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ABSTRACT  

Non-ferrous smelting dust, especially lead-smelting dust (LSD), contains percent levels of 

indium and thus constitutes a novel indium resource. The main difficulty in recovering indium 

from LSD is the coexisting presence of lead and zinc. In this study, a unique indium separation 

process was designed, combining techniques that involve washing with a chelant, leaching with 

acid and precipitation as hydroxide. The majority of the Pb in the LSD was selectively separated 

during chelant-assisted washing with ethylenediaminedisuccinate (EDDS), while the residual Pb 

was diminished through an acid leaching treatment with a mixed solution of sulfuric acid and 

hydrochloric acid. The chelant washing step also ensures a decrease in the raw LSD weight at a 

ratio of approximately 82 % due to the removal of lead and counterions such as sulfate, and the 

washing step also minimizes the consumption of corrosive acids in the subsequent step. Selective 

indium separation from LSD is further complicated by the similarity of the behavior of zinc 

during the acid leaching step. Therefore, hydroxide precipitation at pH 5 has been introduced as 

the final step, ensuring the maintenance of zinc as a soluble species in the supernatant and the 

selective separation of indium (∼ 88 %) as a hydroxide precipitate. 
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1.0 Introduction 

 The metal indium, particularly as ITO (indium-tin-oxide) thin film, is an industrially 

important component because ITO is necessary for building electronic devices [1]. ITO is widely 

utilized for manufacturing liquid crystal displays, plasma displays and solar energy cells [2], 

which consume approximately two-thirds of the global indium production [1]. One of the 

resource materials for raw indium is non-ferrous metal ore [3], which is obtained as a by-product 

of the smelting process of the non-ferrous metal ore [4]. Raw indium deposits are region-specific 

(i.e., China, Korea, and Russia) [5]. Discrepancies in demand, supply and price are therefore 

observed. The search for alternate sources of raw indium is vital from the point of view of 

resource strategy, and this search is focused mostly on the processing of indium-laden waste 

materials, e.g., ITO scrap [2, 6-8], end-of-life liquid crystal displays [6, 9-11] and etching waste 

[12-14]. 

 The residue and flue dust from the smelting of non-ferrous metals, such as lead, termed lead 

smelting dust or LSD hereafter, also includes indium [15] and is expected to be a novel indium 

resource. Acid leaching is commonly employed for metal smelting from waste resources [16-18]. 

Indium recovery from waste material has been reported through the use of acid leaching and 

hydroxide or sulfide precipitation [2, 6, 7, 19-21]. This approach is frequently criticized both in 

terms of overall efficiency due to the lack of selectivity in separation and in terms of the 

hazardous impact on the environment. Therefore, a reduction in the use of acid or other corrosive 

extractants is desirable [22]. As alternative extractants for indium recovery, chelants [10, 11, 23], 

other solvents, such as carboxylic acid or phosphoric acid derivatives (e.g., di-2-

ethylhexylphosphoric acid), chelating compounds (e.g., hydroxyoximes and azoles), and 

solvating extractants (e.g., tributyl phosphate, trioctylphosphine oxide and methyl isobutyl 

ketone) have been proposed [6, 24]. Although alternative extractants possess unique leaching 

behavior (i.e., selectivity, re-usability, etc.), the leaching efficiency of these alternative 

extractants is not comparable with the leaching efficiency of even acids or bases. 
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Indium reclamation from waste resources is further complicated by the simultaneous presence of 

metal components having chemical similarities [25, 26]. For example, tin is the major impurity 

in the recovery process of indium from ITO waste [2]. The issue of chemical similarities is more 

of a concern during the recovery of indium from LSD using acids or bases because the acid 

leaching process consumes a higher quantity of solvents due to the coexistence of base metals 

(e.g., lead, zinc, etc.) other than the indium, increasing the total operating cost.  

 The objective of the current work was to develop a unique technique for the quantitative 

reclamation of indium from LSD. The separation scheme combines chelant-assisted washing, 

acid leaching and hydroxide precipitation techniques, minimizing the competing effect of 

coexisting metals. 

2.0 Experimental  

2.1 Materials 

 Analytical grade reagents were used during all experiments. Ethylenediaminetetraacetate, 

(EDTA, Kanto Chemical, Tokyo, Japan), 3-hydroxy-2,2’-iminodisuccinate (HIDS, Nippon 

Shokubai, Osaka, Japan) and ethylenediaminedisuccinate (EDDS, Chelest, Osaka, Japan) were 

used as the chelating extractants (Table 1). As buffer reagents, 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES, Nacalai Tesque, Kyoto, Japan), N-tris(hydroxymethyl)-

3-aminopropanesulfonate (TAPS) and 3-cyclohexhylaminopropane sulfonate (CAPS, MP 

Biomedicals, Santa Ana, CA) were used. The ICP multi-element standard solution IV containing 

1000 mg L–1 of 23 elements (Ag, Al, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, 

Na, Ni, Pb, Sr, Tl, Zn) in diluted nitric acid (Merck KgaA, Darmstadt, Germany) was used as the 

standard during metal analysis. Purified water (resistivity > 18.2 MΩ·cm) was obtained from an 

