 dependences of the inverse dielectric constant ε′ (real part) ob-

served in both crystals have been understood in terms of the quantum critical theory ex-

tended to include the effects of long-range dipolar interactions as follows:10) The relation

ε0E = aP + bP3 − c∇2 P between the polarization P and the electric field E is assumed at ab-

solute zero, where ε0 is the dielectric constant of vacuum, a is the inverse static susceptibility,

b is the mode-mode coupling parameter, and c is the mode stiffness parameter. By setting a

equal to zero, the inverse electric susceptibility at finite T , 1/χ(T ), satisfies the self-consistent

equation

1/χ(T ) = g2bc2kBT
∫ qT

0

qd−1dq
cq2 + 1/χ(T )

, (7)

where g2 is a numerical constant, qT is a thermal cutoff wavevector, and d denotes the di-

mension of the system. The temperature dependence of the dielectric constant was obtained

by numerically solving Eq. (7) without using adjustable parameters. By introducing a dy-

namical exponent z defined as ωq ∝ qz, one can find that 1/χ(T ) ∝ T (d+z−2)/z. For displacive

ferroelectrics with d = 3 and z = 1 near the QCP, 1/χ(T ) can be approximately expressed as

1/χ(T ) = a +
5ε0k2

Bb
18ℏcv

T 2, (8)

where v is the velocity of the coupled mode, ℏ∆ is the energy gap of the mode at q = 0, and

c = av2/∆2. The temperature dependence of Eq. (8) is expected to cross over to an exponential

form in the quantum paraelectric region if the transverse optical mode does not condense.

We can easily presume the form of Eq. (8) except the expression for the modulus of T 2.

This is because the equation is essentially the same as the low-temperature approximation

of Eq. (2); however, their derivations are different. The modulus is expressed using universal
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constants and quantities that can be determined by independent measurements. We can verify

the validity of Eq. (8) by comparing the values with the experimental values, in addition to

the correctness of numerical solutions of Eq. (7) without adjustable parameters.10)

The values obtained for KTaO3 and SrTiO3 from Ref. 10 are listed in Table IV. The low-

temperature limit T ∗ of the T 2 dependence of 1/ε′ for KTaO3 and the gradients for KTaO3

and SrTiO3 were obtained from Figs. 2 and 3 in Ref. 10. The gradients in the last column

of the table were obtained from Eq. (8) using the specific parameters provided in Table I of

Supplementary Information in Ref. 10. The values obtained by the present measurements and

analyses for KTaO3 and SrTiO3 are also listed in the table. We analyzed the observed data

by fitting Eqs. (3) and (4). Then, the calculated gradients were in good agreement with the

observed ones.

T ∗ and the observed gradient for KTaO3 were similar in both measurements. The calcu-

lated gradients in Ref. 10 were 1/3.6 and 1/1.8 times those of the observed values in Ref. 10 .

Thus, the calculated gradients in Ref. 10 were not in good agreement and also different from

the observed value.

The observed gradients for SrTiO3 in both measurements were similar; however, the T ∗

value was different. Although the deviation from the T 2 dependence of 1/ε′ was not observed

above 2 K in Ref. 10, T ∗ was approximately 22 K in the present measurement. As stated in

Sect. 4.2, the (110) sample can be considered as a nearly ideal random-domain crystal. Con-

sidering the low-temperature value of ε′ in the (100) sample, this crystal can be considered

as a nearly monodomain crystal, whose T 2 dependence of 1/ε′ was observed above 4 K, as

shown in the inset of Fig. 8. Then, the crystals measured in Ref. 10 might slightly deviate

from the ideal random-domain structure. The calculated gradients in Ref. 10 were 1/2 and 1.3

times those of the observed values in Ref. 10. Thus, the calculated gradients in Ref. 10 were

not in good agreement and also different from the observed values.

A quantum tuning parameter g = a/cΛ2, which can be varied either by pressure or alter-

natively by chemical or isotopic substitution, vanishes at QCP, whereΛ is the effective Debye

wavevector.10) Using the values provided in Table I of Supplementary Information in Ref. 10,

we obtain gKTO/gS TO = 0.010/0.0023 ≈ 4.3, although a factor of 2π appears to be lacking in

the expression for Λ, where gKTO and gS TO are the tuning parameters for KTaO3 and SrTiO3,

respectively. The temperature normalized to the effective Debye temperature θ = ℏvΛ/kB is

plotted against g in the phase diagram for a displacive ferroelectric in Fig. 4 in Ref. 10. The

relationship of (T ∗/θ)KTO ≫ (T ∗/θ)S TO is expected on the basis of this diagram. However, a

ratio of (T ∗/θ)KTO = 0.78(T ∗/θ)S TO was obtained in the result of this study, which does not

17/19



J. Phys. Soc. Jpn.

agree with the phase diagram, although the basis of the tuning parameter dependence of T ∗/θ

is not shown.

Finally, the critical quantum paraelectric region introduced in Ref. 10 is where a low-

temperature approximation is well realized for the model with the coupling between the

ferroelectric and acoustic modes. The analyses without the adjustable parameters did not

successfully describe the measurements quantitatively.

Table IV. Comparison of values of the low-temperature limit T ∗ of the T 2 dependence of 1/ε′ for KTaO3 and

SrTiO3. The gradients of the T 2 dependence above T ∗ are also compared.

Specimen T ∗(obs) Gradient (obs) Gradient (cal) Gradient (cal)

(K) (×10−8K−2) (×10−8K−2) (×10−8K−2)

KTaO3 (Ref. 10) ∼12 5 25 5 6.9 5 14 6

KTaO3 [present (100)] ∼12 21 22 -

SrTiO3 (Ref. 10) ≤ 2 7 8.2 5 4.2 5 11 6

SrTiO3 [present (110)] 8 ∼22 7.1 7.0 -

SrTiO3 [present (100)] 9 ≤ 4 7 6.9 - -
5These values were obtained from figures in Ref. 10. 6These values were calculated on the basis of Eq. (8).

7T ∗ was not detected above this temperature. 8This sample can be considered as a nearly ideal random-domain

crystal. 9This sample can be considered as a nearly monodomain crystal.

6. Conclusions

The dielectric constants of the quantum paraelectric states of SrTiO3 and KTaO3 at low

temperatures can be well described using Vendik’s formula, which is based on the coupling

between the ferroelectric and acoustic modes. It also includes a measure of the density of

defects and inhomogeneity. The dielectric constants at low temperatures cannot be described

properly using Barrett’s formula, even after the introduction of a measure of the density of

defects and inhomogeneity. The critical quantum paraelectric region recently introduced in

Ref. 10 is where a low-temperature approximation is well realized for the model with the

coupling between the ferroelectric and acoustic modes.
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