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Abstract This is a continuation of Ikoma and Ishii (Ann Inst H Poincaré Anal Non
Linéaire 29:783-812, 2012) and we study the eigenvalue problem for fully nonlinear
elliptic operators, positively homogeneous of degree one, on finite intervals or balls.
In the multi-dimensional case, we consider only radial eigenpairs. Our eigenvalue
problem has a general first-order boundary condition which includes, as a special case,
the Dirichlet, Neumann and Robin boundary conditions. Given a nonnegative integer
n, we prove the existence and uniqueness, modulo multiplication of the eigenfunction
by a positive constant, of an eigenpair whose eigenfunction, as a radial function in the
multi-dimensional case, has exactly n zeroes. When an eigenfunction has n zeroes,
we call the corresponding eigenvalue of nth order. Furthermore, we establish results
concerning comparison of two eigenvalues, characterizations of nth order eigenvalues
via differential inequalities, the maximum principle for the boundary value problem in
connection with the principal eigenvalue, and existence of a solution having n zeroes,
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as aradial function in the multi-dimensional case, of the boundary value problem with
an inhomogeneous term.

Keywords Eigenvalue problem - Fully nonlinear equation - General boundary
conditions - Principal eigenvalues - Higher order eigenvalues
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1 Introduction
This paper is a continuation of [25] and deals with the eigenvalue problem

F(Du, Du,u,x) + pu =0 in 2, 1)
B(Du,u,x) =0 on d52. )

Here F: SN xRN xRx 2 > Rand B: RY xR x 92 — R are given functions,
SV denotes the set of all N x N real symmetric matrices, 2 C RY is an interval
(a, b) if N = 1 and, otherwise, an open ball Br with radius R > 0 centered at the
origin, and (i, 1) represents an unknown pair of a real number and a function on §2
in a Sobolev space, which will be specified later.

For a function u on £2 in a Sobolev space, if Eq. (1) holds in the almost everywhere
sense, then we call u a solution of (1).

We call a pair (i, u) of a constant and a function on §2 an eigenpair of (1)—(2) [resp.
of (1)) if (u, u) satisfies (1)—(2) [resp. (1)] and u # 0. When (u, u) is an eigenpair,
we call ¢ and u an eigenvalue and an eigenfunction, respectively. For an eigenpair
(w, u), if either u(x) > 0in 2 or u(x) < 0 in £2, then we call (u, u) [resp. u and
u] a principal eigenpair [resp. a principal eigenvalue and a principal eigenfunction].
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Eigenvalue problem for fully nonlinear second-order elliptic... 453

Furthermore, if u(x) > 0 [resp. u(x) < 0] in £2, then we call the eigenpair (u, u)
and the eigenfunction u positive [resp. negative]. When N > 2, an eigenpair (i, u) is
called a radial eigenpair if u is radially symmetric.

The eigenvalue problem for fully nonlinear PDE (1) has been paid much attention
since the work of P.-L. Lions [28]. For the recent developments, we refer to [2,3,6—
14,18,19,21,22,26,30-32]. See also [1,4,5,17,24] for the recent contributions and
overviews on the eigenvalue problem for linear elliptic operators.

In [25], under the Dirichlet boundary condition, that s, in the case where the function
B is given by B(p, u, x) = u, the authors have proved the existence of sequences
of eigenpairs [resp. radial eigenpairs] of (1)—(2) when N = 1 [resp. N > 2] and
that, modulo multiplication of eigenfunctions by positive constants, there is no other
eigenpairs [resp. radial eigenpairs] of (1)—(2) when N = 1 [resp. N > 2].

Our aim of this paper is to establish the existence of eigenpairs when N = 1 and
radial eigenpairs when N > 2 of the problem (1)—(2), and to provide basic properties
of eigenpairs. We thus generalize the results in [25] to cover the eigenvalue problem
(1) with general boundary conditions. The results due to Patrizi [30] concern the
eigenvalue problem for (1) with the Robin boundary condition, and are related closely
to our results in this paper.

Throughout this paper, as far as we are concerned with (1)—(2), we make the follow-
ing assumptions on F. The conditions (F1)—(F4) below are the same as those in [25]
except that the case of (N, A) = (1, oo) is excluded and an integrability requirement
on the function x — F(0, 0, 0, x) is added in (F2) below. See also Esteban, Felmer
and Quaas [21] for a formulation of eigenvalue problems similar to the one below.

(F1) The function F : SV x RY x R x £ — R is a Carathéodory function, i.e., the
function x +— F(M, p, u, x) is measurable for any (M, p,u) € SN x RN+I
and the function (M, p, u) — F(M, p, u, x) is continuous for a.e. x € 2.

(F2) There exist constants 0 < A < A < 00, g € [1, oo] and functions 8, y €
L9(£2) such that

F(My, p1,ui,x) — F(Ma, pa2,uz,x) < PT(My — My) + B(x)|p1 — pa
+y (xX)|uy — uz|
for all (My, p1,uy), (Ma, pa,u2) € SN x RV*! and a.e. x € £2. Furthermore,
the function x — F(0, 0,0, x) belongs to L7(£2). For the definition of Pt,
see below.

(F3) FeM,tp,tu,x) =tF(M, p,u,x) forallt > 0, all (M, p,u) € SV x RN+
and a.e. x € £2.

Here and in what follows P* denote the Pucci operators defined as the functions given
by

PT(M) = sup{tr (AM) : A € SN oAy <A< Aly},
and

P~ (M) =inf{tr (AM) : Ae SV, Ay < A < Aly),
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454 N. Ikoma, H. Ishii

where Iy denotes the N x N identity matrix and the relation, X <Y, is the standard
order relation between X, Y € S¥. For instance, if N = 1, then Pt (m) = Am for
m < 0and PY(m) = Am form > 0.

Condition (F3) represents a characteristic of our eigenvalue problem, where every
eigenpair (u, u) is supposed to have the positive homogeneity property, thatis, (i, fu)
is also an eigenpair for any ¢ > 0. This is the fundamental property in our eigenvalue
problem, and a natural requirement on the function B in (2) is then that B(p, u, x)
should be positively homogeneous of degree one in the variables (p, «). Furthermore,
remark that (F3) implies (0,0, 0, x) = 0 a.e. in £2.

Instead of using the equation B(Du, u,x) = 0, we actually use the membership
relation (differential inclusions) to describe the boundary condition of our eigenvalue
problem, which is a more suitable treatment of the boundary condition having the
positive homegeneity.