Arium Pro water purification system (Sartorius Stedim Biotech GmbH, Göttingen, Germany) 

and was used for the preparation of all reagents.  
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Low-density polyethylene bottles, polyethylene test tubes (Nalge Nunc, Rochester, NY), 

DigiTUBEs (SCP Science, Quebec, Canada), perfluoroalkoxy tubes and micropipette tips 

(Nichiryo, Tokyo, Japan) were used as laboratory ware. The laboratory ware was cleaned via 

overnight soaking in Scat 20X-PF alkaline detergent (Nacalai Tesque, Kyoto, Japan) and then in 

HCl (3 mol dm–3), followed by rinsing with purified water after each of the previous steps. 

2.2 Analytical techniques 

 Concentrations of metals in solution were measured by using the iCAP6300 inductively 

coupled plasma optical emission spectrometer (ICP-OES) (Thermo Fisher Scientific, Waltham, 

MA). The ICP-OES was operated under the following conditions: the radio frequency power at 

the torch was 1.15 kW, the plasma gas flow was 12 dm3 min–1, the auxiliary gas flow was 1 dm3 

min–1, the nebulizer gas flow was 0.5 dm3 min–1, and the integration time was 30 s. The Epsilon3 

X-ray fluorescence (XRF) spectrometer (PANalytical, Almelo, The Netherlands), JSM-7100F 

field-emission scanning electron microscope (FE-SEM) (JEOL Co., Tokyo, Japan) combined 

with the INCA energy dispersive X-ray (EDX) spectrometer (Oxford Instruments, Oxfordshire, 

UK), and MiniFlex 600 X-ray diffractometer (XRD) (Rigaku Corporation, Tokyo, Japan) were 

used for the elemental characterization of the LSD solids. Each of the instrumental 

measurements and treatment procedures was performed in three replicates, and an averaged 

value is reported.  

2.3 Collection and characterization of the LSD samples  

 The LSD samples were provided from the non-ferrous metal smelting process of a 

Japanese mining company, who preferred to be introduced as ‘anonymous’ to avoid the violation 

of intellectual proprietary rights. 

LSD samples (0.05 g) were transferred into a pre-cleaned PTFE vessel of a Multiwave 3000 

microwave digestion system (PerkinElmer, Waltham, MA), which was loaded with HNO3
 (13.2 

mol dm–3; 1 cm3), HCl (12 mol dm–3; 3 cm3) and HF (27 mol dm–3; 1 cm3). The microwave 
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digestion process was conducted under the following conditions: microwave power (max) – 1400 

W; ramp time – 15 min; heating time at the maximum temperature – 120 min; and vent time – 30 

min. After completion of the primary digestion step, a 5% H3BO3 solution (10 cm3) was added 

to the digested solution to mask the residual hydrofluoric acid as fluoroborate (BF4
–). The 

mixture was heated further under the following conditions: microwave power (max) – 1400 W; 

ramp time – 15 min; heating time at the maximum temperature – 30 min; and vent time – 30 min. 

The dissolved samples were transferred to 50 cm3 polypropylene tubes (DigiTUBEs) and were 

diluted to 50 cm3 with purified water. The content of metal in the samples was determined by 

ICP-OES. 

2.4 Chelant-assisted washing treatment of LSD 

 LSD samples (0.05 g) were added to 5 mmol g–1 of chelant (EDTA, EDDS, or HIDS) and 

0.02 mol g–1 of NaOH mixed solution (5 cm3) in 50 cm3 polypropylene test tubes and were 

shaken at 180 rpm and 25 °C for 5 h. The mixed solution was centrifuged at 1820 × g for 30 min, 

and the supernatant was filtered with a 1.0 µm pore size mixed cellulose ester membrane filter 

(Advantec, Tokyo, Japan). The metal extraction yield (%) was defined using the following 

equation:  

Extraction yield (%) = 𝐶𝐶sol × 𝑣𝑣
𝑚𝑚 × 𝐶𝐶LSD

 × 100     (1) 

In Eq. 1, the symbols are defined as follows: Csol, metal concentration in the solution (mg dm–3); 

v, volume of the given solution (dm3) ; m, weight of the LSD (kg); and CLSD, metal content in the 

LSD (mg kg–1).  

2.5 Acid leaching treatment of LSD 

 The LSD sample (0.05 g) was leached by using 5 cm3 of mineral acid (0.1 mol g–1 of 

HNO3, HCl and H2SO4). The mixture was shaken at 180 rpm and 25°C for 24 h. The mixed 

solution was centrifuged, and the supernatant was filtered.  
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2.6 Hydroxide precipitation treatment of LSD 

  The solution leached from the LSD using the mixed acid solution (0.02 mol g–1 HCl/0.04 

mol g–1 H2SO4) in accordance with section 2.5 was adjusted to pH 5 with 10 mol dm–3 of NaOH 

solution. The hydroxide precipitate was collected on a membrane filter (pore size 0.45 µm) and 

dissolved with 1.0 cm3 of aqua regia (a mixture of 12 mol dm–3 HCl and 13.2 mol dm–3 HNO3 at 

a ratio of 1:3 based on volume).  

