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Distinguishing Siegel theta series of degree 4 for the
32-dimensional even unimodular extremal lattices.

Manabu Oura *and Michio Ozeki T

Abstract

In a previous paper we showed that if one particulat Fourier coefficient of the Siegel
theta series of degree 4 for a 32-dimensional even unimodular extremal lattice is known
then the other Fourier coefficients of the series are in principle determined. In this
paper we choose the quaternary positive definite symmetric matrix €49, and calculate
the Fourier coefficient a(T40, L32) of the Siegel theta series of degree 4 associated with
the five even unimodular extremal lattices which come from the five binary self-dual
extremal [32,16, 8] codes. As a result we can show that the five Siegel theta series of
degree 4 associated with the five 32-dimensional even unimodular extremal lattices are
distinct.

1 Introduction

In our previous paper [11] we described a method for computing the Fourier coefficients
of Siegel theta series of degree up to 3 associated with the 32-dimensional even unimodular
extremal lattices L£35. The computation is independent of the lattices chosen in this family.
Further we almost determined the Fourier coefficients of the Siegel theta series of degree 4
associated with a 32-dimensional even unimodular extremal lattice L35, in the sense that
if one could determine one of the initial values of the Fourier coefficients, then the other
values would follow from it automatically. In this article we compute the Fourier coefficient
a(Ty0, L32) for each of the five extremal even unimodular lattices L35 that are constructed
from the five self-dual doubly even binary codes C of length 32. This settles one of the
questions left unanswered in [11].

First we express a(T4,L32) as the sum of 43 different types of partial sums, each of
which is the number of quadruples of vectors (x;,---,x4) € (Ay(L32))* satisfying certain
specified inner product relations. Here (A4(L32))* is the direct product of 4 copies of the set
of norm 4 vectors in L35. Next we show that apart from few special cases each partial sum
can be transformed into the enumeration of the quadruples of code words (uy, - -- ,u,) € Cj
satisfying the specified intersection relations. Here Cg is the set of code words of weight 8
in the code C. To make the counting explicit we need to know some terms of the multiple
weight enumerators of genus up to 4 for the codes, or the intersection enumerators of the
codes (defined below). In the last section we show that the Siegel theta series of degree 4
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associated with the five extremal even unimodular lattices are distinct. This result settles a
question raised by Salvati Manni [14].

2 Coding Theoretic Preliminaries

2.1 Binary linear codes

Let Ty = GF(2) be the field of 2 elements. Let V' = Fy be the vector space of dimension
n over Fy. A linear [n, k] code C is a vector subspace of V' of dimension k. An element x
in C is called a code word of C. In V| the inner product, which is denoted by x -y for x,y
in V', is defined as usual. Two codes are said to be equivalent if after a suitable change of
coordinate positions the code words in the two codes coincide. The dual code C* of C is
defined by
Ct={uecV]|u-v=0, ¥vecC}

The code C is called self-orthogonal if it satisfies C C C+, and self-dual if it satisfies C = C*.
Self-dual [n, k] codes exist only if n =0 (mod 2) and k = g

Let x = (z1,x2,...,x,) be a vector in V. The Hamming weight wt(x) of the vector x
is defined to be the number of i’s such that z; # 0. The Hamming distance d(x,y) on V' is
defined by d(x,y) = wt(x —y). The minimum distance d(C) of a code C is defined by

d(C) = Minx,yEC,x;ﬁyd(X7y)
= Minkec xzowt(X).

Let C be a self-dual binary [n, g] code. The weight wt(x) of each code word x in C is an

even number. Further, if the weight of each code word x in C is divisible by 4, then the code
is called a doubly even binary code. It is known that doubly even self-dual binary codes C
exist only when the length n of C is a multiple of 8. If C is a binary doubly even self-dual
code, it is known that (cf. [10])
n
d(C) < 4 [ﬁ} vy

A self-dual code C satisfying d(C) = 4 [£] + 4 is called an extremal binary doubly even
self-dual code.

Let C be a self-dual doubly even code of length n. Let u = (uy,ug, -+ ,u,),v =
(v1,v9, -+ ,v,) be any pair of vectors in Fy. Then the number of coordinates where u
and v are both 1 is denoted by u*v. This is called the intersection number of u and v, and
u * u is simply wt(u). We have

(1) wt(u+v) = wt(u) + wt(v) — 2u* v.

For u and v as above we write u C v if w; = 1 implies v; = 1 (1 < ¢ < n). For
instance (1,0,1,0,0) € (1,0,1,1,0). We use uN v to denote the binary vector whose
i-th coordinate value is 1 if and only if both u; = 1 and v; = 1 hold. For instance

(1,0,1,0,0)N (1,0,1,1,0) = (1,0,1,0,0).

We quote a result in [7] as a proposition.



Proposition 2.1. Let C be any one of five binary extremal [32,16, 8] codes. Let Cg be the
set of the code words of weight 8 in the code C and a any binary vector of length 32 which
lies in the ambient space F3* D C. Then we have

(1) Y uec,(u*a) = 155(axa),

ii) Y hec,(uxa)® =35(axa)® +120(a*a),

iii) Yo, (uxa)’ =T7(axa)’ +84(axa)’ + 64(axa),

iv) 6 uec,(uxa)’ — (40 +5(axa))y .o (uxa)t = —[5(axa)’ + 160(a + a)* + 1400(a *
a)® + 4480(a x a)?].

PN

As an easy consequence of Proposition 2.1 we have

Proposition 2.2. Let vy, be the cardinality of the set {u € Cg | uxv = k}, where v is a
fixed code word in Cg and k = 0,2,4,8. Then

1 if k=8,

) o84 if k=4,
TN 448 if k=2,
87 if k=0.

Proof. Putting a = v in Proposition 2.1 (i),(ii) we have

8ug + 4y + 219 = 1240,
64vg + 16v4 + 4v9 = 3200.

Obviously vg = 1 and so vy = 84, vy = 448. vy is determined by the condition vg+vy+vo+1y =
620. 0

2.2 Multiple Weight Enumerator

Let C be a doubly even self-dual binary code of length n, g be a positive integer and let
« run over the set F§ of g-tuple vectors. The 29 algebraically independent variables z,, over
C are parameterized by a €F5. Let u; = (uj,u?, -+, uf),uy = (uj,ud, -+, uf), - ,u, =
(ug,u?, -+ ,up) be a g-tuple of code words of C. For each o € Fj the generalized weight
wtq(ug, g, - -+ ,uy) is defined to be the number of coordinates j (1 < j < n) such that the
equation o = (u{,u%, e ,ug). The multiple weight enumerator W (z,; C) of genus g for
the code C is defined by

Wy C) = 3 T ettt

(ui,ug, - ,ug)€CI oclfg

The multiple weight enumerator of genus 1 is the ordinary weight enumerator. Here we give
the weight enumerator We(z,y) of a binary self-dual extremal [32, 16, 8] code C:

Wel(z,y) = 2% + 6200*y® + 138882%y'% + 3651820y + 1388822y + 62025y + ¢*2,

which will be used later. A multiple weight enumerator of genus 2 is called a biweight
enumerator, a multiple weight enumerator of genus 3 is called a triweight enumerator, and
a multiple weight enumerator of genus 4 is called a quadriweight enumerator.

The subsets of words of a binary self-dual extremal [32,16, 8] code C of weight i (i =
0,8,12,16, 20,24, 32) is denoted by C,;.



2.3 Intersection Enumerator and Intersection Matrix

Let C be a binary linear code of length n. The intersection enumerator of genus ¢ is
defined by
Ig(c’ X17 .. ’Xg’ }/’L,j) — Z X;Ut(ln) . X;‘]t(ug) H Y;j;i*uj7

i, ugeC 1<i<j<g

where Xq,...,X,,Y;;(1 <i < j <g) are algebraically independent variables over C. This
polynomial is analogous to the Siegel theta series in the sense that the polynomial is the
generating function of the quantities b(M, C) = #{(uy,--- ,uy) € CY[[wy, - ,u,]] = M}
(this notation will be explained below), while the Siegel theta series is the generating function
of the number of representations of quadratic forms of a certain order by another quadratic
form of greater order. Let M = (m;;) be a g x g matrix defined by m;; = u; * u;, where

uy, -, u, are the code words in C. We denote M by [[uy, - - , u,]] and call it the intersection
matrix for the g-tuple (uy,---,u,). In later tables we will represent this matrix M by its
entries:

M = (uy *uy, -, Uy * Ug, Ug * Uy, Uz * Uy, Uz * Up, -~ - ).

For instance
[[ur, uz, us]] = (u; * up, Uy * Uy, Uz * Uz, Us * Uy, Uz * Uy, U3 * Uy).

Let M, be the set of all possible intersection matrices M of size g for a given code C.
Here we introduce a formal notation:

(M, X,Y) =X X [T Y M e My,

1<i<j<g
Then we can rewrite Z,(C; Xy, -+, X,,Y; ;) as
Ig(C;Xla"' 7Xg7Y;l,j) - Z ((Hu17 JHQ]]Jva))
ug,,ugeC
= Z bg(MaC)((M7X>Y))7
MeMc,q
where
2) b(M.C) = >, L
ug, - ,ug€C

Hul"" ’ugH:M
In this paper we will use the intersection polynomial of genus 4:

Z-4((37 X17 e 7X47 Y;,j) =
wt(uy) ywt(uz) ywt(uz) ywi(ug)y upsus U U3y Ug gy, Uz*kUuz y, Ug*ly y U3kl
E X X X3 Xy DS I £ Mt Civiins £y Hind Cy iind £y Hins

ug,uz,u3,uyeC



Here we may remark that the intersection polynomial Z,(C; Xy, - - - , X, Y; ;) can be obtained
as a specialization of the multiple weight enumerator of genus g. For instance the exponents
of the variables in the above polynomial are given explicitly by

wt(uy) = wtip + w0 + w01 + W00 + W11 + W10 + Wtige1r + Wtigoo,
wt(uy) = wtin + whine + wtiier + wtiieo + wtenr + wtorio + Wtoior + Wtoroo,
wt(uz) = wtyiy + w10 + Wi + W0 + Wi + Wtor10 + Wtoor1 + Wtooro,
wt(uy) = witiin + w01 + Wi + wtieer + Wi + Wtoi01 + Wtoor1 + Wtooor,
up kU = witypnn + wiie + wiier + wiiieo,
u; kU3 = Wt + wtine + wtign + witigno,
uy xuz = wiliy + wtino + wiern + wiorio,
up kuy = wtipnn + wiiper + wilienn + wiior,
Up * Uy = wityyq + wtiger + wtornn + witoion,
uzxuy = wtig + wtienn + wiern + Wleot:-

We consider the transformations:

4
Thijk = HXfTEMjk) H Yifj('hijk),
m=1

1<i<j<4

where
1 if wtpi i, appears in the exponents of X, or Y ;,

(high) = { 0 otherwise.
For instance
T = XiXoX3XyY10Y13Y14Y03Y04Y54,
Tr1101 = X1X2X43/1,2Y§,33/2,4-
If we substitute these transformations into Wy(z,; C), we obtain Z,(C; X1, - -+ , X4, Yi ;).