Before introducing this relation, we make the following observation in the case when
N = 1.Letu € C'([a, b])and consider the situation where u (x) > Oforallx € (a, c)
and some ¢ € (a, b), and (u(a), u’(a)) # (0,0) (Fig. 1). We have two cases: (1)
u(a) > 0,or (2) u(a) = 0 and u’(a) > 0. The set of points (&, n) := (—u'(a), u(a))
in R?, where u ranges over all such functions u, is the half-plane (Fig. 2) given by

Fig. 1 Three typical behaviors near x = a

Fig. 2 The half-plane H T
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Fig. 3 Half-line [(0) l(@)

H+

0 §

HY :=R x (0, 00) U (=00, 0) x {0}.

We set
H :=—HT =R x (—00, 0) U (0, 00) x {0},

and note that H ™ is the set of points (—u'(a), u(a)), where u ranges over all u €
Cl([a, b)) such that (u(a), u'(a)) # (0,0)and u(x) < Oin (a, c) forsomec € (a, b).
Note also that the punctured plane R?\{(0, 0)} is the disjoint union of the half-planes
H™ and H™. We observe in view of the polar coordinates in the plane that any open
half-line / in H™ with vertex at the origin can be parametrized by the angle 6 € (0, 7].
That is, such an open half-line / can be described by a constant 8 € (0, ] as

[ ={(rcosh, rsinf) : r > 0},

which we denote by /(#) (Fig. 3).
Similarly, any open half-line with vertex at the origin in H ™~ is parametrized by
6 € (7, 2] and described as

[(0) :={(rcos@, rsinf) : r > 0}.

Obviously, the closure of the half-line /(6) in the plane R? is given by

[(0) = {(rcosf, rsin€) : r >0} =1(0) U{(0, 0)}.

‘We note that
Ht = U 16) and H™ = U 1),

0e(0, ] Oe(m,2m]

and that for each (£, 1) € R2\{(0,0)}, the relation (&,7n) € [(6) determines 6 €
(0, 27] uniquely. We introduce a function ® : (&, ) — 6, Rz\{(O, 0)} — (0, 2m]
by

cos—! —£ for (§,n) € HT,
O, 7 = Ve - (3)
7 +cosT! —=5— =27 —cos™! —= for (§,7) € H™.

Ve 2412
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The relation, (&, n) € [(0), can be stated as 6 = @ (&, n). It is easily seen that the
function @ is continuous on R?\[0, o) x {0}.

Next, let u € C!([a, b]) be a function which satisfies (u(b), u’ (b)) # (0, 0) and
observe that

u(x) > 0 forall x € (c, b) and some ¢ € (a, b) if and only if (' (b), u(b)) € HT,
and
u(x) <0 forallx € (c, b) and some ¢ € (a, b) if and only if (u'(b), u(b)) € H™.

In view of the direction of outer normal of [a, b] ata oratb, foranyu € C L(la, b))
we set

B (u,a) := (—u'(a),u(a)) €e R> and BV (u,b):= '), u®)) € R>.

In the case of N = 1 we replace the boundary condition (2) by the condition

B (u,a) €l®®) and BT (u,b) €l(®"),

with given constants #~, % e (0, 2]. This boundary condition for u € Cl(a, b))
requires that it should satisfy (u(a), u’(a)) # (0,0) and (u(b), u’(b)) # (0,0).
Later we shall see that if (u, u) satisfies (1) and either (u'(a), u(a)) = (0,0) or
else (u'(b), u(b)) = (0, 0), then u = 0 in [a, b] holds. See Proposition 1. Hence, we
may require solutions of (1) to satisfy (u’(x), u(x)) # (0, 0) at x = a, b without loss
of generality. Furthermore, the boundary condition has the positive homogeneity prop-
erty: if B~ (u,a) € [(07) [resp., BY (u,b) € [(0) ], then B~ (tu,a) € [(§™) [resp.,
Bt (tu,b) € 1(81)] for all t > 0. We write B(u,a,b) = (B~ (u,a), BT (u, b))
and L(O~,0%) = 1(67) x I(8T), so that the boundary condition above is stated
as B(u,a,b) € L(6—,07). In the one-dimensional case, our eigenvalue problem is
stated as

F' v ,u,x)+pu =0 in (a, b), 4)
B(u,a,b) € L(O,07). 3)

The boundary condition (5) prescribes the sign of eigenfunctions near the boundary
points a and b, and it may be called the unilateral Robin boundary condition.

One of our main interest is the study of sign changing eigenfunctions, and we call
an eigenpair (i, u) € R x W21(a, b) [resp. eigenvalue p and eigenfunction u] of (4)
and (5) of nth order if u has exactly n zeroes in the interval (a, b).

Finally, we remark that a general (linear) Robin boundary condition for u €
Cl(a, b)) satisfying (u(x), u’(x)) # (0, 0), for instance at a, is stated as

B (u,a) €l(@®)UIlB +m) forsomed € (0, x].

In the case when N > 2, we are concerned only with radial eigenpairs of (1) on
the ball Bg. We may identify any radial function u in Br with a function v in [0, R)
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such that u(x) = v(|x|) for a.e. x € Bg and we employ the convention to write
u(x) = u(|x|). Similarly to the case N = 1, in place of the boundary condition (2),
we use the condition BT (u, R) € [(8), with a given constant § € (0, 27].

Furthermore, when N > 2, we assume throughout that F is radially symmetric as
stated below. Henceforth x ® x denotes the matrix in SV with the (i, j) entry given
by x;x; for x € RV,

(F4) The function F is radially symmetric, that is, for any (m, £, g, u) € R* and a.e.
r € (0, R), the function

o~ Fmo@w+ LIy —o Q@ w),quw, u, rw)

is constant on the unit sphere SV ! := {w e R : |o| = 1.

We introduce the function F : R3 x (0, R) > R by
F@m, p,u,r) = Fmwy @ wy~+ (p/r)(In — wo Q@ wy), pwo, U, rwg),

where wy is any fixed unit vector in S¥ =1, We remark ([21,25]) that if u(x) = v(|x|)
andv € WI%)’C] (0, R), then for a.e. r € (0, R) and for all w € SN~!, (F4) implies

F(D*u(rw), Du(ro), u(ro), ro) = FQ" ), v ), v(r), r). (6)

We warn the reader that the definition of 7 (also P* which will appear later) is not
the same as in [25].