3.0 Results and Discussion 

3.1 Chemical composition of LSD 

 The LSD was composed mainly of lead, zinc and indium, while the auxiliary components 

were cadmium, calcium, copper, bismuth, and thallium (Table 2). Main and auxiliary metal 

components in the LSD were calculated as 2.86 mmol g–1. Furthermore, XRF analysis indicated 

the presence of bromine (23 %) and sulfur (3 %) as non-metallic components of the LSD. The 

metals in the LSD were estimated to be in the chemical forms of bromide, oxide, sulfide or 

sulfate, as the LSD was generated from the combustion of sulfide or sulfate ores (e.g., galena, 

anglesite and sphalerite). The FE-SEM and EDX observation supplied the micro-scale surface 

image of the LSD sample (Figure 1), which indicated a highly homogenous elemental 

composition throughout. The analysis also confirmed that LSD is a complex mixture of several 

metal compounds. The XRD pattern of the LSD sample also had a complex structure with weak 

peak intensity (Figure 2a). Based on the comparison with the XRD patterns of standard Pb 

species, PbBr2 was identified as a major species in the LSD with a possible minor quantity of 

PbO (Figure 2b–2d). The assumption is sustained because the EDX and XRF analysis also 

confirmed a high concentration of bromine in the LSD solids, while oxygen was not detected at a 

significant level. However, it was difficult to identify the In and Zn species in the LSD even after 

comparison with the XRD patterns of corresponding standard reagents.  
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3.2 Chelant-assisted washing treatment of the LSD 

3.2.1 Effect of chelant concentration 

 The effects of chelant application and the corresponding concentrations in solution from 

the extraction of the main metal components of the LSD (Pb, Zn and In) are illustrated in Figure 

3a. Quantitative Pb extraction was observed with the chelant solutions, whereas Zn and In 

extraction was limited to less than 26% and 8%, respectively. To achieve the maximum Pb 

extraction yield, the concentration of chelant in solution is required to be greater than 5 mmol g–1. 

As shown in section 3.1, the content of total metals in the LSD was 2.86 mmol g–1. Hence, the 

calculated simulation indicated that 2.86 mmol g–1 of chelant is required for the formation of 1:1 

metal (M)-chelant (Y) [27-29] complexes (Eq. 2), considering a chelant-LSD mixing ratio of 100 

cm3 g–1. The simulation calculation, therefore, further supports the experimental observations 

and confirms that more than 5 mmol g–1 of chelant should be required to remove the lead from 

the LSD.  

)4(4 YMMY nn −−+− −→+         (2) 

3.2.2 Effect of extraction time 

 Chelant-assisted washing treatment was performed at 25°C, and temporal changes in the 

extraction behavior are shown in Figure 3b. The Pb and Zn extraction patterns indicated that 

equilibrium was attained within 5 h, irrespective of the type of chelant, whereas the reaction rate 

was slower for indium. The extractive In leaching rate with the chelants was minimal compared 

to the leaching rate of Pb and Zn, thus becoming an issue of secondary concern. Hence, in terms 

of the efficiency of Pb extraction, an extraction period of 5 h was maintained for the chelant-

assisted treatment step.  

3.2.3 Effect of solution pH 

 The effect of extractant pH on the chelant-assisted metal leaching rate from LSD was 

examined with simultaneous control runs. The extraction yields obtained in the absence of 
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chelants were higher at an acidic pH than under basic conditions (Figure 4a). This behavior is 

attributable to the interaction of the hydrogen ions (H+) in solution [30]. The hydrogen ions may 

react with metal compounds on the surface of the LSD and dissolve or desorb [31] these metal 

compounds (Eq. 3). 

OHMH2OM 2(s) 
yxy n

yx +→+ ++

       (3) 

−+ +→ 4
4 YH4YH          (4) 

The presence of chelant in solution increased the metal extraction yields throughout the pH range 

from 3 to 11. In addition, an increase in the metal extraction yields under both acidic (e.g., Zn: 

32 % at pH 3, EDTA) and basic (e.g., Zn: 24 % at pH 11, EDTA) pH was observed. The 

increased yield at lower pH may be due to the higher release rate of metals (M) from the solid 

phase (Eq. 3). The higher extraction yield at basic pH is attributable to the high conditional 

formation constant of the chelant-metal complex (Kf’MY) due to acid dissociation of the chelant 

(Eq. 4), which designates the increment in metal-chelate complexation (Eq. 2). The extraction 

yield of metals in the acidic region has been higher than the extraction yield in the basic region, 

indicating that the chemical form of the metal constituents in the LSD solids has a significant 

role during the chelant-assisted leaching of metals under the influence of solution pH [32]. 