Note 1. At a later stage (Section 5.2.7) we will use the quadriweight enumerator of the code.
There we will represent binary quadruples of length four by decimal numbes: if hijk € ¥y,
dec(hijk) is the decimal number h2® + 122 + j - 2 + k, where h,i, j, k are viewed as integers.
Accordingly we may use the variables Tgec(nijr) instead of xpijr and the weight wtgecinijr)
instead of wtp;ji. For instance we write x15 for x1111, and wtys for wtii.

2.4 From Binary Codes to Lattices

Let C be a binary self-orthogonal [n, k] code. We recall the construction B, for the
lattices (c.f. Conway-Sloane [5], Chap.5). Let

p 7" —TFy
denote the reduction modulo 2. Then

M(C) = %{X:(m,xg,...,xn)Ep_l(C)|inEO (mod4)}



defines an even lattice. Suppose that C is a doubly even self-dual binary extremal [n,n/2]
code. The so-called doubling process is as follows.

Put
N
N(C) = M(C)U (v + M(C))

is an even unimodular extremal lattice of rank n for n = 8,16, 24, 32, 40.

(1,...,1,-3) ifn=8 (mod 16),
(1,...,1,1) ifn=0 (mod 16).

=5~

Then

3 Even Unimodular Extremal 32-dimensional Lattices

By Conway and Pless [3] there are five non-equivalent binary self-dual extremal [32, 16, 8]
codes. We will compute the Fourier coefficient (%49, L) for each of the five 32-dimensional
even unimodular lattices that are constructed from the five doubly even self-dual extremal
binary codes. The final result that the different lattices have different Siegel theta series of
degree 4 is reached at the end of the paper. Here we clearly present those five codes. As
references we quote four articles: Conway-Pless [3], Conway-Pless-Sloane [4], Koch [7], Rains-
Sloane [13]. We rename these five codes as CP1:= r3y, CP2:= ¢35, CP3:= f§, CP4:= ¢35 and
CP5:= f;°. Note that our ordering is different from that of [4]. When C is a doubly even
self-dual binary [32,16,8] code and L(C) = N(C) is the even unimodular extremal lattice
constructed from C in the previous section, we put Ay, = {x € L | (x,x) =2k} (k> 0).
The cardinality of the set Agy is denoted by | Ag, |. The following cardinalities are well-
known:

[ A2 | =0,

[As| = 146880,
|Ag| = 6AT5TT60,
| Ag| = 4844836800,

We are particularly interested in the set A4(L(C)). Ay = A4(L(C)) is a union of six
mutually disjoint subsets:

(3) A=A UM o UN s UA g UA 5 U Ay,



defined by

Ay = {% 030)} | Ayy |= 1984,
Ny = { 12(:|:1 024)} | Ay |= 79360,
Nz = {i% 124)}, | Ays |= 1240,
Ayy = {i% )2 120)}, | Ayy |= 27776,
Ny = {2—1&(( 1), 116)}, | Ays |= 36518,
Ay = {:I:% (1%2) } | Ayg |=2

We also check that
1984 + 79360 + 27776 + 36518 + 1240 + 2 = 146880.

Remark 1. The non-zero coordinates of an element in Ayo correspond to a code word of
weight 8 in the code, and the number of minus signs in an element in Nyo is even. The
coordinates of the minus signs in a vector in Ay 3 correspond to a code word of weights 8 or
24 in the code. The coordinates of minus sign in a vector in Ay 4 correspond to a code word
of weights 12 or 20 in the code. The coordinates of minus sign in a vector in Ay5 correspond
to a code word of weight 16 in the code.

We describe the subsets Ay ;(3 < j < 6) more precisely. We put
1

2V/2

Any element x € Ay ;(3 < j < 6) may be written as

Xp — (132) S A4,6-

1
4 X =Xy — —=p (u),u € C
(4) Vol (u)
where p*(u) is the unique element of the subset p~'(u) C 23?, whose non-zero coordi-
nates are all 1. We call (4) the standard form of x € Ay;(3 < j < 6). For instance, if

1
x = ——=((—1)%,1**) € A, 3 then the standard form of x is

2/2
— 1 #
X = X (u),u € Cs.

\/§P

For ———((—1)*,1**) € A4 3 we observe that

2v/2

1 8 124 _ 1 8 24
—55((F1)% 1) = m(lf(—l) ), ' )
- Tip#(u') with ' = (1%?) + u € Cy.

7



We write

s = {x0— Ho*(Wlue G,

s = {x0— Bl ue Caf.
Likewise we may write

AT, = {x0— \%p#(uﬂ ucCpo,

Ay = (%0~ 7 (W) u e Cy

Note that Ay3 = AI3 U AZ,?): Ayy = AZA U AZA are disjoint decompositions of A3 and Ay
respectively.

For Ay 5 we cannot make distinguishable subsets, since the complement u’ = (13%) + u of
u € Cyq is also a code word in Cy4. We simply rewrite

1
A4’5 = {XO — Ep#(UM uc Clﬁ} .

Next we consider the elements in Ayo. A general element of A, takes the shape

1
5 x = —=((£1)°0*"),
(5) \/5(( )°07)
where in the right-hand side of the above expression minus signs should appear an even
number of times. Therefore we may rewrite x as

1
6 x = —(1%0%*) — /24,
(6) \/5( )
where the coordinate values of  are 0 or 1, and the value 1 corresponds to a minus sign of
the initial expression of x. We write

(7) X = %p#(u) — V26, withu € Cg and p(6) C u

Here p#(u) has the same meaning as before. We may call (7) the standard form for x € Ay,.
There is a special subset Ayo(u) of Ay defined by

1
Muatu) = { T (w) = VB | p0) C wwr(p(5) =0 (mod 2)}.
where u € Cg is fixed and § runs over under the condition p(d) C u. It is easy to see that
the cardinality of the set Ayo(u) is 27.
We now give a proposition which connects the inner product of vectors in the subset Ay
with the intersection in C:

Proposition 3.1. We have

(i) (p*(u), p*(v)) =ux*v foru,v € C,

(i) (p* (), x0) = Szwt(w),

(iii) (6, p™(u)) = p(8) * u, where § is a vector whose entries are 0 or 1,
(

iv) (61,02) = p(d1) * p(2),



6
(v) let x = xo — \/iip#(u), y = Xo — \/iﬁp#(v) c U Ay have their standard forms. Then
=3

(8) (x,y) =4 }l (wt(u) + wE(v) — 2(u V) .

Proof. Proof of (i). Both sides count the common 1’s in the i-th coordinate for all 1 < i < 32,
where the left-hand side count is in Z and the right-hand side count is in Fs.

Proof of (ii). This is obvious since x; may be regarded as ﬁi(p#((lw))) with (13%) € Css.
(iii) and (iv) are obvious.

Proof of (v). Using (i) and (ii) we compute that

1

; ; (7% (). 30) + (). 30) + 5 (6. 7#(¥)).

(%0 — —mpt(u)xo — —=p*(v)) = 4-

\/§p (u)7 0 \/5

Sl

= 4 — —(wt(u) +wt(v) —2(uxv)).

A~ =

[]

In the next section we will be particularly concerned with the pairs of x,y € A4 satisfying
(x,y)=2. We first treat the easier cases in which (x,y) = 2 does not hold.

Proposition 3.2. Ifx € Ayy andy € Ays U N4 UNy5 U ANy then (x,y) # 2 holds.

Proof. Noting the shape of x € Ay; we see that [(x,%o)| < 1 and |(x, 75p" (u))| < 2, for
all u € C. We temporally put a = (x,%x0) and b = (x, \/Lip#(u)) Since both x, and
\%p#(u), u € C have non-negative coordinate entries, there are only three cases for the sign
distributions of the pair a,b: (i) a =1 and b > 0, (ii) a = 0 and b = 1,0, —1, (iii) a = —1
and b < 0. In these three cases we see that we have

|(x, (%0 — Ep#(U)))I <1
O
Proposition 3.3. Let x = x¢ andy € A3 UU,;_y5A1;. Then we have that (x,y) # 2.
Proof. Let y = x¢ — \%p#(v) be in its standard form. By Proposition 3.1 we have
(x,y)=4— iwt(v).
Since wt(v) = 12,16, 20, 24, the conclusion follows. O

Remark 2. When x = —xq then we take y € Aj3 U ,_, 5 Aa; and (x,y) # 2.

In an atempt to find such pairs we examine the possible intersections between code words
of various weights. Here we give a table.



Table 1. Table of intersections between code words.

wt(u) | wt(v) | values of uxv | wt(u) | wt(v) values of u* v
8 8 0248 16| 16| 04068101216
8| 12 0,2,4,6 16| 20 2.6,8,10,12,14
8 16 0,2,4,6,8 16 24 4,8,10,12,14,16
8 20 2,4,6,8 16 32 16
8| 24 0,4,6,8 20| 20| 48,10,12,14,16,20
8| 32 8 20| 24|  6,10,12,14,16,18

12 12 0,246,812 20| 32 20
12| 16 2.4,6.8,10 24 | 24| 8,12,14,16,18,20,24
12 20| 04,6,8,10,12 24| 32 24
12 24 2,6,8,10,12
12 32 12

Proposition 3.4. Assume x,y € Ay3 U Ay UNy5 are in standard form:
x = x0— ——pt(u),
_ #
= Xg— —=p7(v),

where u,v € C. Then (x,y) = 2 holds if and only if wt(u+v) = 8.