Next,for N > 2and g € [1, oo], let Wrz’q (Bg) denote the space of those functions
in W24 (Bg) which are radially symmetric. This space is also denoted by W,>%(0, R)
when all functions u € Wrz’q(BR) are regarded as functions on (0, R). Similarly,
we write LY (0, R) for the space of all radial functions in L9 (Bg). According to the
Sobolev embedding theorem, if ¢ > N /2, then we may regard u € Wr2’q(0, R) asa
function in C([0, R]) N C! ((0, R]). Thus, according to (6), the eigenvalue problem
in multi-dimensional case may be stated for u € Wr2 900, R) as

F" u',u,r) +pu =0 ae.in (0, R), @
Bt (u, R) €1(0). ®)

Any radial eigenpair (u, u) of (1), when u is regarded as a function on [0, R], is
simply an eigenpair of (7). We call an eigenpair (u, u) [resp. an eigenvalue p and an
eigenfunction u] of (7) and (8) of nth order if u has exactly n zeroes in [0, R) as a
function on [0, R]. We note that a radial eigenpair (i, u) is a principal eigenpair if
and only if it is of zeroth order as an eigenpair of (7)-(8).

The main contributions in this paper are described briefly as follows.

We show the existence of nth order eigenpairs of (4)-(5) and of (7)-(8) for any
n € N U {0}, provided the triplet (n, 0, 6T) is admissible when N = 1 [see for the
admissibility the second paragraph after Proposition 1 below]. This is done under the
same hypotheses on F as those in [25], where eigenvalue problems with the Dirichlet
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boundary condition are treated, except for the case (N, A) = (1, oo). Furthermore,
our requirement on the exponent g from (F2) seems relatively sharp, as remarked
in [25], in the viewpoint of the existence of eigenfunctions or solutions of (1). For
comparison, we refer to [15,16,20,23,27,29,32].

In this paper, to establish the existence of eigenpairs, we employ the shooting
method in ODE theory, while the so-called inverse power method is adapted in [25].

We establish general comparison theorems for nth order eigenvalues with possibly
different n’s and angles (6, ™) (or 6 in the case of N > 2).

It may be a general principle (cf. Berestycki, Nirenberg and Varadhan [5] and Lions
[28]) that the solvability of the inhomogeneous PDE

F(D*u, Du,u,x) 4+ pu+ f(x) =0 in £,

where f € L7(§2) is a given nonnegative function, with the boundary condition
like (5) or (8) is closely related to the principal eigenvalues. We establish general
theorems in this direction that relate the solvability of boundary value problems for
the inhomogeneous PDE

F(D?*u, Du,u, x) + pu +sgn(u) f(x) =0 in £ 9)

and the nth order eigenvalue for the corresponding homogeneous PDE.

It is also a general understanding (cf. [5,28]) that the principal eigenvalues are
thresholds to the validity of the maximum principle for PDE (1). See also [1,3,7-
10,12,13,24,26,31,32]. Theorems 16 and 34 below state roughly that the principal
eigenvalues have this role of threshold for our general boundary value problems. See
also the comments after Theorem 16.

Two other characterizations of nth order eigenvalues are formulated and established
via the existence of nth order solutions (i.e. solutions having n zeroes) of differential
inequalities [see (16), (17), (24) and (25)].

This paper is organized as follows. We present the main results in the one-
dimensional and radial cases in Sects. 2 and 3, respectively. Sections 4 and 6 provide
preliminary observations, including both the strong and weak maximum principles,
needed for the proofs of the mains results in the one-dimensional and radial cases,
respectively. The proofs of the main results are provided in Sects. 5 and 7. In Sect. 8,
we give two examples that have many first order solutions of (9).

Notation We denote by Ny the set of all nonnegative integers, that is, Ng = NU{0}.
Given a function f on £2 which may not be continuous, we write f = 0 in §2
for writing f = 0 a.e. in £2, f > 0 in £ for writing f > 0 a.e. in £2, etc. We
regard u € W24 (a, b), with g €[1, 0], as a C!-function on [a, b] in view of the
Sobolev embedding theorem. We use the notation F[u] to denote the function x +—
Fu”(x), u'(x), u(x), x). The sign function is denoted by sgn, thatis, sgn : R — Ris
the function defined by sgn(r) = 1 forr > 0, sgn(0) = O and sgn(r) = —1 forr < 0.

2 Main results in the one-dimensional case

In this section we are concerned with the one-dimensional case and present the main
results concerning the eigenvalue problem (4)-(5). It is worth emphasizing at this point
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that the boundary condition (5) has the positive homogeneity of degree one in the sense
thatifu € Cl([a, b]) satisfies (5), then so does the function 7u for any ¢ > 0. A similar
remark applies to the boundary condition (8). The proofs of the results in this section
are given in Sect. 5.

We begin with a few basic observations on solutions of (4).

Proposition 1 Assume that (F1) and (F2) hold and that the function F (0, 0,0, x) =0
in (a, b). Let (i, ¢) € R x W21(a, b) be such that u is a solution of (4), with the
given u, and ¢(x) £ 0 on [a, b). Then

(1) (p(x), ¢'(x)) # (0,0) forall x € [a, b].

(2) The function ¢ has a finite number of zeroes in [a, b].

(3) The function ¢ changes sign at every zeroes of ¢ in (a, b).

(4) Let n be the number of zeroes of ¢ in (a, b) andlet 6=, 6% € (0, 27] be such
that B~ (¢, a) € 1(07) and BY(p,b) € 1(0F). If n is an even integer, then we
have either 0=, 61 € (0, w] or 6=, 61 € (m, 21]. Otherwise, we have either
0=, 0T —m e, mlord~ —m, 67 (0, 7].

We introduce an “indicator” function i : (0, 2w ] — {0, 1} by setting i(¢r) = 0 if
t € (0, m] and i(t) = 1 otherwise.

Let (n,0~,0%) € Ng x (0, 27]>. We say that (n, 0, 07) is admissible if either
nisevenandi(#~) =i(@T) ornisoddandi(07) Zi(B™T).

One of our main results for N = 1 is stated as follows.