The difference in the extraction efficiencies among the chelants (EDTA, EDDS, or HIDS) was 

found to be prominent at an acidic pH (pH ~ 3). The Pb and Zn extraction rates were lower with 

the HIDS and EDDS chelants than with EDTA and commonly occurred in the following order: 

EDTA > HIDS > EDDS. This ordering can be attributed to protonation of the chelant, which can 

be described as the back reaction of Eq. 4. The complexation ability of the chelant, as denoted by 

Kf’MY, tends to be lower after protonation. The calculated log Kf’MY at pH 3 is as follows: 

EDTA-Pb (7.40) > HIDS-Pb (2.14) > EDDS-Pb (0.68) and EDTA-Zn (5.90) > HIDS-Zn (1.69) > 

EDDS-Zn (1.38). Hence, the extraction yield of metals was found to be dependent on the 
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conditional formation constant at an acidic pH causing a decrease in the complex formation 

ability of the chelant. 

Chelant-assisted washing was also carried out under stronger basic conditions (> pH 11), and the 

results are shown in Figure 4b. The indium extraction yield was below the limit of detection at 

0.02 < [NaOH] < 0.2 mol g–1 (Figure 4b, In) for EDTA and EDDS-assisted washing. The 

increased concentration of hydroxide ions in the solution results in the precipitation of indium as 

indium hydroxide (e.g., In(OH)3, Ksp = 1.26×10–37) (Eq. 5), and the magnitude of this chemical 

reaction was larger than the rate of In-chelant complex formation (e.g., In-EDTA-, Kf = 

8.91×1024).  

(s) 
M(OH)OHM n

n n →+ −+

        (5) 

In the presence of 0.01 mol g–1 of NaOH in solution (Figure 4b), the extraction yields of Pb and 

Zn were comparable to a great extent, indicating a larger solubility range for hydroxide 

precipitation of the corresponding metals. Furthermore, an increase in the reactive species Yn–

occurred under alkaline conditions, resulting in a higher formation rate for soluble chelant 

coordination compounds and increased metal extraction rates [33]. These observations indicate 

that the physicochemical form of the metals and their interaction with the hydroxide ions are 

important and make a strong contribution to chelant-assisted washing at a basic pH. Based on 

these experimental findings, we concluded that chelant-assisted washing with 0.02 mol g–

1 NaOH in chelant solution will be advantageous for the separation of indium from other 

coexisting metals.  

Although there are differences in the rate of metal extraction with EDTA, EDDS and HIDS, the 

differences are not significant except under highly acidic and strongly basic conditions. In spite 

of the higher efficiency of EDTA, its poor photo-, chemo- and biodegradability evoke 

environmental concerns [34-37], and the biodegradable alternatives (EDDS or HIDS) deserve 

consideration [38-40]. The extraction of Pb and Zn from solids with EDDS was observed to be 
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superior to extraction with HIDS under basic conditions [40], and EDDS has been selected for 

subsequent studies.  

3.3 Acid leaching  

 The chelant-assisted washing treatment facilitated the quantitative removal of lead and 

concentrated the indium and zinc in the LSD. However, the selective leaching of indium is 

difficult with chelants. Therefore, an acid-leaching step was employed with the aim of 

reallocating solid-phase indium in the LSD to the aqueous phase.  

3.3.1 Effects of acid concentration 

 The effects of various acids and their corresponding concentrations on the leaching 

efficiency of indium from LSD were studied (Figure 5). HNO3-assisted leaching was successful 

for the quantitative recovery of indium and the other coexisting metals (Pb and Zn) at  ≥ 0.5 mol 

g–1 acid, while HCl and H2SO4 were able to recover the same amounts at  ~ 0.1 mol g–1 acid. 

Furthermore, Pb extraction was not observed at  ~ 0.1 mol g–1 H2SO4 due to the formation of 

PbSO4 precipitate (Ksp = 7.2×10–8) (Eq. 6), making this set of conditions more efficient than the 

other alternatives for isolating indium from residual lead. 

(s) 4
2

4
2 PbSOSOPb →+ −+  ]SO][Pb[ 2

4
2

PbSOsp
4

−+
⋅ =K     (6) 

3.3.2 Effects of a mixed acid solution 

 The metal leaching efficiency of a mixture of HCl and H2SO4 was examined to 

determine moderate separation conditions, and the composite concentration ratio was varied 

within 0.1 mol g–1. Increasing the H2SO4 concentration in the mixture was observed to decrease 

the lead extraction yield (Figure 6a) due to the common ion effect. Optimum separation 

performance, as represented by Pb leaching of < 1%, was achieved with a mixture of 0.04 mol g–

1 H2SO4 and 0.02 mol g–1 HCl. However, the leaching behavior of Zn with these acids is similar 

to the leaching behavior of indium. Hence, the desired selectivity toward indium in LSD is not 

completely achievable during the acid-assisted leaching step.  
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3.3.3 Effects of leaching time 

 The effects of leaching time on the acid-assisted recovery of indium and zinc using the 

0.04 mol g–1 H2SO4 plus 0.02 mol g–1 HCl mixture were examined (Figure 6b). A period of 24 h 

was required to achieve an indium yield of up to 94%, and solution equilibrium (yield: 97%) for 

zinc was achieved within 12 h. Hence, a leaching time of 24 h was selected to ensure complete 

indium leaching from the LSD.  