Proof. By Proposition 3.1 we know that

(y) = 4 (wi(n) + wi(v) — 2uxv)
= 2.

From this we get wt(u) + wt(v) — 2(u * v) = 8, the left-hand side of which is wt(u + v) by
the identity (1). O

The following table gives the intersections of the code words u, v which satisfy the con-
dition wt(u + v) = 8 from Proposition 3.4.

Table 2. Table of intersections for which wt(u+ v) = 8.

wt(u)\wt(v) | 8|12 | 16 | 20 | 24
8 416 |8
12 6| 8 | 10|12
16 8110 |12 |14 | 16
20 12114 |16 | 18
24 16 | 18 | 20

In the above table the blanks indicate that there are no pairs of code words satisfying the
condition wt(u + v) = 8. As a result of Table 2 we give another table that tells us which
pairs of the subsets of A4 contain vectors x,y satisfying (x,y) = 2.

10



Table 3. Table of subsets in which there are pairs of vectors
x € A,y € B satisfying (x,y) =2 .

A\B | Aly | Aly | Aas | Apa | Al
Ais |l v |y |y | n|n
Al w |y |y | v |n
NAys |y Yy y (] Yy
Ag |n |y |y |y |y
Azl n | n |y |y |y

In Table 3 y indicates that A and B contain vectors satisfying (x,y) = 2, and n indicates
the opposite case. Conditions for vectors in Ayo and one of the Ay, j # 2 will be discussed
later.

4 A Formula for a Fourier Coefficient

Let

L4 =

—_ = = O
DO = =

1
1
2
1

e

be a 4 by 4 matrix. The Fourier coefficient a(%49, L) at the index T4y of the Siegel theta
series of degree 4 associated with an even unimodular 32-dimensional extremal lattice L is

given by

(9) CL(S40, E) = Z 1,

X1,X92,X3,X4ENy
[x1,%x2,%3,%4]=2% 40

~—

where A4 is the set of norm 4 vectors in £. From now on we assume the lattice £ is one of
the five even unimodular 32-dimensional extremal lattices constructed from the five doubly
even self-dual extremal binary codes. Using the decomposition (9) we obtain a more precise
expression for a(%49, L):

(10) a0 )= Y Y OY Y

(K ko kg kg)€{1,2,3,4,5,6}4 X1EAY k) X2EAY gy X3ENY kg X4EAg iy
[x1,%2,X3,X4]=2%40

We use an abbreviated notation: for a sequence 1 < i1 < iy < 13 < 7y < 4 and integers

1 < k;; <6 instead of using
PED DD DD DI

X1€M, k) X2€EAY kg X3EAY kg XaEAY 1,

where Xy, - - - X4 satisfy the restriction [x;,,X;,, X5, Xi,| = 2%49, we write simply

2.2 0.2

1;k1 2;ke 33k3 4;ka

When some of k’s are identical, for instance k; = ko, we use the notation:

2. 2.

1,2;k1 3;k3 4;ka

11



Lemma 4.1. Let ki, kb, kb, K} be any permutation of ki, ko, ks, ky. Then we have

2222 1= ). L

Lk 2;k) 35k% 45K Lik1 2;k2 35ks 4ika
Proof. This follows from the symmetry of the matrix 4. ]

The step from (9) to (10) is formally quite similar to the multinomial expansion of
(€1 + &+ &+ &+ & + &)? in the six variables &1, &, €3, &4, &5, & Some of the partial sums
vanish because of Propositions 3.2 and 3.3. We obtain the following expression for a(%49, £):

CL(3:40, L) =

21,2,3,4;1 1+6 21,2;2 23,4;1 1+4 21,2,3;2 24;1 1+ 21,2,3,4;3 1+ 21,2,3,4;2 1+12 21;2 22,3;4 24;5 1
+ 21,2,3,4;4 1+ 21,2,3,4;5 1 +12 21;2 22;3 2374;5 1 +12 21;2 22,3;3 24;4 1+12 21;2 22;4 23,4;5 1
+12 21;3 22,3;4 24;5 1 + 12 21;3 22;4 2374;5 1 + 4 21;2 22,3,4;4 1 + 4 21;2 22,3,4;5 1

+6 21,2;2 23,4;4 1+6 21,2;2 23,4;5 1+4 21,2,3;2 24;4 1+4 21,2,3;2 24;5 1+6 21,2;2 23,4;3 1

+4 21,2,3;1 24;2 1+4 21,2,3;2 24;3 1+12 21,2;2 23;3 24;4 1+12 21,2;2 23;3 24;5 1

+12 21;2 22,3;3 24;5 1+12 21;2 22;3 23,4;4 1+4 21;2 22,3,4;3 1+4 21;3 22,3,4;5 1

+4 21,2,3;3 24;4 1+4 21,2,3;3 24;5 1+6 21,2;3 23,4;4 1+6 21,2;3 23,4;5 1+4 21;4 22,3,4;5 1

+4 21,2,3;4 24;5 1+6 21,2;4 23,4;5 1+24 21;2 22;3 23;4 24;5 1+12 21,2;2 23;4 24;5 1

+12 21,2;3 23;4 24;5 1+4 21;3 22,3,4;4 1+4 21,2,3;2 24;6 1+4 21,2,3;3 24;6 1

+123 010D 0332 461 T 12D 01000 33D 46 1
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By reordering the partial sums we obtain

1407 ‘C) -

R S N o R T |

1,2,3,4;1 1,2,3,4;2 1,2,3,4;3 1,2,3,4;4 1,2,3,4;5

FAD TN T4 DN 144> Y 1+4Y Y

1,2,3;1 4;2 1,2,3:2 4:3 1,2,3:2 4:1 1;2 2,3,4:4

HAI TN 144D DN 144> Y 1+4 > D

1;2 2,3,4:5 1,2,3:2 4:4 1,2,3:2 4:5 1,2,3:4 4:5

HAI TN 144D D 14D D 14+4> N

1;3 2,344 1,2,3;2 4;6 1,2,3;3 4;6 1;2 2,3,4;3

HAI TN 144D D14 D144 N

1;3 2,3,4:5 1,2,3;3 4:4 1,2,3:3 4:5 134 2,3,4:5

+6D> 3 146> Y 146> > 1+6) > 1

1,2;2 3,4;1 1,2;2 3,4:4 1,2;23,4;5 1,2;23,4;3

+6D> Y 146> Y 146> Y 1

1,2;3 3,44 1,2;3 3,4;5 1,2;4 3,4;5

F12) 03 Y 1 +12) > N 1412) > Y 1+12) Y >

1;2 2,34 4;5 ;2 2;3 3,455 1;2 2,3;3 44 1;2 2,3;3 4;5

H12) 3 S 1 +12) > S 1412) >N

1;2 234 3,4;5 1;3 2,3;4 455 1;3 234 3,4;5

H12) 3N 1 +12) > S 1412) > N

1,2;2 3:3 4:4 1,22 3:3 45 1;2 2,3;3 4:6

H12) Y S 1 +12) > S 1412) 0> N

1;2 2;3 3,44 1,2;2 3;4 455 1,2;3 3;4 45

+24ZZZZl

1,2 23 34 45

At this point we introduce a further abbreviation:

O'(kil,l{?27k3,k4) = ZZZZL

1;k1 2;ke 3;k3 4;ka

which will save space later.

5 Computation of Individual Sums

5.1 A Description of the Overall Strategy

The partial sums above can be roughly grouped into seven clusters. We give tables which
describe the individual partial sums in Subsubsections 5.2.1 to ~ 5.2.7.

Using the expressions (5) and (7) we can transform the inner product relations among
the vectors in A5 and the vectors in Ay; (2 < ¢ < 5) into assertions about the intersections
among code words in the associated binary code.
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Lemma 5.1. Let x = \/iip#(u) — /26 € Ay be in the standard form (7).
(i) Lety = \/Lip#(v) — /205 € Myy. Then
(x,y) =2 <= 4+2p(0) * Vv +2p(d) xu=uxv+4p(d) * p(d2).

(i) Lety =x¢ — \%p#(v) € Ny ;(3<j<5,veCQC)in the standard form of (5). Then
(x,y) =2 <= p(d) =unv.

Proof. (i =). We compute

(w) — V26, —=p* (v) — V26,

—~

1 1
(x,y) = E/)# E
(o™ (), p7 (v)) = (8, p7 (V) = (82, p7 (w)) +2(3, 62)

el

= —uxv—p0)*xv—p()*u

Il
N o

From the last equality follows
44 2p(0) x v+ 2p(da) xu=uxv+4p(d) * p(ds).

The converse direction of the proof is also true.
(ii =). Using Proposition 3.1 we have

(¥) = (5w = Vaixe = S5V
= ) = VA3 = 50 (). pFV) + (6 (V)
= 2-— %wt(p(c?)) - %u v+ p(d) x v
= 2.
From this we obtain
(11) —wt(p(6)) —u*xv+2p(6) *v=0.
Since we know p(d) * v < wt(p(d)) and p(d) * v < ux v, from (11) we obtain
(12) p(0) x* v =wt(p(d)) =uxv.

If the i-th coordinate of p(d) is 1 and the i-th coordinate of v is 0, then wt(p(d)) > v * p(9),
contrary to the equation (12). Therefore we must have p(d) C v. Thus p(6) Cunwv. If
p(0) #unv, then we would have wt(p(d)) < u* v, which also contradicts to (12). Thus we
conclude that p(6) =unwv.