Theorem 2 Ler (n,0~,0%) € Ny x (0, 2712 Assume that (F1)—(F3) hold and
(n,07,0%) is admissible. (1) Fori = 1,2, let (u;, ¢;) € R x W>(a, b) be an
nth order eigenpair of (4)-(5). Then wy = po and, if, in addition, ||¢1||1%@,p =
o2l a,b), then 91 = @2 on [a, b]. (2) There exists an nth order eigenpair
(s @) € R x W24 (a, b) of (4)-(5).

It follows from the theorem above that an nth order eigenvalue of (4)-(5) exists and
is unique. Henceforth, we use the notation ©" (67, 0%, a,b) to denote a unique nth
order eigenvalue of (4)-(5) for any admissible (n,6~,0%) € Ny x (0, 27]3.

According to Proposition 1 and Theorem 2, the admissibility of (n,6~,0%) €
No x (0, 27r]? is a necessary and sufficient condition for the existence of nth order
eigenpairs of (4)—(5).

If we replace the unilateral boundary condition (5) by a bilateral boundary condition
[see (10) below], then the notion of admissibility does not make sense. Indeed, let
0, 01+ € (0, r]and 0, , 9; € (m, 2], and consider the boundary condition

B (u,a) € 1(6;)UL®B;) and B*(u,b) € 1(6;) UL6;). (10)

It is easily seen that for any n € Ny, either (n, 6", 91+ )or (n,0,, 92+ ) is admissible.
Similarly, either (n, 6, , 91+ )or(n,0,, 92+ ) is admissible.

Note that the boundary condition (10) in the case where (0, 6, ) = (mw, 2m)
[resp. the case where (6’;r , 9; ) = (;r, 2m)] corresponds to the Dirichlet condition at
a [resp. at b], (10) in the case where (0, , 0, ) = (7/2, 37/2) [resp. the case where
(91+, 92+ ) = (;t/2, 3w /2)] corresponds to the Neumann condition at a [resp. at b],
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460 N. Ikoma, H. Ishii

and (10) in the case where 6, € (0, 7) and 6, = 7 + 6, corresponds to [resp. the
case where 01+ € (0, ) and 92+ =+ 91+ ] a general linear Robin condition at a
[resp. at b].

The following corollary generalizes [25, Theorem 1.1] to the general first-order
boundary condition.

Corollary 3 Assume (F1)~(F3) hold. Let n € Ny, 6,6, € (0, 7] and 05,6, €
(, 27). Then there exist nth order eigenpairs {(u™, 9*)} C R x W24 (a, b) of (4)
and (10) and increasing sequences {xki}Z:é C la, b], with xSE = a and xrjf_H = b,
such that

(1) ||goi||Loc(a’b) =1 and :I:(—l)"’l(pjE > 0in (xii_l, xl.i) forall 1 <i<n+1.
Q) If (u,9) € R x W>4(a, b) is an nth order eigenpair of (4) and (10) with
@l La.by = 1, then either (i, 9) = (u*, o) or else (1, ) = (u™, ¢7).

An important remark complementing Corollary 3 is that, due to Proposition 1, every
eigenfunction of (4) and (10) has at most a finite number of zeroes.

To state a general comparison theorem of eigenvalues, we introduce a partial
order relation < on the set of all admissible (n,6) € Ny x (0, 2712 Let o) :=
(n1,601), az := (n2,602) € Ny x (0, 2771 be admissible. We write &; < v if there
exist k=, kT € Ny having the properties (11)—(15) below:

n+k” +kt =ny, (11)
i(0))+k~ =i(0;) (mod?2), (12)
i0) +k"=i(0f) (mod?2), (13)
6] <6, if k= =0, (14)
o <6 if kT =0, (15)

where 6; = (0;,6;") € (0, 2] x (0, 2] for i = 1,2.

As above, let a1 = (n1,01), ap := (n2,6r) € Ny x (0, 27r]2 be admissible. It
is easily checked that, in the case when n; = nj, we have o] < «p if and only
ifi(0;) = i(6y), i) = i), 6; < 6; and 6} < 95. Note moreover that
when ny = ny, we have i(6;) = i(6, ) and i(91+) = i(6,") if and only if either
i(0;)=1i(0y) or i(6;") =i(6;). Also, whenn| + 1 = np, we have o] < o, if and
only if either i(6;) = i(6,) and 6; <65 or i(6;") =i(0)) and 6;" < 6;". When
n1 + 2 = nyp, we have a1 < ay if and only if one of the following three conditions
holds: (1) i(8;) = i(6y) and 6, <6, , (2)i(6;") =i(®,) and ;" < 6, and (3)
i(0;) # i(6,). This last condition is equivalent to the condition, i (91+) # i (92+ ).
Furthermore, when n; 4+ 3 < njy, we have always o] < 3.

Theorem 4 Assume that (F1)—(F3) hold. Let (n1,60), (na,62) € Ny x (0, 27]% be
admissible. If (n1,01) < (n2, 6), then u"' (01, a,b) < u"? (s, a, b).

We consider the differential inequalities

(Flul + pu)u <0 in (a, b), (16)
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and
(Flul + pw)u > 0 in (a, b), 17

and we give characterizations of the nth order eigenvalues based on solutions (x, u)
of (16) or (17).

Let (u,u) € R x W2(a, b). We call such a pair (i, 1) a solution of (16) [resp.
(17)] and (5) if it satisfies (16) [resp. (17)] and (5), and call it an nth order solution of
(16) [resp. (17)] and (5) if u has exactly n zeroes in (a, b) and changes sign at each
zero of u in (a, b).

We denote by E~(n,0~,07) [resp. E*(n,0~,07)]the set of 1 € R such that,
for some u € W2!(a, b), the pair (u, u) is an nth order solution of (16) [resp. (17)]
and (5). We set

I_Tff(n,@) = U {E” (a) : o admissible, a < (n,0)},
E+(n,9) = U {ET(a) : « admissible, & > (n, 0)).

Theorem 5 Under the hypotheses (F1)—~(F3), if (n, 8) € Ng x (0, 271? is admissible,
then

W @, a,b) =max E~(n,0) =max E~(n,0) = min E*(n,0) = min ET (n, 0).

Given u € R, f € LY(a, b) and 6 € (0, 27]?, we consider the solvability of the
boundary value problem for the inhomogeneous ODE

Flul + pu +sgn()f =0 in (a,b) and B(u,a,b) € L(H).  (18)

We say that u is an nth order solution of (18) if u satisfies (18), has exactly n zeroes
in (a, b) and changes sign at each zero. Regarding the solvability of (18), we have the
following result.