3.4 Hydroxide precipitation 

 Separation of indium from zinc in LSD is difficult because of their similar behavior. The 

hydroxide precipitation technique was therefore examined to separate indium from zinc. The 

hydroxides of indium and zinc are known as weakly soluble salts in water, and the corresponding 

solubility products (Ksp) are 1.26 × 10–37 mol4 dm–12 (Eq. 7) and 2.0×10–17 mol3 dm–9 (Eq. 8), 

respectively. The Ksp values of indium and zinc are significantly different, and this difference is 

useful for separating indium from zinc by adjusting the solution pH. 

(s) 3
3 In(OH)OH3In →+ −+  33

In(OH)sp ]][OH[In
3

−+
⋅ =K     (7) 

(s) 2
2 Zn(OH)OH2Zn →+ −+  22

Zn(OH)sp ]][OH[Zn
2

−+
⋅ =K     (8) 

A calculated simulation of hydroxide solubility indicates that indium precipitates at pH > 4, 

while zinc remains as a soluble species in the supernatant at pH values < 7 (Figure 7a). Thus, the 

pH adjustment of an acid-leached solution is expected to separate indium as a hydroxide 

precipitate in the following pH range: 4 < pH < 7.  

Experimental observations showing indium and zinc species in the aqueous and solid phases 

with changes in the pH of an acid-leached solution are shown in Figure 7b. The total indium 

content was observed to exist in the aqueous phase at pH 0.2 to 2, and its precipitation as indium 

hydroxide started at pH > 2 and approached completion at pH 5. By contrast, zinc precipitation 

as hydroxide was initiated at pH > 5.4. Therefore, the separation of indium and zinc from the 

aqueous phase is achievable by adjusting the solution pH to 5.  
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3.5 Sequential separation scheme for selective indium separation from the LSD 

 A sequential separation scheme was designed for the selective recovery of indium from 

LSD according to the optimized conditions identified in the previous sections during evaluation 

of the chelant-assisted washing, acid leaching and hydroxide precipitation techniques (Figure 8).  

The scheme was experimentally verified using 9.9968 g of LSD as a starting sample. The sample 

was subjected to the chelant-assisted washing treatment using 5 mmol g–1 EDDS and 0.02 mol g–

1 NaOH at 25 °C, resulting in the almost quantitative separation of lead and separation of 

approximately 22 % of the zinc from the raw LSD. The subsequent step was the acid leaching of 

the chelant-treated LSD with a mixed acid solution (0.02 mol g–1 HCl and 0.04 mol g–1 H2SO4) 

at 25 °C, and the acid-leached eluate included mostly indium (1.1 g dm–3) and zinc (2.1 g dm–3). 

The acid-leached eluate was then subjected to separation by hydroxide precipitation by adjusting 

the solution pH to 5. The precipitated solid obtained (1.0463 g) included 0.23 g of indium and 

0.03 g of zinc. Overall, a total of 88.2 % of the indium was selectively recovered from the LSD 

by the proposed sequential separation scheme.  

The mass distribution of indium, lead and zinc in the LSD during application of the sequential 

separation scheme is summarized in Figure 9, calculated using the following relation:  

Mass distribution (%) = 100
HP.pptHP.supALRCAW

×
+++ mmmm

m
   (9) 

where the symbols in the equation indicate the following: m (%), each distribution of metal; mCAW 

(%), metals in the chelant-assisted washing eluate; mALR (%), metals in the acid leaching residue; 

mHP.sup (%), metals in the hydroxide precipitation supernatant; and mHP.ppt (%), metals in the 

hydroxide precipitate. The total recovery of indium from the 9.9968 g LSD sample with the 

sequential separation process was 96%, while the contribution of indium hydroxide was 88% in 

that total.  
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4.0 Conclusion 

 The present study was aimed at the development of a selective technique for the recovery 

of indium from LSD. The extraction yield of metals from LSD was found to be strongly 

influenced by solution pH and interactions between the metals and hydrogen ions or hydroxide 

ions. Indium and zinc remained fixed in the LSD while lead was extracted with a solution 

containing 5 mmol g–1 EDDS and 0.02 mol g–1 NaOH. A subsequent acid leaching step induced 

the release of indium and zinc from the LSD. Hydroxide precipitation by adjusting the solution 

pH to 5 ensured the separation of indium as indium hydroxide precipitate, while the total zinc 

content remained in the supernatant. The proposed multiple step treatment selectively separated 

and concentrated indium as a hydroxide precipitate from the matrix component of the LSD, and 

the total separated indium was 88 % as the precipitate. The present technique is expected to be 

able to refine indium quantitatively with little harm to the environment because of its minimal 

consumption of acids and bases. 
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Table 1. Chemical structures and acid dissociation constants (pKa) of chelants 