(ii <=). Suppose that p(d) = uNv.Then (12) holds, which implies (11). From the last
condition we have (x,y) = 2. O

Note 2. The equation 44 2p(d) * v+ 2p(dz) xu = uxv+4p(J) * p(d2) in Lemma 5.1 imposes
a restriction on the intersection between u and v when both are in Cg. In fact uxv =4 or 8,
since p(8) C u and p(d2) C v imply p(0) x v > p() * p(d2) and p(ds) xu > p(d) * p(d2). This
fact will be used throughout the paper without further comments.
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5.2 From Lattice To Code
5.2.1 The First Cluster

The first cluster consists of the four partial sums, the first three of which are computed
by manipulation. The computation of case (Q4) is the most difficult.

Table 4-1a. Lattice components and the corresponding code components

type | | — components | c— components | codeword condition

(Q1) | Ay, Asa, Aga, Ay empty not specific

(Q2) A4’17 A4’1, A4’1, A4’2 Cg not SpGCifiC

(@Q3) | Au1, A1, Ag2, Nao Cs, Cg connected with biweight enumerator

(Q4) | Aga,Aaa, Aao, Ay Cs, Cg, Cy connected with triweight enumerator
Lemma 5.2. Suppose that p(01) C uy, p(d2) C ug and p(d1) xuz+p(d2) xuy = 2 p(d1) * p(da).
Then

p(01) * ug = p(02) * uy = p(01) * p(d2).

Proof. By the first two assumptions we see that p(d1) * p(d2) < p(d1) * ug and p(d1) * p(d2) <
p(02) * uy, therefore

0= [p(61) * w2 — p(61) * p(62)] + [p(J2) * w1 — p(61) * p(d2)] = 0.

Thus one obtains
p(01) * vz = p(d2) * uy = p(61) * p(d2)

as desired. O

Any element of %A4,1 has norm 2 and defines a reflection with respect to the hyperplane
that is orthogonal to the element. The group Gy generated by all such reflections acts on
the set Ay1 UAyo. Since \%AM is a root system of type D3z, Gy acts transitively on the set
Ay 2(u), which is defined immediately following equation (7). To compute the sum o(2,2,2,1)
first we seek the vectors xi,Xs, X3 € Ay which satisfy (x;,x;) =2, 1 <i < j < 3 then we
explore x4 € Ay satisfying (x;,x4) = 2, 1 < ¢ < 3. With the group Gy in mind we may
assume that the shape of x; is of the form \/Lip#(ul), u; € Cg. We take

1 1
Xo = EP#(W) — \/552,X3 = EP#(U?)) - \/553, uy,uz € Cg

in their standard form. By Proposition 5.1,(i) we have

(13) 44 2p(6;) #wy = wy uy j = 2.3,
and
(14) 44 2p(02) * uz + 2p(d3) * ug = Uy * uz + 4p(ds) * p(d3).

Concerning the mutual relations among uj, us, uy we may distinguish three cases: (i) all
three are equal, (ii) two of three are equal and the remaining one is different, (iii) all three
are different.

15



First we treat the case (i). When u; = uy = ug, the conditions (13) and (14) become

(13)1 p((SJ) * U = 2, j = 2,3,
and
(14); p(d2) * ug + p(d3) * uz = 2 + 2p(d2) * p(J3)-

Using (13); the last condition is transformed into

(14)11 p(02) * p(ds) = 1.

By a simple combinatorial argument the number of possible pairs (p(d2), p(d3)) is 28-12. For
each fixed pair (p(d2), p(d3)) there are 10 + 5 vectors x4 € Ay satisfying (x4,%;) =2, 1 <
i < 3. Thus the contribution of this case to (Q4) is 27 - 620 - 28 - 12 - 15 = 399974400.

Next we treat the case (ii). (ii)-(i) When u; = uy # ug, then u; xuy = 8,1y * ug =
uy * uz = 4 hold. With these equalities the conditions (13) and (14) can be rewritten as

(13)2 p(0) xuy = 2, p(d3) xu; =0,
and
(14)2 p(d2) x uz + p(d3) * ug = 2p(2) * p(J3).

By Lemma 5.2 the condition (14)y becomes

(14)21 p(02) * uz = p(ds) * uz = p(d2) * p(ds).

Combining the conditions (13), and (14)s; we have

(14)22 p(ég) * U3 = 0.

The number of pairs (p(d2), p(d3)) which satisfy the conditions (13), and (14)g is 48. For
each fixed pair (p(d2), p(d3)) there are 6 vectors x4 € Ay satisfying (x4,%x;) =2, 1 <1i < 3.
Thus the contribution of this case to (Q4) is 27 - 620 - 84 - 48 - 6.

There are two remaining cases, namely (ii)-(ii) when u; = uz # us and (ii)-(iii) when uy =
u3 # u;. The case (ii)-(ii) is treated in the same way as case (ii)-(i), and the contribution
to (Q4) is the same. The case (ii)-(iii) is a little different. The main difference comes from
the transformations of the conditions (13) and (14). In this case we obtain

(13)3 p((sj) * Uy = O, j = 2, 3,
and
(14)3 p(ég) * U3 + p(53) * Uy = 2+ ,0((52) * p((53>

However, the count itself is the same as in the preceding two cases. The total contribution
of the case (ii) is 27 - 620 - 84 - 48 - 6 - 3 = 5759631360.

The case (ili) when u; # u;, 1 < i < j < 3. Now conditions (13) and (14) become
(13)3 and (14)y; respectively. After several trials we discover that the number of pairs
(p(d2), p(d3)) may depend on the terms that come from the code words uy, uy, uz satisfying
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u, xu; =4, 1 <7< j <3 in the triweight enumerator of the code. We need a portion of
the triweight enumerator for each of the five extremal binary self-dual [32, 16, 8] codes, and
we compute

Wi (z4; Cep1)
_ 4 4 4 4 16 2 2 2 2 2 2 2 18
=+ 426040027, 100T010%001T000 T 12499202711 27102701 T100L011%010L001 %000
4 4 4 20
+52080x710%101%011%000 T
Wi (24; Cep2)
_ 4 4 4 4 16 3 3 3 .3 17
= -+ 52080271, 100T010%001 %000 T 83328051511135110351015151003501195010950019’3000 +
2 9 92 92 92 92 9 4 4 20
+41664021 1171073017 100T011T010 501 Zo00 T 5208027102101 70117500 + -
Wi (z4; Ceps)
= o+ 561122% at at ad wl0 4 81715243 X110T 1012500 Lot Lo 0T ThT ) 4
- 1114100010001 000 11141104101+100+011L010001 000
2 92 2 2 4 20
+432768$111$110$10195100%11%1095001%00 + 52080%10%01%11%00 + -
W3($Ua;CCP4)
_ 4 4 4 4 3 3 .3 17
= o+ 9912027, 2700010 %001 Z000 + 64512027 1121102101 2700 T011 2010 %001 L0
2 92 2 2 2 4
"‘604800%11%1095101x100$011$010x001%oo + 52080%10%01%11%00 +ee
W3(xa;CCP5)
= -+ 58800zt at at at xl0 4 80640023, X110T101 L0 To11 L e 0T TaT 4
= 111%100%010% 001 000 11121102101%100%011%010%001 000

2 2 .2 .2 2 .2 4
+443520$111$110$101x100x011$010x001%oo + 52080%1095101%11%00 +o

For the term 1,,2700%310%001 %000 Py @ simple inspection we find that there arise 64 pairs
(p(02), p(d3)) satisfying the conditions (13)3 and (14)a;. The configuration of non zero coor-
dinates of uy, uy, uz that produce the term x1,,210,78;0T 001 Tog Mmay be roughly represented
(we ignore real coordinate positions) by

u; 1111111100000000
uy 1111000011110000
usz 1111000000001111.

The term z3,,7110T101T500T011T510T0; Tone comes from the code word configuration:

u; 111111110000000
up 111100001111000
us; 111010001000111,

2 .2 .2 .2 .2 2 2 18 o
and the term x7;12710%701%100%611 T610% 501 Lo0o comes from the code word configuration:

u; 11111111000000
up 11110000111100
us; 11001100110011.

As to the last two types of code word configurations we count the pairs (p(d2), p(d3)) satisfying
conditions (13)3 and (14)9; by a simple programming. We give the results as the following
table.

Table 4-1b. Number of pairs (p(d2), p(d3)) that correspond to the term displayed at the
leftmost column, and the number of admissible vectors in Ay ;.
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I 4 .4 4 16
; 951111'10%5”0103300%5500% . 64
TY11 211021012 700T011%010L001L000 | 32
2 .2 .2 .2 .2 .2 _2 _18

T1112110%101%00%011%010%001 %000 | 16

O = W

4 4 .4 .20
T110%101%011%000 3

Finding the vectors x4 € Ay; which satisfy (x;,x4) = 2, 1 < i < 3 is rather easy in each
case. Two non zero coordinates of x4 should be part of the coordinates corresponding to
x111. We summarize the contribution of case (iii) as follows:

CP1 27- (260400 - 64 - 6 + 1249920 - 16) = 15359016960,

CP2 27- (52080 - 64 - 6 + 833280 - 32 - 3 + 416640 - 16) = 13652459520,
CP3 27- (5611264 -6+ 817152 - 32 - 3 + 432768 - 16) = 13685489664,
CP4 27-(99120 - 64 - 6 + 645120 - 32 - 3 + 604800 - 16) = 14037811200,
CP5 27- (58800 - 64 - 6 + 806400 - 32 - 3 + 443520 - 16) = 13707509760.

5.2.2 The Second Cluster

The second cluster consists of the four partial sums (Q5) — (@8) which are connected
with the terms of the triweight enumerator of the code.

When Ay enters as a component, we take xo € Ay and then by Proposition 3.2
Ay, A;3, A4 4, Ay 5 cannot be components in a partial sum, hence only A4 9 and Aig could be
the other components. In the case when —xy € Ayo then AA:?) could be the other component.
We confirm that all possible quadruples are listed in Table 4-2 below. Omitting the full
details we simply state that

0(2, 2, 2, 6) =2 b(M24, C)

This equation is just for the case (@5) below. The remaining cases (Q6) — (Q)8) are exhibited
in Table 4-2.
We summarize our present discussion in Table 4-2.