Theorem 6 Assume that (F1)—(F3) hold. Let f € L'(a,b), n € Ny, 6 € (0, 271>,
and n € R. Assume that f > 0 and f # 0 in (a, b) and (n,0) is admissible.
() If w < w8, a,b), then there exists an nth order solution of (18). 2) If u <
MO (8, a, b), then the zeroth order solution of (18) is unique. (3) If u > u" (@, a, b),
then there exists no nth order solution of (18).

The uniqueness of first order solutions of (18) does not hold in general as is shown

in Sect. 8.

3 Main results in the radial case

In this section, we assume throughout that N > 2 and £2 = Bg and we deal with the
ODE (7).

As in [25], under the assumption that A < oo, we set A, = A/A and g, =
N/(A«N +1—A,). Note that 0 < A, <l and g, € [1, N).
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In the radial case, we need to specify the integrability of functions given in (F2).

(F5) For the exponent g from (F2), the inequality ¢ > max{N/2, g} holds and
BeLN(Bg) ifg<N.

Theorem 7 Assume that (F1)—(F5) hold. Let (n, 8) € No x (0, 2x]. (1) Fori =1, 2,
let (i, ¢i) € R x Wrz’q(O, R) be an nth order eigenpair of (7)-(8). Then w1 = wo
and if, in addition, |1 |L=0.r) = ll¢2llL>.r), then 91 = @2 on [0, R]. (2) There
exists an nth order eigenpair (i, ¢) € R x Wr2’q(0, R) of (7)-(8).

In view of the unique existence of an nth order eigenvalue of (7)-(8) due to the
theorem above, we may denote by ! (6, R) the nth order eigenvalue of (7) and (8).
Let (01, 62) € (0, m]x (;r, 2], and we introduce a bilateral version of the boundary
condition (8) as follows.
Bt (u, R) € 1(6)) UL(6). (19)

Corollary 8 Assume that (F1)—(F5) hold. Let (n, 61, 62) € Ng x (0, 7] x (7, 27].
Then there exist nth order eigenpairs {(u™, )} C R x Wrz’q(O, R) of (7) and (19),
and increasing sequences {rijE }:7:01 C [0, R], with r(;—L =0and r,i | = R, such that

(D) leEllzeo.r) = 1, £*(0) > 0 and £(—1)"'o* > 0in (ri_1, r;) for every
I1<i<n+L

@ If (n,9) € R x Wrz’q(O, R) is an nth order eigenpair of (7)—(19) with
l@llL=.r) = 1, then either (n, 9) = (u*, 9T) or (1, 9) = (L™, ¢7).

We state the following theorem which is a counterpart of Theorem 4 in the one-
dimensional case.

For a1 = (n1, 61), ap = (n, 6») € Ng x [0, 27), we write a; < «y if one of the
following four conditions holds.

ny >ny+2, (20)
ny=ny+1, i0) #i), (21)
np=n1+1, i(61)=i), 6 <6, (22)
ny =ny, i(0) =i(6), 6 <6 (23)

Theorem 9 Assume that (F1)-(F5) hold. Let (ny,01), (ny,62) € No x (0, 27]. If
(n1,61) < (n2,62), then ui' (01, R) < i (62, R).

Next, we proceed to give characterizations by nth order solutions to the following
inequalities as in Sect. 2:

(Flu] + pu)u <0 in Bg, (24)
(Flu] 4+ puw)u > 0 in Bg. (25)

Here we call u € Wrz’q(O, R) an nth order solution of (24) [resp. (25)] and (8) if u
satisfies (24) [resp. (25)] and (8), has exactly n zeroes in (0, R) and changes sign at
each zero of it in (0, R).
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For any a = (n,6) € Ny x (0, 2], we denote by E () [resp. Er+ (a)] the set of
all 4 € R for which there corresponds a function u € Wrz’q(O, R) such that (u, u) is
an nth order solution of (24) [resp. (25)] and (8). We set

E; (@) == J{E @ : @ e No x (0, 27],

[=3]
IA
2

Ef (@) = J{E @ : @ e No x (0, 27],

=3
A%
2

Theorem 10 Under the hypotheses (F1)—(F5), for every o = (n,60) € Ny x (0, 2r]
we have

“r (@, R) = max E; () = max Er_(a) = min E?‘(a) = min Er"'(a).
Finally, we consider the solvability of the boundary value problem
Flul+ pu+sgn(u)f =0 in Bg and BT (u, R) €l(H), (26)

where 6 € (0, 27], x € Rand f € LY(0, R). A function u € W%(0, R) is called
an nth order solution of (26) if it satisfies (26), has exactly n zeroes in (0, R) and
changes sign at every zeroes of it in (0, R).

Theorem 11 Assume that (F1)—(F5) hold. Let (n,0) € Nog x (0, 2], © € R and
f e L0, R). Assume that f=0and f £0in (0, R). (1) Ifpu < ul (9, R), then
there exists an nth order solution of (26). 2)If u < u?(@, R), then the zeroth order
solution of (26) is unique. (3) If u > pl' (0, R), then there exists no nth order solution

of (26).

When n = 1, the nth order solution of (26) in the claim (1) of the theorem above
is not unique in general. An example that shows this failure of uniqueness is given in
Sect. 8.

4 Preliminary observations and results in the one-dimensional case

This section deals with the case N = 1 and discusses some basic observations and
results concerning (4).

4.1 Two basic symmetries

We state two structural symmetries of eigenvalue problem (4)—(5) under reflection,
which will be useful for simplification of our presentation.

(S1) Let (n,u) e Rx W2l(a,b), F : R3 x (a, b) - Rand (6~,67) € (0, 271>
Set F~(m, p,r,x) := —F(—m,—p, —r,x) for (m, p,r,x) € R3 x (a, b)
and u~(x) := —u(x) for x € [a, b, and select (6, ,0;") € (0, 27]* so that
0, =0~ —m, 91+ =0t —x (mod 27). If (i, u) satisfies (4)—(5), then
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Flu]l]+puu" =0 ae.in (a, b),
B (" ,a)el(®) and Btu=,b) e 1(01+),

and the converse is also true.
This is a simple observation and is easily checked. Notice that the dualities (F 7)™ =
F and (™)~ = u hold. We note moreover that if F satisfies (F1)—(F3), then so does
F~.
(S2) Let (n,u) e Rx W2l(a,b), F : R3 x (a, b) > Rand (6~,67) € (0, 271>
Set F~(m, p,r,x) := F(m,—p,r, —x) for (m, p,r,x) € R3 x (—b, —a) and
u (x) := u(—x) forx € [—b, —a]. If (u, u) satisfies (4)—(5), then

Flul+upuu =0 ae.in (—b, —a),
B~ ,—=b) €l(®") and BT (", —a) €l(67),

and the converse is also true.