Chelant Structure pKa 

EDTAa, 

Ethylenediaminetetraacetate 

 

pKa1 2.00 

pKa2 2.69 

pKa3 6.13 

pKa4 10.37 

EDDSa, 

Ethylenediaminedisuccinate 

 

pKa1 2.95 

pKa2 3.86 

pKa3 6.84 

pKa4 10.01 

HIDSb, 

3-Hydroxy-2,2’-iminodisuccinate 

 

pKa1 2.14 

pKa2 3.08 

pKa3 4.07 

pKa4 9.61 

a At 25 °C (µ = 0.1 M) [41], b At 25 °C (µ = 0.1 M) [28, 29, 39]. 
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Table 2. Metal concentrations in LSD by microwave-assisted digestion/ICP-OES detection 

Metal Concentration [%] 

Bi 0.195 ± 0.005 

Ca 0.59 ± 0.01 

Cd 0.62 ± 0.01 

Cu 0.234 ± 0.005 

In 2.64 ± 0.06 

Pb 40.6 ± 0.7 

Tl 0.13 ± 0.01 

Zn 5.7 ± 0.2 

 
  



 

Chemical Engineering Journal, 277: 219–228, 2015 
The original publication is available at: http://dx.doi.org/10.1016/j.cej.2015.04.112  

  

 18 

 

Figure 1. FE-SEM/EDX observation and element mapping image 
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Figure 2. XRD pattern comparison of (a) LSD sample with (b~d) Pb salts, which are (b) PbO, 

(c) PbO2 and (d) PbBr2. 

  

10 20 30 40 50 60 70 80

In
te

ns
ity

 [a
.u

.]

2θ [deg.] (Cu Kα)

(d)PbBr2

(c)PbO2

(b)PbO

(a)LSD ○:PbO, ●:PbBr2, ☆:Unknown



 

Chemical Engineering Journal, 277: 219–228, 2015 
The original publication is available at: http://dx.doi.org/10.1016/j.cej.2015.04.112  

  

 20 

 

Figure 3. Effect of (a) chelant concentration (extraction time: 24 h) and (b) extraction time 

(chelant concentration: 5 mmol g–1) on extraction yield (%) during chelant-assisted washing 

treatment of LSD. Solution pH, 7; liquid solid ratio, 100 cm3 g–1; temperature, 25°C.  
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Figure 4. Effect of (a) solution pH (3 to 11) and (b) NaOH addition (0.01 to 1 mol g–1) on 

extraction yield (%) during chelant-assisted washing treatment of LSD. Chelant concentration, 5 

mmol g–1; liquid solid ratio, 100 cm3 g–1; extraction time, 24 h; temperature, 25°C. 
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Figure 5. Metal extraction yields during mineral acid leaching treatment of LSD. Liquid solid 

ratio, 100 cm3 g–1; extraction time, 24 h; temperature, 25°C. 
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Figure 6. Extraction yields of metals (In, Pb and Zn) during acid-leaching treatments of LSD: (a) 

Effect of varying HCl/H2SO4 ratio (extraction time: 24 h); (b) Effect of extraction time with HCl 

(0.02 mol g–1) and H2SO4 (0.04 mol g–1) mixture. Liquid solid ratio, 100 cm3 g–1; temperature, 

25°C. 
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Figure 7. Separation of indium from zinc using the hydroxide-precipitation technique: (a) 

calculated simulation; (b) residual ratio (%) in the aqueous medium of the supernatant; (c) 

precipitation ratio (%) during hydroxide precipitation. 
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Figure 8. Sequential scheme for selective indium separation from LSD. In the figure, ‘N.D.’ 

stands for ‘not detected’.  
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Figure 9. Mass distribution of the major metal components of the LSD during the sequential 

separation process. The symbols stand for the following: mCAW (%), metal in the chelant-assisted 

washing eluate; mALR (%), metal in the acid-leaching residue; mHP.sup (%), metal in the hydroxide-

precipitation supernatant; mHP.ppt (%), metal in the hydroxide precipitate. 

  



 

Chemical Engineering Journal, 277: 219–228, 2015 
The original publication is available at: http://dx.doi.org/10.1016/j.cej.2015.04.112  

  

 27 

REFERENCES 

[1] A.M. Alfantazi, R.R. Moskalyk, Processing of indium: A review, Miner. Eng., 16 (2003) 

687–694. 

[2] Y. Li, Z. Liu, Q. Li, Z. Liu, L. Zeng, Recovery of indium from used indium-tin oxide 

(ITO) targets, Hydrometallurgy, 105 (2011) 207–212. 

[3] M. Shimizu, A. Kato, Roquesite-bearing tin ores from the omodai, akenobe, fukoku and 

ikuno polymetallic vein-type deposits in the inner zone of southwestern japan, Can. 

Mineral., 29 (1991) 207–215. 

[4] B. Gupta, N. Mudhar, I. Singh, Separations and recovery of indium and gallium using 

bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272), Sep. Purif. Technol., 57 (2007) 

294–303. 

[5] J.D. Jorgenson, M.W. George, Mineral Commodity Profiles: Indium, in, U.S. Geological 

Survey, Virginia, 2005. 

[6] S. Virolainen, D. Ibana, E. Paatero, Recovery of indium from indium tin oxide by solvent 

extraction, Hydrometallurgy, 107 (2011) 56–61. 