Table 4-2. Lattice components and the corresponding code components

type | | — components | codeword condition [[uy,ug, us]] = M,
(Q5) /\4’27 A4’2, A4,2, A4’6 M24 = (8, 8, 8, 4, 4, 4)

( ) A472, A4727 A473, A476 M247a - (8, 8, 8, 47 0, O)

(Q?) A472, A473, A473, A476 M24,b - (8, 8, 8, 0, O, 4)

( ) A4’3,A473,A473,A476 M24 = (8,8,8,4,4,4)

5.2.3 The Third Cluster

A partial sum belonging to this cluster is explained as follows. Let x; € Ay, %2 €
Nijp,x3 € Nyjy,xa € Agj, 3 < 71 < Jo < 73 < ju <5, and we express X; = Xo —
\/Lip#(ui) u; € C;,i € {8,12,16, 20,24} in standard form. Then by Proposition 3.4 we know
that

(Xiy,Xiy) = 2 <= wi(w;, +u;,) = 8.

There are fifteen quadruples <A47j17A4’j2,A4’j3,A4’j4>,3 S jl S jg S jg S j4 S 5. VIGWng
Table 5, of these fifteen quadruples only 3 quadruples (A4 4, Ay, Aga, Naa),
<A4,4, A474, A474, A475>, and <A474, A474, A475, A475> Could admlt ﬁner diViSiOIlS. Out Of <A474, A474, A474, A474>
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there arise (A7, AJ AL ALy, (Al AT AL AL, (Al ATy, Ay Ary) and the same
with opposite signs. Thus we conclude that

0(4,4,4,4) = 20(47,47 47 47) 4 8o (4T, 47,47 47) 4+ 60(4T, 47,47 ,47)
— 26(M1971, C) + 8b<M1972, C) "— 6b(M1973, C),

where 47 (resp. 47) indicates AJ,(resp. AL,).
Likewise we have

0(4,4,4,5) = 20(47,47,4%5) +60(47,47,47,5)

Qb(Mzojl, C) + 6b<M20,27 C),

and the other cases are summarized in Table 4-3 below.

Table 4-3. Lattice components and the corresponding code components

type [ — components | codeword condition [[uy, uy, us, uy]] = M,
(QQ) A473,A473,A4,3,A473 Mg = (8,8,8,8,4,4,4,4,4, 4)

(Q10) | Aus, Aus, Ass, Aga | Mip = (8,8,8,12,4,4,4,6,6,6)

(Q11) | AusyAus, Aus, Aus | My = (8,8,8,16,4,4,4,8,8,8)

(le) A4’3,A4’3,A4,4,A4’4 My = (8 8 12, 12,4,6, 6,6,6,8)

(Q13) | Aus, Aus, Apa, Aus | Mg = (8,8,12,16,4,6,6,8, 8, 10)

(Q14) A4,3,A473,A4,5,A475 M14 = (8 8 16, 16,4,8, 8,8,8, 12)

(Q15) | Aus, Aus AsasAgs | Mis = (8,12,12,12,6,6,8, 6,8, 8)

(Q16) | Aus, Aus, Aug, Ass M16 = (8,12, 12, 16,6, 6,8, 8, 10, 10)
(Q17) | Augy Aua, Aus, Aus | M7 = (8,12,16,16,6,8, 10,8, 10, 12)
(Q18) | Aus, Aus, Aus, Aus | Mis = (8,16,16,16,8,8,12,8,12,12)
(Q19)1 | Afy ALy ALy AL, | Mgy = (12,12,12,12,8,8,8,8,8,8)
(Q19) | Ajy ALy ALy ALy | Mgy = (12,12,12,20,8,8,8,12,12, 12)
(Q19)s | Af g Af o Ag g Ary | Migs = (12,12,20,20, 8,12, 12,12, 12, 16)
(Q20)1 | ALy, ALy Ay Ay | Mogy = (12,12,12,16,8,8,8, 10, 10, 10)
(Q20)s | ALy, ALy, Ayys Aus | Mags = (12,12,20,16,8, 12,12, 10, 10, 14)
(Q21)1 | ALy, Aly Aus, Mg | Moy s = (12,12,16,16,8, 10, 10, 10, 10, 12)
(Q21) | Aj s Ay Aus, Mg | My o = (12,20,16,16,12,10, 14, 10, 14, 12)
(Q22) | Aua, sz, Aus, Aus | Man = (12,16, 16,16, 10, 10,12, 10,12, 12)
(Q23) | Aus, Aus, Aus, Aus | Mos = (16,16, 16,16,12,12,12,12,12,12)

5.2.4 The Fourth Cluster

When A4 enters only once as a component in a partial sum, then we consider x; €
MNio,xo € Ayjp,x3 € ANyjy,xa € Ayj, 3 < J2 < j3 < ja < 5. One may take x; =
\%p#(ul) — V20 € Mgy and x; = X — \%p#(ui) to be in standard form. There are ten
such quadruples. Out of these ten quadruples only two quadruples (Ay 2, Ay, Aga, Ayq) and
(Au2, Aa; Aga, Ays) could admit finer divisions, namely, the former into (Agz2, Ajy, Af,, ALy)
and (Mg, Af,, A, Ay ) and the same with the signs reversed, and the latter is into (A2, Aj,, ALy, Aus)
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and (Ag2, ATy, Ay, Ays) and the same with the signs reversed. We treat the case x; €
Ay, X9, X3,Xy € AZ{A. By Lemma 5.1,(ii) it holds that

(x1,%;) =2 (i =2,3,4) < p(d)=wNu,.
We may write the last conditions as

(C1)

ulﬂugzulﬂu3:u1ﬂu4.

We remark that the condition (C'1) is a common feature of the quadruple in this cluster,
although the code words us, uz, uy vary according to the quadruple. By Proposition 3.4 we
know that

(x;,%;) =2(2<i<j<4) < wt(u;+u;) =8.

Since u; (i = 2,3,4) € Cy2 the last conditions are identical to
wxu; =8,2<i<j <4

If we use the intersection matrix of degree 3 described below, the conditions can be written
as [[ug, us, uy]] = Msp; (c.f. Table 4-4).

For the quadruple <A472,Ai4,AZ4,A;4>, the inner product conditions are transformed to
(C1) and [[ug, us, uy]] = M3p2. Extending the notation of (2) we write

2.

u; €Cg,ug,u3z,u€Cio
C(1),[[uz, u4]]J=M30,1

1 = b(C(1), My, C).

Then we have

0(2,4,4,4) =
0(2,4,4,5) =

20(C(1), M3p1,C) + 6b(C (1), M3p2,C),
20(C(1), M311,C) + 2b(C (1), M3 2, C).

Table 4-4 summarizes this cluster.

Table 4-4. Lattice components and the corresponding code conditions.

type [ — components | codeword condition C(1) plus [[ug, uz, ws)] = M,
(Q24) A472, A4’3, A473, A473 My = (8, 8,8, 4, 4, 4)

(Q25) A472, A473, A473, A4’4 M25 = (8, 8, 12, 4, 6, 6)

(Q26) | Ausy Aug, Aug, Aus | Mg = (8,8,16,4,8,8)

(Q27) A472,A473,A474,A4’4 M27 - (8, 12, 12,6, 6,8)
(QZS) A4’2, A473, A474, A475 Msg = (87 12, 16,6, 8, 10)
(QQQ) A472, A473, A475, A475 Mg = ( , 16,16, 8,8, 12)
(Q30)1 | Aua, Aly, Af ALy | Magy = (12,12,12,8,8,8)
(Q30)a | Ago, ALy ATy Ay | Mags = (12,12,20,8,12, 12)
(Q31)y | Ay, ALy, ALy Mgy | Myyy = (12,12,16,8, 10, 10)
(Q31)s | Ayay A4y Mgy Aus | Mo = (12,20,16,12, 10, 14)
(Q32) | Auo, Aua, Aus, Aus | Maz = (12,16, 16, 10, 10, 12)
(Q?)?)) A472, A475, A475, A4’5 M33 - (16, 16, 16, 12, 12, 12)
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5.2.5 The Fifth Cluster

For a partial sum in which exactly two vectors belong to Ass we consider x;,xs €
Mg, x3 € Nyjy, x4 € Ayjy, 3 < js < ju < 5. There are six such quadruples. There
is one singular quadruple (Ayz, Ag2, Ayy, Ayy), which is divided into (Ayz, Ao, AL, AL,
(Ao, Ay, AIA, Ay 4) and the same with signs reversed. We take x; = \/iép#(ul) — V261, %9 =
\%p#(ug)—\/%g € Ao and x3 = xo—\/iip#(ug), Xy = xo—\/iip#(ml) € A, to be in standard
form. By Lemma 5.1, (i) we know that

(X1,X2) = 2 <= 4+ 2p(01) * uz + 2p(d2) * w1 = wy * Uz + 4p(01) * p(d2).
By Lemma 5.1, (ii) we know that
(Xi,Xj) =2 (’l =1,2,5= 3,4) <~ p(éz) =wNus=u;MNuy (Z = 1,2)

Since p(d1) = w3 Nug = u; Nuy and p(dy) = vy Nug = uy N uy, the three intersections
p(01) xug, p(d2) *uy, p(d1) * p(d9) count the same common coordinates that are 1’s. Therefore
p(61) x 1y = p(da) xuy = p(d1) * p(ds), and uy * uy = 4. As a summary we write

(CQ) u1ﬂ113:ulﬂu4,u2ﬂu3:ugﬂu4,u1>|<u2:4.
By Proposition 3.4 we have
(X3,X4) =2 wt(u3 + 1_14) = 8.

We note that (C2) and wt(us + uy) = 8 guarantee X1, Xg, X3, X4] = 2%49. Thus we have

> 1 = > 1

+ uj,upeCg,ugz,u€Cio

x1,X0E€My 2,X3,X4EA4 4
’ ’ (2 =M
X1, %4]=2% 40 (2),[[us,ua]]=M371

To express the last term we use the notation

b(C(2), Ms7,) = > 1,
up,upeCg,uz,uycCig

C(2),[[us,u4]]=M37,1

then we have

0(2,2,4%,47) = b(C(2), M371, C).