The proof of this property is straightforward by observing that the dualities
(F)" = F and (u”)” = u hold and that B~ (u", —b) = (—(u") (=b), u"(=b)) =
(u'(b), u(b)) = BT (u, b) and B (u”, —a) = (") (—a), u"(—a)) = (—u'(a), u(a))
= B~ (u, a). Furthermore, we remark that conditions (F1)—(F3) hold for F".

4.2 Proof of Proposition 1

We give here a proof of Proposition 1, for which we need a result from [25] [see also

[21]].
Lemma 12 Let F satisfy (F1) and (F2). Then there exists a Carathéodry function
gr: R3 x (a, b) — R such that for a.e. x € (a, b) and any (m, p,u,d) € R* m =
gr(p,u,d, x) holds if and only if F(m, p, u, x) = d. Moreover, the estimates
1gr(0,0,0, )| < A~ [F0](x)],
1gF(p1,ut, di, %) — gr(pa, w2, do, )| < A7 (B p1 = pal + ¥ (lur — o]
+|di — dal)

forall (p,u,d), (p1,ui,dr), (p2, uz, dr) € R? and a.e. x € (a, b).

This lemma is a consequence of [25, Lemma 2.1], except that the function gr is a
Carathéodry function on R3 x (a, b). Arguing as in [21,25], foreachm, p, u,d € R*,
we find that for any (m, p, u) € R3,

{(xe(@ b):m<gr(p,u,d,x)}={x€@,b): Fim, p,u,x) <dj},
which says that the function x — gr(p, u, d, x) is measurable for every (p, u,d) €

IR3. The continuity of gr(m, p, u, x) in (p, u, d) follows from the second inequality
in Lemma 12.
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The lemma above allows us to rewrite (4) in the normal form
u"(x)=gr@', u, —pu,x) in(a, b). (27)

This observation and the general theory of ODE assure that, given ¢ € [a, b] and
(p,q) € R2, under the assumptions that (F1) and (F2) hold, the initial value problem

Flul=0 in (a, b) and (u(c),u'(c)) = (p,q) (28)

has a unique solution u € W24 (a, b).

Letc, d € [a, b]besuchthata < ¢ < d < b. Under the assumptions (F1) and (F2)
hold, given a solution u € W2l(c, d) of (4), by solving the initial value problem (28)
in [a, b], with (p, q) = (u(c), u’(c)), we can always extend the domain of definition
of u to [a, b] as a solution of (4). In what follows, under the assumptions of (F1)
and (F2), we may and do regard a solution u € W2l(c,d) of (4) in (¢, d), with
a <c¢ <d <b,as a function in W2!(a, b) that is a solution of (4) in (a, b).

Proof of Proposition 1 By assumption, we have F[0] = O in (a, b) and, hence,
u(x) = 0 is a solution of (4). We see by the uniqueness of solutions of the initial
value problem (28) that if (¢(c), ¢'(¢)) = (0, 0) for some ¢ € [a, b], then p(x) =0
in [a, b]. Claim (1) follows readily from this observation.

To see that every zero of the function ¢ is isolated, we assume that ¢(c) = 0 at
some ¢ € [a, b], which implies that ¢’(c) # 0, and observe that ¢ is increasing or
decreasing near the point c. All the zeroes of ¢ are thus isolated points in [a, b] and
hence the number of the zeroes is finite. That is, claim (2) is valid.

Let ¢ € (a, b) be a zero of ¢. Then the function g is increasing or decreasing near
the point ¢, and claim (3) follows.

As a general remark, we note here that 9~, 07 are uniquely determined in (0, 27]
since B~ (g, a) = (—¢'(a), p(a)) # (0,0) and B (¢, b) = (¢'(b), ¢ (b)) # (0, 0).

In the case where n = 0, we have either ¢(x) > 0 in (a, b) or ¢(x) < Oin (a, b).
If ¢(x) > 0in (a, b), then we have either p(a) > 0 or else p(a) = 0 and ¢’'(a) > 0,
which implies that 6~ € (0, x]. Similarly, if ¢(x) > 01in (a, b), then we have either
@(b) > 0 or else (b) = 0 and ¢'(b) < 0, which ensures that 6+ € (0, 7]. In a
similar way, we may conclude that if ¢(x) < 0 in (a, b), then8~, % € (7, 2x].

Now we assume thatn > 1. Let {x;}7_, be the increasing sequence of the zeroes of
@ in (a, b). The argument above for n = 0, applied to the intervals (a, x1) and (x,, b),
shows that if ¢(x) > 0 1in (a, x1), then 6~ € (0, 7], if ¢(x) < 0 in (a, x1), then
0~ e (m, 27],if o(x) > 01in (x,, b), then 8 € (0, 7], and if (x) < O1in (x,, b),
then 61 e (m, 27]. By induction, we can show that if n is an even integer, then the
function ¢ has the same sign on the intervals (a, x1) and (x,, b), and if n is odd, then
¢ has opposite signs on (a, x1) and (x,,, b). Thus, ifnisevenand ¢(x) > Oin (a, x1),
then 6, 0% € (0, ], if nis even and ¢(x) < Oin (a, x1), then 68—, 01 € (m, 27],
if nis odd and ¢(x) > 01in (a, x1), then 0~ € (0, 7] and 6T € (7, 27}, and if n is
odd and ¢(x) < 0in (a, x1), then 6~ € (7, 2] and F € (0, ]. Thus claim (4) is
valid. O
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4.3 The strong maximum principle

We now state the strong maximum principle for F. For a proof, see [25, Theorem 2.6].

Proposition 13 Assume that (F1) and (F2) hold. Let u, v € W (a, b) satisfy
Flu]l > F[v] and u <vin (a, b).

Then eitheru = v in[a, blorelseu < vin(a, b), max{(v—u)(a), (v—u)'(a)} >0
and max{(v — u)(b), —(v — u)' (b)} > 0.