[7] J.C. Park, The recovery of indium metal from ITO-scrap using hydrothermal reaction in 

alkaline solution, B. Korean Chem. Soc., 32 (2011) 3796–3798. 

[8] S.J. Hsieh, C.C. Chen, W.C. Say, Process for recovery of indium from ITO scraps and 

metallurgic microstructures, Mater. Sci. Eng. B-Adv., 158 (2009) 82–87. 

[9] Y.S. Park, W. Sato, G. Grause, T. Kameda, T. Yoshioka, Recovery of indium from In2O3 

and liquid crystal display powder via a chloride volatilization process using polyvinyl 

chloride, Thermochim. Acta, 493 (2009) 105–108. 

[10] H. Hasegawa, I.M.M. Rahman, Y. Egawa, H. Sawai, Z.A. Begum, T. Maki, S. Mizutani, 

Recovery of indium from end-of-life liquid-crystal display panels using 

aminopolycarboxylate chelants with the aid of mechanochemical treatment, Microchem. 

J., 106 (2013) 289–294. 

[11] H. Hasegawa, I.M.M. Rahman, Y. Egawa, H. Sawai, Z.A. Begum, T. Maki, S. Mizutani, 

Chelant-induced reclamation of indium from the spent liquid crystal display panels with 

the aid of microwave irradiation, J. Hazard. Mater., 254–255 (2013) 10–17. 

[12] H.N. Kang, J.Y. Lee, J.Y. Kim, Recovery of indium from etching waste by solvent 

extraction and electrolytic refining, Hydrometallurgy, 110 (2011) 120–127. 



 

Chemical Engineering Journal, 277: 219–228, 2015 
The original publication is available at: http://dx.doi.org/10.1016/j.cej.2015.04.112  

  

 28 

[13] H.M. Liu, C.C. Wu, Y.H. Lin, C.K. Chiang, Recovery of indium from etching 

wastewater using supercritical carbon dioxide extraction, J. Hazard. Mater., 172 (2009) 

744–748. 

[14] H. Hasegawa, I.M.M. Rahman, Y. Umehara, H. Sawai, T. Maki, Y. Furusho, S. Mizutani, 

Selective recovery of indium from the etching waste solution of the flat-panel display 

fabrication process, Microchem. J., 110 (2013) 133–139. 

[15] X.H. Li, Y.J. Zhang, Q.L. Qin, J.A. Yang, Y.S. Wei, Indium recovery from zinc oxide 

flue dust by oxidative pressure leaching, T. Nonferr. Metal Soc., 20 (2010) S141–S145. 

[16] B.R. Conard, The role of hydrometallurgy in achieving sustainable development, 

Hydrometallurgy, 30 (1992) 1–28. 

[17] D.S. Flett, Solution purification, Hydrometallurgy, 30 (1992) 327–344. 

[18] H. Xu, C. Wei, C. Li, G. Fan, Z. Deng, M. Li, X. Li, Sulfuric acid leaching of zinc 

silicate ore under pressure, Hydrometallurgy, 105 (2010) 186–190. 

[19] S.M.J. Koleini, H. Mehrpouya, K. Saberyan, M. Abdolahi, Extraction of indium from 

zinc plant residues, Miner. Eng., 23 (2010) 51–53. 

[20] Y.J. Zhang, X.H. Li, L.P. Pan, X.Y. Liang, X.P. Li, Studies on the kinetics of zinc and 

indium extraction from indium-bearing zinc ferrite, Hydrometallurgy, 100 (2010) 172–

176. 

[21] M.A. Barakat, Recovery of lead, tin and indium from alloy wire scrap, Hydrometallurgy, 

49 (1998) 63–73. 

[22] F.M. Doyle, Teaching and learning environmental hydrometallurgy, Hydrometallurgy, 79 

(2005) 1–14. 

[23] R.S. Marinho, C.N. da Silva, J.C. Afonso, J.W.S.D. da Cunha, Recovery of platinum, tin 

and indium from spent catalysts in chloride medium using strong basic anion exchange 

resins, J. Hazard. Mater., 192 (2011) 1155–1160. 

[24] A.P. Paiva, Recovery of indium from aqueous solutions by solvent extraction, Separ. Sci. 

Technol., 36 (2001) 1395–1419. 

[25] J.-C. Park, The removal of tin from ITO-scrap via ozonization, B. Korean Chem. Soc., 30 

(2009) 3141–3142  

[26] J.-C. Park, The removal of tin from ITO-scrap using molten NaOH, B. Korean Chem. 

Soc., 29 (2008) 255–256. 



 

Chemical Engineering Journal, 277: 219–228, 2015 
The original publication is available at: http://dx.doi.org/10.1016/j.cej.2015.04.112  

  

 29 

[27] J.-C. Yoo, C.-D. Lee, J.-S. Yang, K. Baek, Extraction characteristics of heavy metals 

from marine sediments, Chem. Eng. J., 228 (2013) 688–699. 