Table 4-5. Lattice components and the corresponding code components

type [ — components | codeword condition C(2) plus [[us, wy]] = M,
(Q34) A472, A472, A473, A4’3 M34 = (8, 8, 4)
(Q35) A472, A472, A473, A474 M35 = (8, 12, 6)
(Q36) | Ayo, Ao, Ass, Ays | Msg = (8,16, 8)
(Q37)1 A472,A4’2,AI4,AI4 Ms7q = (12, 12,8)
(Q37)s | Maoy Mo, Af g Ay | Mizs = (12,20,12)
(Q38) A472, A472, A474, A475 Mgg = (12, 16, 10)
(Q39) Ngo, Nao, Nys, N5 | M3y = (16, 16, 12)
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5.2.6 The Sixth Cluster

When Ay 5 enters three times as a component in a partial sum, then we consider x;, X3, X3 €
Nyo,xq € Ayjy, 3 < g < 5. We take x; = \/Lip#(lh) — V201, %5 = \%P#(UQ) — V209, %x3 =
\%p#(ug) — /263 € Ay and x4 = X — \%p#(uél), € Ay, to be in standard form. By Lemma
5.1, (i) we have
(Xi17xi2) =2 =

(C3)o 44 2p(8,) * Wiy + 2p(0iy) * Wi, = Wy, % g, +4p(0,) * p(03,) (1 < iy <idp < 3).

By Lemma 5.1, (ii) we have (x;,x;,) =2 <=

(C3)s p(0;) =wNuy 1 <i<3.

By using both conditions (C3)y, (C3)s we can say that p(d;,)*u;, = p(d;,)*xu;, = p(0;,)*p(d;,)
and

(C3), up kU =4,uy xug =4, uy xug = 4.

Conversely if assume (C3); and (C3)s we see that [x;, X2, X3, X4] = 2T49 holds. Thus we have

> 1 = 2 > 1 ju=3,4,5 k,=4j,—4

xl,x2,X3EA472,X4€A4’j4 ul,u2,ugecg,u4eck4
[x1,,x4]=2%40 (C3)1,(C3)2

We use a formal convention b(C(3);,C(3)2, Cy,) to denote

> 1.

uj,ug,uzeCg,uy€Cy
(C3)1,(C3)2

Proposition 5.3. We have
6(0(3)17 0(3)27 Ck4) = b(M247 C)|Ck4|

Proof. We remark that the condition C'(3); does not impose any restriction on the code word
uy € Cy,, but it determines p(d;) completely. Thus we see that

BOE).C(3)Cr) = Y. 1

ul,uQ,u3608,U4€Ck4
(C3)1,(C3)2

= |C/€4| Z 1

uj,ug,uzeCg
([u1,u2,u3]]=Ma24

= |Ci,[6(M2, C).

Table 4-6. Lattice components and the corresponding code components

type [ — components | codeword condition
(Q40) | Ao, Ayz, Ayo, Mgz | C(3)1,C(3)2
(Q41) | Ayo, Ay2, Ayo, Aya | C(3)1,C(3)2
(Q42) A4’2, A4’2, A472, A475 0(3)1, 0(3)2
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5.2.7 The Seventh Cluster

This cluster consists of the unique partial sum described in the table below.

Table 4-7a. Table of the lattice components.

type [ — components | ¢ — components | codeword condition
(Q43) | Ay, Aya, Aso, Ayp | Cs,Cg,Cg,Cs | not specified

In treating this partial sum o(2,2,2,2) we may assume that x; = \/Lip#(ul), since the group
Gy introduced in Section 5.2.1 acts transitively on the set Ay2(u). We take the other elements
in A4,2 to be

X2 = EP#(W) — V205, %3 = %P#(u:%) — V205, %s = iP#(uz;) — V24,

Then by Lemma 5.1,(i) we get for 2 < j < 4,

S

(15) (x1,%;) =2 <= 4+2p(J;) *u; = uy * u;,
and for 2 <i<j <4
(16) (x5,%) =2 <= 4+2p(5;) *uj +2p(5;) xu; = w; xu; + 4p(6;) * p(d;).
It follows from the conditions (15) and (16) that
u;xu; =4or8 (1 <i<j<4).

We may distinguish five cases (reminding us of the five partitions 4 = 3+ 1 =2+ 2 =
24+14+1=14+1+1+1)
(i) all u; (1 <i <4) are equal,
(ii) three of u; (1 < ¢ < 4) are equal and the remaining one is different,
(iii) there are two different pairs and the members of each pair are equal,
(iv) one pair with the equal code word and other two are different from each other and from
the members of the pair,
(v) all code words u; (1 < i < 4) are different from each other.
We examine each case in detail.
(i) We take u; = --- = uy € Cg. The condition (15) is rewritten as

(15): PO xm =2 (2 <4).

The condition (16) is rewritten as

(16)1 p(6;) x uj + p(d;) xw; = 2+ 2p(6;) * p(d;) 2<i<j<A4
Combining (15); and (16); we have

(17) p(6)*p(6;) =1, 2<i<j<4

We can easily count the triples (p(dz2), p(d3), p(04)) satisfying (15); and (17). The number is
28-12-6 = 2016. The contribution of this type of vectors in A4 5 is 27-620-2016 = 159989760,
which is independent of the choice of the extremal binary codes.

23



(ii)-(i) When u; = uy = uz # uy. Then one sees that u; xu; =38, (1 <i < j <
3),u; xug =4 (1 <i<3). With these the condition (15) implies

(15)4 p(d;)xuy =2 (2<j<3),p(04) *u; =0.
From (15), and (16) we get

(16)2 p(02) * p(ds) = 1.

For a fixed pair (uy, us) satisfying u; * uy = 4 the number of triples (p(d2), p(d3), p(d4)) that
satisfy (15)q,(16)2 is 6 -4 - 8 = 192. By Proposition 2.2 there are 620 - 84 pairs of (uy, uy)
with the condition u; * uy = 4. Thus the number of quadruples (x;,---,x4) that come
from this case is 27 - 620 - 84 - 192 = 1279918080. The remaining subcases (ii)-(ii)u; = uy =
uy # ug,(ii)-(iii)uy = uz = vy # uy are counted in the same way. As to the last subcase
(ii)-(iv)ug = ug = uy # uy, the conditions are a little different from other subcases. From
(15) one gets

and from (16) one gets (16);. This time we write a program that counts the triples
(p(82), p(03), p(d4)) satisfying (15)s, (16); for a fixed pair (u;,us). However the result is
192. Thus the concluding count is the same as in the previous three cases.

(iii)-(1) When u; = uy # ug = uy, then uy xuy =8, ugxuy =8, u;xu; =4, (i =1,2,j =
3,4). It follows from (15) and (16) that

(62) ¥ uy = 2,
(15)4 { Z(éj) xw =0, (j=3,4)

and

(16)s { p(82) %W + p(6;) % us = 20(8) * p(6,), j = 3, 4,

p(03) * uy + p(d4) * ug = 24 p(d3) * p(04)

The second condition in (15), is stronger than the first condition in (16);. Actually we see
that p(02) *us = p(ds) * uz = p(d2) * p(d3) = 0 and p(02) *us = p(ds) *uz = p(d2) * p(ds) = 0.
We may count the triples (p(d2), p(d3), p(d4)) satisfying the condition (15); and the last
condition of (16)3. The number is 6 - 48. Thus the number of quadruples (xi,--- ,x4) that
come from this case is 27 - 620 - 84 - 6 - 48 = 1919877120.

The remaining subcases (iii)-(ii)u; = us # up = uy and (iii)-(iii) u; = uy # up = ug lead
to the same results as the subcase (iii)-(i).

(iv)-(1) When uy = up,u; #uj, 2<i<j<4),thenusxu =8 u;*xu; =4, 2<i<
j < 4). Then the condition (15) reads

(15); p(82) xu; =2, p(d3) *u; =0, p(d4) *u; = 0.
From the first condition of (15)5 we have
(18) wt(p(6) = 2.

The condition (16) reads

(16)4 p(6;) %+ p(d;) xw; = 2p(6;) % p(d;) 2<i<j<4
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By Lemma 5.2 we have
(19) p(0:) x u; = p(d;) xu; = p(6;) * p(6;) 2<i<j<4
The last two conditions of (15)5 yield

(20) p(02) ¥ uj = p(d;) xuz = p(d2) % p(d;) =0 3 <j<4.
Thus the most important conditions are
(21) p(03) * ug = p(d4) * uz = p(d3) * p(da).

Here we may note that the conditions (15)s, (20) restrict the range of p(d2), p(ds), p(d4).
The number of triples (p(d2), p(d3), p(d4)) satisfying the conditions (15)s, (18), (20), (21) may
depend on the mutual intersection scheme among the code words usy, usz, us. This intersection
scheme can be described by the terms in the triweight enumerator of the code C. Table 4-7b
below gives the number of the triples in question. For instance, when wtij;(us, us, uy) =
4, wtloo(UQ, us, Ll4) = 4, wt010(u2, us, Ll4) = 4, wt001 (llg, us, Ll4) = 4, wtooo(UQ, us, Ll4) = 16
and the values of other generalized weights are zero then the number of triples is computed
to be 384.

Table 4-7b. Number of triples (p(dz2), p(d3), p(4)).

monomial | triples

x%ux%ooxéloxémxégo 384
11211071017 000112010 %001 000 96
2112310012300 %811 2510001 T000 16
5’7411105541101553111'380 0

As to the frequency of each term in the above table one can use the portion of the triweight
enumerators for the five extremal codes given in Subsubsection 5.2.1. Recall that we first
chose x; = \%p#(ul), u; € Cg as a representative of Ao under the action of the group Go.

There are 27 = 128 members in an orbit of x;. Thus the contribution of this case to the
partial sum (2,2, 2,2) amounts to

27 (260400 - 384 + 1249920 - 16) it C = CP1,
27 . (52080 - 384 + 833280 - 96 + 416640 - 16) if C = CP2,
27 (56112 - 384 + 817152 - 96 + 432768 - 16) if C = CP3,
27+ (99120 - 384 + 645120 - 96 + 604800 - 16) if C = CP4,
27 - (58800 - 384 + 806400 - 96 + 443520 - 16) if C = CP5.