The following lemma is a consequence of the proposition above, which is useful in
the arguments below.

Lemma 14 Assume that (F1)-(F2) hold. Let u, v € W>'(a,b) and 67, 6} €
0, 2] and 6, Q,f € (0, w]. Assume that F[v] < Flu] in (a, b) and

B(u,a,b) € L, ,0) and B(v,a,b) e L(@U_,OJ').

Furthermore, assume that v > 0 in (a, b) and sup, pyu/v =1 and that 6, > 0,
and 0,F > 0,7 Then we have u = v on [a, b].

In the statement above, L (6, , ;") denotes the closure of the set L6 ,6,)in R*.
We remark that L(6,, 6,7) = 1(6;) x 1(6:") = ({(0, 0)}UL(6,)) x ({(0, 0)}UL(6;})).

Proof We argue by contradiction and suppose that # # v. By assumption, we have
sup(, pyu/v = 1 and thus u < v on [a, b]. By the strong maximum principle,
Proposition 13, we see that

v(x) > u(x) forall x € (a, b),
max{v(a) — u(a), v'(a) —u'(a)} > 0, (29)
max{v(b) — u(b), u'(b) — v'(b)} > 0.

From this we observe that if v(a) = u(a), then —v'(a) < —u'(a) and thatif v(b) =
u(b), then v'(b) < u’(b). Hence, if v(a) = u(a) > 0, then we obtain

—v'(a) 1 —u'(a) o-

Vv (@)? + v(a)? - Vu'(@)? + u(a)? T

[see also Fig. 4], which is a contradiction. Similarly, if v(b) = u(b) > 0, we obtain
0,7 > 6,7, a contradiction.

Note by (29) that u(x)/v(x) < 1 forall x € (a, b).If v(a) > u(a) and v(b) >
u(b), then we have v(x) > u(x) forall x € [a, b]. This shows that SUP(4.p) ufv <1,
which is a contradiction.

What remains is the case where either v(a) = u(a) = 0 or v(b) = u(b) = 0,
which can be divided into three subcases: (1) v(a) = u(a) = 0 and v(b) = u(b) =0,

- — ape—!
0, = cos
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Fig. 4 Comparison of angles n
(—v'(a), v(a)) (—v'(a), u(a))
0,
0.
O §

2) v(a) = u(a) = 0 and v(b) > u(b) or (3) v(a) > u(a) and v(b) = u(b) = 0.
If v(a) = u(a) = 0, then we have v'(a) > u'(a), 8, = 7 and V(a) > 0, a
consequence of the inclusion B~ (v, a) € [(;r) , and moreover, by 1’Hopital’s rule,
u(x) u'(a)
im —=—><
x—=a+0v(x)  V'(a)

Similarly, if v(b) = u(b) = 0, then

u(x)

1m <
x—b—0 v(X)

It is now easy to see in each subcases (1)—(3) that

u(x) . oux)
i <1 and lim
x—a+0 v(x) x—b—0 v(X)

<

’

which yields the inequality, sup, ;) u/v < 1, a contradiction, and concludes that
u=v on [a, b]. O

4.4 The maximum and comparison principles

In what follows we denote by F* the function onR? x[a, b] givenby F*(m, p, r, x) =
PT(m) + B(x)|p| + y(x)|r|, where B, y € L'(a, b) are from (F2). Remark that F*
satisfies (F1)—(F3).

Theorem 15 Assume that (F1) and (F2) hold and F[0] = 0. Let © € R and 6 =
0, 07%) € (0, 712, and assume that there exists a function € W2L(a, b) such that

FrWl+uy <0, FHyl+uy £0 and ¥ >0 in (a, b), 30)
B(Yr,a,b) € L(O).

Ifu € W>!(a, b) satisfies

Flul4+ pu >0 in (a, b),
B(u,a,b) € L(t) forsome t € [0, 2n] x [0F, 271,

then u <0 in (a, b).
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Proof Suppose to the contrary that sup, ;) u > 0. Set p = sup, ;) u/¥. Itis easily
checked that, if ¥ (a) > 0 and ¥(b) > 0, then 0 < p < oo and sup, ; u/py =
1. Setting T = (¢, ™), we observe that if ¥ (a) = 0, then, since B(y, a, b) €
L®~,0%),wehave m =0~ < 1t~, ¥/'(a) > 0 and u(a) < 0, and, moreover, by
using I’Hopital’s rule, we get

ux) @ i w@ =0 and  lim 2

lim = im
x—>a+0 Y (x) v’ (a) x—a+0 Y (x)

= —00 otherwise.

Similarly, we have lim,_,,_ou(x)/¥(x) < oo. Thus, we have 0 < p < oo and
SUp(ypy U/ PV = 1.

We note that, since F[0] = 0, FT[py] = pFT[¥] and Flu] + pu > 0 >
Frlpy] + u(oy) > Flp¥] + uoy in (a, b). Hence, using Lemma 14, we have
u = py on [a, b] while Flu]+ pu >0 % Flpy¥]+ u(py) in (a, b), which is a
contradiction. O

The proof above can be used to show that the following maximum principle holds.
The proof will be left to the reader.

Theorem 16 Assume that (F1)—(F3) hold. Let 0 = (6—,0%) € (0, 1% and assume
that there exists a function v € W' (a, b) such that

€1y

Fly]1<0, F[y]#0 and ¢ >0 in (a, b),
B, a,b) € L(9).

Ifu € W>(a, b) satisfies

Flul>0 in (a, b),
B(u,a,b) € L(t) forsome v e[0~, 2n] x [T, 27],

then u <0 in (a, b).

A typical situation where (31) is satisfied is the following: let (v, ¥) be a positive
principal eigenpair of (4)—(5). If we choose i < v, then F[¥]+ uy < 0 in (a, b).
That is, condition (31) holds with this choice of u and the function F(m, p,r, x)
replaced by F(m, p,r, x) + pur.

We give two propositions concerning the comparison principle for ODE (4).

Theorem 17 Assume that (F1) and (F2) hold. Let n € R and 0 = 0~,0%) €
(0, 1%, and assume that there exists a function r € W2, b) such that (30) holds.
Ifv, w € W>!(a, b) satisfy

Flvl+ pv > Flw]+ pw in (a, b),
B(v —w,a,b) € L(t) forsome 1 €[00, 2x] x [0, 271,

then v < w in (a, b).
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Proof We set u = v — w and observe that
0< Flv]— Flwl+ p(w—w) < Flul+ pu in (a, b).