[28] Z.A. Begum, I.M.M. Rahman, H. Sawai, Y. Tate, T. Maki, H. Hasegawa, Stability 

constants of Fe(III) and Cr(III) complexes with dl-2-(2-carboxymethyl)nitrilotriacetic 

acid (GLDA) and 3-hydroxy-2,2′-iminodisuccinic acid (HIDS) in aqueous solution, J. 

Chem. Eng. Data, 57 (2012) 2723–2732. 

[29] Z.A. Begum, I.M.M. Rahman, Y. Tate, Y. Egawa, T. Maki, H. Hasegawa, Formation and 

stability of binary complexes of divalent ecotoxic ions (Ni, Cu, Zn, Cd, Pb) with 

biodegradable aminopolycarboxylate chelants (dl-2-(2-carboxymethyl)nitrilotriacetic acid, 

GLDA, and 3-hydroxy-2,2′-iminodisuccinic acid, HIDS) in aqueous solutions, J. 

Solution Chem., 41 (2012) 1713–1728. 

[30] T.T. Lim, J.H. Tay, J.Y. Wang, Chelating-agent-enhanced heavy metal extraction from a 

contaminated acidic soil, J. Environ. Eng.-ASCE, 130 (2004) 59–66. 

[31] Y.-J. Tu, S.-C. Lo, C.-F. You, Selective and fast recovery of neodymium from seawater 

by magnetic iron oxide Fe3O4, Chem. Eng. J., 262 (2015) 966–972. 

[32] A. Barona, I. Aranguiz, A. Elıás, Metal associations in soils before and after EDTA 

extractive decontamination: implications for the effectiveness of further clean-up 

procedures, Environ. Pollut., 113 (2001) 79–85. 

[33] K. Fischer, H.P. Bipp, Removal of heavy metals from soil components and soils by 

natural chelating agents. Part ii. Soil extraction by sugar acids, Water Air Soil Poll., 138 

(2002) 271–288. 

[34] T. Egli, Biodegradation of Metal-Complexing Aminopolycarboxylic Acids, J. Biosci. 

Bioeng., 92 (2001) 89–97. 

[35] X. Liu, J.H. Fan, Y. Hao, L.M. Ma, The degradation of EDTA by the bimetallic Fe-

Cu/O2 system, Chem. Eng. J., 250 (2014) 354–365. 

[36] A. Vintiloiu, M. Boxriker, A. Lemmer, H. Oechsner, T. Jungbluth, E. Mathies, D. 

Ramhold, Effect of ethylenediaminetetraacetic acid (EDTA) on the bioavailability of 

trace elements during anaerobic digestion, Chem. Eng. J., 223 (2013) 436–441. 

[37] H. Hasegawa, I.M.M. Rahman, M. Nakano, Z.A. Begum, Y. Egawa, T. Maki, Y. Furusho, 

S. Mizutani, Recovery of toxic metal ions from washing effluent containing excess 

aminopolycarboxylate chelant in solution, Water Res., 45 (2011) 4844–4854. 



 

Chemical Engineering Journal, 277: 219–228, 2015 
The original publication is available at: http://dx.doi.org/10.1016/j.cej.2015.04.112  

  

 30 

[38] I.M.M. Rahman, Z.A. Begum, H. Sawai, M. Ogino, Y. Furusho, S. Mizutani, H. 

Hasegawa, Chelant-assisted depollution of metal-contaminated Fe-coated sands and 

subsequent recovery of the chemicals using solid-phase extraction systems, Water Air 

Soil Poll., 226 (2015) 37. 

[39] Z.A. Begum, I.M.M. Rahman, Y. Tate, H. Sawai, T. Maki, H. Hasegawa, Remediation of 

toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate 

chelants, Chemosphere, 87 (2012) 1161–1170. 

[40] Z.A. Begum, I.M.M. Rahman, H. Sawai, S. Mizutani, T. Maki, H. Hasegawa, Effect of 

extraction variables on the biodegradable chelant-assisted removal of toxic metals from 

artificially contaminated European reference soils, Water Air Soil Poll., 224 (2013) 1381. 

[41] A.E. Martell, R.M. Smith, R.J. Matekaitis, NIST Standard Reference Database 46: NIST 

Critically Selected Stabillity Constants of Metal Complexes Database (Version 8.0 For 

Windows), in, Texas A&M University, College Station, TX, 2004. 

 


	1.0 Introduction
	2.0 Experimental
	2.1 Materials
	2.2 Analytical techniques
	2.3 Collection and characterization of the LSD samples
	2.4 Chelant-assisted washing treatment of LSD
	2.5 Acid leaching treatment of LSD
	2.6 Hydroxide precipitation treatment of LSD

	3.0 Results and Discussion
	3.1 Chemical composition of LSD
	3.2 Chelant-assisted washing treatment of the LSD
	3.2.1 Effect of chelant concentration
	3.2.2 Effect of extraction time
	3.2.3 Effect of solution pH

	3.3 Acid leaching
	3.3.1 Effects of acid concentration
	3.3.2 Effects of a mixed acid solution
	3.3.3 Effects of leaching time

	3.4 Hydroxide precipitation
	3.5 Sequential separation scheme for selective indium separation from the LSD

	4.0 Conclusion