The cases (iv)-(il) w; = us,w; # u;, (2 <i < j <4) and (iv)-(iil) w3 = wy,w; # u;, (2 <
i < 7 <4)lead to the same counts as case (iv)-(i).

For the case (iv)-(iv) ups = ug,u; # ug,u; # uy, us # uy the conditions derived from
(15) and (16) are clearly different. From (15) we have

(15)6 p(52) *Uup = O, p(ég) * U = O,p(&;) * U = 0,
and from (16) we have

p(04) * uz + p(02) * uy = 2p(02) * p(d4)
(16)5 p(03) * g + p(d4) * uz = 2p(d3) * p(da)
p(02) * uz + p(d3) * ug = 2 + 2p(da) * p(d3)
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Again by Lemma 5.2 the first two of (16)5 will be transformed into

{ p(04) * vz = p(02) * uy = p(02) * p(da),
p(03) * uy = p(04) * uz = p(d3) * p(da).

For a fixed quadruple (uj,us,us, uy) which satisfies up *x ug = 8, u; * uz = 4,u; * ug =
4,u;xuy = ugxuy = 4, uzxuy = 4 we seek the number of triples (p(d2), p(d3), p(d4)) that sat-
isfy the conditions (15)s, (16)¢ and the last one of (16);. The number depends on the intersec-
tion scheme among u;’s. We find that the numbers of triples that are given in Table 4-7b are
also valid in this case. The remaining two cases (iv)-(v) us = uy,u; # us, u; # us, Uy # us
and (iv)-(vi) ug = uy, u; # ug, u; # us, us # ug lead to the same consequence as (iv)-(iv).

(16)6

Table 4-7d. Table of code word sums

case CP1 CP2 CP3 CP4 CP5
(1v) — (1) 119992320 106659840 106917888 109670400 107089920
total | 92154101760 | 81914757120 | 82112937984 | 84226867200 | 82245058560

(v) When u; # u; 1 <i < j <4 holds, we have

Also, from conditions (15) and (16), we have

(15)s p(6;) *uy =0,
and
(16)5 p(0:) * u; + p(0;) * w; = 2p(6;) * p(J;).

There are thirty two different terms which satisfy this condition in the quadriweight enu-
merators of doubly even self-dual binary [32, 16, 8] codes.

Table 4-Te. Terms satisfying the conditions (18) in the quadriweight enumerator.

71 | 200202200220200 79 | 201102111102112 793 | 211010030112122
To | 002222002200002 73 | 200220020220022 794 | 211001121003122
T3 | 020220202020020 74 | 200211111111022 795 | 210110121012032
72 | 022002202002200 715 | 200202202002022 796 | 201111021102023
75 | 022020020220200 76 | 121010121012121 797 | 310000130013132
Te | 111111111111111 77 | 112011021102112 795 | 301001030103123
77 | 220000220022220 75 | 111120021111022 799 | 300110030112033
Tg | 210110120121121 79 | 111111112002022 730 | 300101121003033
To | 210101211012121 799 | 211001120112211 73, | 211010031003033
Ti0 | 202002020202202 719 | 022020022002022 732 | 400000040004044
711 | 201111020211112 799 | 300101120112122

15
In the above table, the data (7;|t;; : 1 < j < 15) indicates the monomial 7; = H :c';i'j, where
=0

the ¢;; are decimal representations of generalized weights in descending orders and z;’s are
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the decimal representations of the associated variables as explained in Note 2.3. The value

t; 0 is omitted since it is determined by Z;io w; = 32. For example,

2 2 2 2.9 92 92 92 18
T1 = T15L19L19LgTeL5L3T L

2 2 2 2 2 2 2 2 18
= Z1111%1100%10107 1001701107 010170011 %0001 L0000

Table 4-7f. The number of possible triples (p(d2), p(d3), p(04)).

T1,72,73,T4,T5,T6 16

T7,78,T9, T10, T11, T12, T13, T14, | 932
T15, T16, T17, 718, 719, 720, T21
T22,T23, T24, 725, T26 64

To7, Tog, T29, T30, T31 | 128
T32 512

By use of the computer we found:

Wy (24; Copr)
= - +1249920(1 + T2 + T3 + T4 + 75 + 77 + T10 + T3 + T15 + 721) + 1999872076 + 1041600735 + - - -
W, (zq; Cepa)
= - 4+416640(1 + 1o + 73 + 74 + 75) + 357120(78 + To + T11 + T2 + T1a + Ti6 + T17 + T8 + T19 + T20)
+1190400( 729 + Toz + Tog + Tos + Tag) + 714240( 797 + Tog + Tog + T30 + T31) + 29760730 + - - -,
Wy(z4; Ceps)
= - +432768(1 + 1o + T3 + 74 + 75) + 387072(78 + T9 + T11 + T2 + T1a + Ti6 + T17 + Tis + T19 + T20)
+1139712(792 + Tog + Toa + Tos + Tog) + 709632(To7 + Tog + Tag + T30 + T31)
+56448(77 + 19 + Ti3 + Ti5 + To1) + 47040739 + - - -,
Wi(2a; Ccpa)
= - 4+604800(7 + 7o + T3 + T4 + 75 + 77 + T1o + T3 + T15 + T21) + 645120(76 + T8 + To
+T11 + Ti2 + Tia + Tie + Ti7 + T1g + Tig + Top + Toz + Taz + Tog
+To5 + Tag + Tar + Tog + Tog + T30 + 731) + 235200735 + - - -,
Wiy(za; Ceps)
= - +443520(1 + T + 73 + T4 + 75) + 64512076 + 40320(77 + T10 + T15 + T13 + T21)
+345600(78 + 79 + 11 + Ti2 + T14 + Ti6 + Ti7r + T1s + Ti9 + Too)
+1152000( 722 + Toz + Tog + Tos + Tog) + 691200727 + Tog + Tog + T30 + 731) + 62400735 + - - - .

By using the data in Tables 4-7e, 4-7f and the shapes of the parts of quadriweight enumerators
above we obtain

Table 4-7g. Table of the contribution of the case (v) to (Q43) partial sum
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CP1 27- (1249920 - 16 -5 + 1249920 - 32 - 5 + 19998720 - 16 + 1041600 - 512) = 147617218560
CP2 27-(416640-16 -5+ 357120 - 32 - 10 + 1190400 - 64 - 5 + 714240 - 128 - 5
+29760 - 512) = 128113704960
CP3 27- (432768 - 16 -5 + 387072 - 32 - 10 + 1139712 - 64 - 5 + 709632 - 128 - 5
+56448 - 32 - 5 + 47040 - 512) = 129340538880
CP4 27- (604800 - 16 - 5 + 604800 - 32 - 5 + 645120 - 16 + 645120 - 32 - 10
+645120 - 64 - 5 4 645120 - 128 - 5 + 235200 - 512) = 141011189760
CP5 27-(443520-16 -5 + 645120 - 16 + 40320 - 32 - 5 + 345600 - 32 - 10
+1152000 - 64 - 5 4+ 691200 - 128 - 5 + 62400 - 512) = 128742850560
5.3 Two Technical Lemmas
To reduce the run time of the computations we made use of the following technical lemma.

Lemma 5.4. (i) If uj,uy € Cg and uz € Cyy satisfy the conditions u; *x ug = 4,1y * ug =
6,uy xu3 =6, then U, Uy + Ug, Uy +Us € Cs and

uy ok (up +ug) =4,u; * (ug +u3) =2, (ug + ug) * (ug +uz) = 4.

(ii) If uy € Cg and uy,uz € Cyy satisfy the conditions u; x ug = 6,u; * U3 = 6, Uz * uz = 8§,
then uy,u; + ug,u; + us € Cg and

uy x (up +ug) = 2,uy * (ug +u3) = 2, (g + ug) * (ug + uz) = 4.

(iii) If uy,up € Cg and ug € Cyg satisfy the conditions uy x ug = 4,u; * uz3 = 8, up * Uz = §,
then uy,u; + up,u; +uz € Cg and

uy ok (ug +ug) =4, uy % (ug +ug) =0, (ug + ug) * (ug + uz) = 4.

(iv) Ifu; € Cg,uy € Cyp and uz € Cyg satisfy the conditions u;xuy = 6, u*xug = 8, ugkug =
10, then uy,u; + ug,u; + us € Cg and

uy * (ug +ug) = 2,uy * (ug +uz) =0, (ug + uy) * (uy +uz) = 4.

(v) If u; € Cg and uy,u3 € Cyg satisfy the conditions u; * ug = 8,uy *xuz = 8, ug x ug = 12,
then ui,u; + ug,u; + ug € Cg and

uy ok (ug +ug) = 0,uy * (ug +ug) =0, (ug + u) * (ug + uz) = 4.

(Vi) If uj,uy,ug € Cyo satisfy the conditions u; *x uy = 8,1y * uz = 8,uy *x uz = 8, then
u; € Cp and u; + uy,uy +uz € Cg and

up k (ur 4+ uz) =4, up * (ug +uz) =4, (w +ug) * (ug +u3) = 4.

(vii) Ifuy,us € Cip and uz € Cyg satisfy the conditions u;xuy = 8, uyxuz = 10, ug*xug = 10,
then u; € Ciy and uy; + ug,u; +uz € Cg and

ul*(ul—i—uQ) :4,111*(11,1—'—113) :2,<U1+UQ>*(U1+113) = 4.

(viii) If u; € Cya and uy,u3 € Cyg satisfy the conditions u; xuy = 10, u; xug = 10, ug xug =
12, then uy € Cqy and u; + us, uy +uz € Cg and

uy ok (ug +ug) = 2,y * (ug + ug) = 2, (ug + ug) * (ug + ug) = 4.
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(ix) If uy,ug,uz € Cyg satisfy the conditions uy x ug = 12,1y x ug = 12, uy x uz = 12, then
u; € Ci5 and u; + Ug, U + Us € Cs and

ul*(u1+u2) :4,111*(U1—|—113) :4,<U1+UQ>*(U1+U.3) =4.

Remark 3. Each of the above statements gives a bijection (uy, us, uz) — (uy, u;+uy, u;+us)
between certain sets Xy, Xy of triples of code words. For instance, in (i) one has

Xl = {<U1,L12,ll3> - CS X CS X C12|u1 * Uy = 47111 * Uy = 4,112 * Uy = 4},

XQ = {<V1,V2,V3> € Cg X Cg X CS‘VI * Vo = 4,V1 * Vg = 2,V2 * Vg = 4}

The following lemma may be verified, for example, using Magmal|l].

Lemma 5.5. Let G; be the group of automorphisms of the code CPi (1 < i <5). Then G;
acts on Cg, the set of code words of weight 8 in each code CP1, and:

(i) G1 acts on Cg transitively,

(ii) Gy acts on Cg transitively,

(ili) when Gs acts on Cg , there are exactly three orbits Cs(1), Cg(2) and Cs(3). The cardi-
nality of Cg(1) is 256, the cardinality of Cg(2) is 336 and the cardinality of Cs(3) is 28,
(iv) when Gy acts on Cg , there are exactly two orbits Cg(1) and Cs(2). The cardinality of
Cs(1) is 560 and the cardinality of Cg(2) is 60,

(v) when G5 acts on Cg , there are exactly three orbits Cg(1), Cg(2) and Cs(3). The cardi-
nality of Cg(1) is 320, the cardinality of Cg(2) is 240 and the cardinality of Cg(3) is 60.
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6 Determination of a(syy, L32)

Table 5. Table of code sum contribution for five extremal [32, 16, 8] codes.

case CP1 CP2 CP3 CP4 CP5 | m;
(Q1) 773283840 773283840 773283840 773283840 773283840 | 1
(Q2) 159989760 159989760 159989760 159989760 159989760 | 4
(Q3) | 1546567680 | 1546567680 | 1546567680 | 1546567680 | 1546567680 | 6
(Q4), 266649600 266649600 266649600 266649600 266649600 | 4
(Q4)2 | 5759631360 | 5759631360 | 5759631360 | 5759631360 | 5759631360 | 4
(Q4)3 | 15359016960 | 13652459520 | 13685489664 | 14037811200 | 13707509760 | 4
b(Msy, C) 1562400 1354080 1358112 1401120 1360800 | 8
b(Msy 4, C) 1770720 1562400 1566432 1609440 1569120 | 24
b(Maa, C) 1770720 1562400 1566432 1609440 1569120 | 24
b(May, C) 1562400 1354080 1358112 1401120 1360800 | 8
b(My, C) 33539520 15207360 15610560 19830720 15798720 | 2
b(Mp, C) 9999360 18570240 18321408 15805440 18293760 | 8
b(M;, C) 1770720 104160 168672 803040 157920 | 8
b(M;s, C) 59996160 55948800 56146944 58060800 56079360 | 12
b(M3,C) 4999680 1249920 1290240 1774080 1370880 | 24
b(Myy, C) 1041600 29760 47040 235200 62400 | 12
b(M;s, C) 429972480 344739840 346278912 362880000 347489280 | 8
b(M;g, C) 59996160 54401280 54491136 55480320 54581760 | 24
b(M;7, C) 9999360 20117760 19977216 18385920 19791360 | 24
b(Ms, C) 42080640 20504640 20866944 24823680 21200640 | 8
b(Myg1,C) | 3317704320 | 3000641280 | 3006777984 | 3072236160 | 3010869120 | 2
b(Mg2, C) 1249920 8451840 8367744 7378560 8219520 | 8
b(Myg 3, C) 1249920 357120 411264 927360 385920 | 6
b(Mao1,C) | 1838215680 | 1542222720 | 1548029952 | 1609843200 | 1551770880 | 8
b(Msg 2, C) 34997760 34462080 34384896 33707520 34479360 | 24
b(Ma11,C) | 1866547200 | 1618944000 | 1623745536 | 1674946560 | 1626931200 | 12
b(Ma; 2, C) 379975680 299504640 301228032 319334400 302100480 | 12
b(Msy, C) | 3918082560 | 3466623360 | 3475153920 | 3566492160 | 3481186560 | 8
b(Mss, C) | 15409430400 | 13147908480 | 13192163712 | 13663413120 | 13220860800 | 1

Table 5. (continued)
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CP1 CP2 CP3 CP4 CP5
53121600 40652160 40891200 43444800 41054400
84994560 87434880 87392256 86929920 87356160
8853600 1592160 1730400 3208800 1826400
623293440 525085440 526977024 547169280 528253440
84994560 87434880 87392256 86929920 87356160
60204480 46901760 47156928 49882560 47330880
6332094720 5649340800 2662578432 2803741440 5671365120
42497280 49937280 49797888 48303360 49697280
4306391040 3749998080 3760748544 3875450880 3767946240
509967360 425091840 426725376 444165120 427829760
6997885440 6236803200 6251556864 6408890880 6261354240
26440391040 | 23217799680 | 23280130944 | 23945066880 | 23321754240
: 148740480 131241600 131580288 135192960 131806080
2), Ms5,C 793282560 699955200 701761536 721029120 702965760
154052640 135928800 136279584 140021280 136513440
, 11304276480 9974361600 | 10000101888 | 10274664960 | 10017262080
C(2), M3z, 594961920 524966400 526321152 540771840 527224320
11899238400 | 10499328000 | 10526423040 | 10815436800 | 10544486400
40556570880 | 35785209600 | 35877558528 | 36862613760 | 35939124480 | 6
1,C(3)2,8 968688000 839529600 842029440 868694400 843696000 | 8
21698611200 | 18805463040 | 18861459456 | 19458754560 | 18898790400 | 8
57055723200 | 49448293440 | 49595534016 | 51166100160 | 49693694400 | 4
159989760 159989760 159989760 159989760 159989760 | 1
5119672320 5119672320 5119672320 5119672320 5119672320 | 1
5759631360 5759631360 5759631360 5759631360 5759631360 | 1
92154101760 | 81914757120 | 82112937984 | 84226867200 | 82245058560 | 1
147617218560 | 128113704960 | 129340538880 | 141011189760 | 128742850560 | 1

a(Tao, L32(CP1)) =Y " bi(1)m;,

CL(T40, £32 CPl)
(‘3,'40, £32 CPQ)
a(Ta0, L2
(
(

a

a(%y, £32 CP4

(CP1))
(CP2))
(CP3))
E )

2019470745600,
1778114764800,
1783635517440,
= 1841107968000,

)
(10, L32(CP5)) = 1785900441600.
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As a summary of our rather lengthy series of computations we have

In the above table the last column denotes the multiplicity of each code sum. Now we collect
all the terms displayed above. To get the value a(Ty9, L32(CP1)) we use

where b; denotes the value of second column in the way: a(Ty4, L32(CP1)) = 773283840 - 1 +
159989760 - 4 4 - - - + 147617218560 - 1. In this way we obtain

Theorem 6.1. For the five even unimodular 32-dimensional extremal lattices constructed
from five extremal self-dual binary codes the Siegel theta series of degree 4, ©4(Z, L32(CPi7)) (1 <
i <5), are all distinct.




6.1 A Very Small Table of the Fourier Coefficients

Using the result in the previous subsection and Proposition 4.3 in [11] we obtain the

following table.

Table 6. Fourier coefficients of the Siegel-theta series of degree 4
associated with the 32-dimensional even unimodular extremal lattices

D reduced form L32(CP1) L35(CP2)
*64 (2,2,2,2,0,0,0,2,2,2) 337671244800 96315264000
*80 (2,2,2,2,2,0,0,2,0,2) 2019470745600 1778114764800

81| (2,2,221,1,1,2,2-1) | 2611032883200 | 2128320921600

84| (2222100222) | 2937411993600 | 3420123955200

96 | (2,2,22,2,1-1,0,0.2) | 22030589952000 |  21065166028800
105 (2,2,2,2,2/1,0,0,1,2) 70497887846400 70980599808000
108 | (222221-1-1,1-1) | 101830282444800 | 103761130291200
112 (Q,QQLQ,QJWO,QJJO) 171628786483200 | 169697938636800
116 | (2.2:22,2,1,0,0,2,0) | 269822273126400 | 272235832934400
120 | (2,2.2,2,1,1,1,2,2,0) | 434736975052800 | 433771551129600
121 (2,2,2,2,2/1,0,1,1,2) | 490128172646400 | 485301053030400
125 | (2,2,22,1,1,-1,-1,1,1) | 761377188741120 | 758480916971520

*128 (2,2,2,2,0,0,0,2,2,0) | 1032723244339200 | 1028378836684800
128 (Q,QQLQ,QJWO()O 2) | 1032080685465600 | 1035942381158400
120 | (2,2.2,2,1,1,1,1,2,2) | 1151465501491200 | 1150982789529600
132 | (2, ,,2,,1,],0()1) 1568578004582400 | 1569543428505600

D L32(CP3) L32(CP4) L35(CP5)
*64 101836016640 159308467200 104100940800
*80 1783635517440 1841107968000 1785900441600
81 2139362426880 2254307328000 2143892275200
84 3409082449920 3294137548800 3404552601600
96 21087249039360 21317138841600 21096308736000

105 70969558302720 70854613401600 70965028454400

108 | 103716964270080 | 103257184665600 | 103698844876800

112 | 169742104657920 | 170201884262400 | 169760224051200

116 | 272180625408000 | 271605900902400 | 272157976166400

120 | 433793634140160 | 434023523942400 | 433802693836800

121 | 485411468083200 | 486560917094400 | 485456766566400

125 | 758547166003200 | 759236835409920 | 758574345093120
*128 | 1028478210232320 | 1029512714342400 | 1028518978867200

128 | 1035854049116160 | 1034934489907200 | 1035817810329600

129 | 1150993831034880 | 1151108775936000 | 1150998360883200

132 | 1569521345495040 | 1569291455692800 | 1569512285798400

In the above table the discriminants dr marked by # indicate that the quaternary
quadratic forms have imprimitive coefficients.
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