We apply Theorem 15, with the function F replaced by the function F*, to conclude
that v < w in (a, b). O

Proposition 18 Assume that (F1)—(F3) hold. Let 6 = 0~,0%) € (0, 712, and
assume that there exists a function € W?>!(a, b) that satisfies (31). If v, w €
Wz'l(a, b) satisfy

Flw] <0, Flw] < F[v] and w >0 in (a, b), B(w,a,b) € L(O), and
B(v,a,b) € L(t) forsome t € [0, 2n] x [61, 27],

then v < w in (a, b).

Proof Suppose to the contrary that maxp,, »)(v — w) > 0. Since B~ (w, a) € [(67)
and B~ (v,a) € I(t7), where t~ € [0, 2x], if w(a) = 0, then we have 6~ =
7w, w'(a) > 0 and v(a) < 0. Similarly, if w(b) = 0, then we have w'(h) < 0
and v(b) < 0. Therefore, setting p = SUP(4.p) v/w, we have p € (1, co0). We set
f = F[v] and g = F[w], and note that f, g € L'(a, b), g <0 and g < f in
[a, b], and

Flpw]=pg <g < f=F[v] 1in (a, b),

and apply the strong maximum principle, Lemma 14, to obtain pw = v on [a, b].
Hence, the inequalities above are indeed equalities, from which we get (o — 1)g =0
and F[w] = 0 in (a, b). By Theorem 16, we get w < 0 on [a, b], which is a
contradiction. The proof is complete. O

The following proposition states that for any 6 € (0, )2, condition (30) holds for
some i € R and ¥ € W?!(a, b). In the following three propositions we always
assume without further comment that (F2) holds.

Proposition 19 For any 0 = (0~,0%) € (0, n)? there exist @ € R and ¢ €
W2 (a, b) that satisfy (30).

We need two lemmas for the proof of the proposition above.
For M > 0 we define yy € L(a, b) by yu(x) = (y(x) — M)4.

Lemma 20 Forany ¢ > 0 thereexist M > 0, « > 0 and v € Wl’l(a, b) such that
MW+ Bl +yy=a and |v|<e in (a, b), and v(a)=v(b) =0.
Proof We fix any M > 0. For each o > 0 we solve the initial value problem

MW +Blvl+yy =« in (a, b) and v(a) =0. (32)
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We denote the unique solution v(x) of (32) by v(x;a). We set 5(x) =
sgn(v(x; @))B(x) for x € (a, D),

d d
B(c,d):/ A7 'B(t)dt and E(c,d)z/ A7'B()dt for a<c<d<b,

c

and note that the function v(x) = v(x; «) satisfies
V'(x) + AT B)v(x) = A e — yy () in (a, b).

Consequently, we have

— X
v(x; o) = A7 1 e—BW’X)/ eB@D (o —yy())dt for x € [a, b].

a

Hence, noting that |§(c, d)| < B(c,d) < B(a,b) for a < ¢ <d < b, we have for
all x € [a, b],

X —
v(x: @) = )\—1/ e B (q — (1)) dt
a

b X
<! (/ eB@h) g qy —/ g B@b yM(t)dt)
a a

<! ((b —a)eB@h o e=B@b) ||7/M(t)||L1(a>x)) ’ @3

and
v(xr;e) = a7 ((x —a)e PP g — eBh) ”VM”L'(a,b)) : (34)

In particular, we get v(b;0) < 0, and v(b;e) > 0 if a > (b —
a)~le?B@h) 1y, L(a,p)- The general theory of ODE or an application of the Gron-
wall inequality assures that the function o +— v(b; @) is continuous on [0, 00).
Thus, the intermediate value theorem assures that there exists ay; € [0, 00) such
that v(b; apr) = 0 and, moreover, oy < (b — a)~ ! e2B(@) lymllL1a.p)-

Now, we fix any ¢ > 0. By (33) and (34), we get

eB(a,b)

max_|v(x; apy)| < 17! max{(b — a)apr, 1ymllLiap)
x€la,b]

—1 3B(a,b
<A PO Yyl

Note that limpy—oo lymll 1@ = O, and choose M > 0 so that A~!e3B@H
lvmllrapy < € which implies that [v(x; ap)| < ¢ forall x € [a, b]. The proof is

complete. O

Lemma 21 There exist u € R and w € W1 (a, b) such that

(35)

PHw]+ Blw'|+ylwl+uw <0 in (a, b),
w>0 on [a, bl and w'(a) =w'(b) =0.
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Proof According to Lemma 20, there exist v € whl(a, b), M > 0, and « > 0 such
that

A+ Blv|+yy =a and in (a, b), and wv(a)=v() =0.

I
P
W= 56— o

We define w € W2!(a, b) by
1 X
wx) == +/ v(t)dr.
2 Ja

Observe that Aw” + B(x)|w'| + vy = @ in (a, b), w'(a) = w'(b) =0, 1/4 <
w < 1 in (a, b) and (w”)4 < A" in (a, b). Therefore,
FHw] < 2w’ + (A — )W)y + Blw| + yw < Aw' + (A_IA _ 1) o
+ Blw'| + yyw + Mw
< 2w’ + Blw'| + i + (A_IA . 1) N
+Mw <2 'Aa + Mw < (4A_1Aa + M)w.

The pair of the constant © = —4A~'Aa — M and function w has all the required
properties. O

Proof of Proposition 19 We set p~ = cos~/sin@~ and p*™ = —cos6T/sinfT,
and select a function ¢ € C%([a, b]) and a constant 8 € (0, (b — a)/2) such that

=eP =9 for x €[a, a+8),
r(x) {=el D for x € (b—8,b],
>0 for x e [a+ 6, b—4].

Set also n(x) = 1/¢(x) for x € [a, b]. We define the function F;‘ on R3 x [a, b]
by

Fm, p.r.x) = L@ FH@0om + 20 00)p + 1" (0)r,n@)p + 0 (0r, n(@)r, x),
and calculate that for any (m, p,r, x) € R3 x (a, b),

F;'(m,p,r, X)
< t@{PT(m@)m) + P QI (x)pl + 10" @)rl)
+ B (In(x)pl + 0" (X)) + v ) n(x)rl}
< PT(m) + ¢){AQIN () pl + " (X)) + B ) pl + [ )r )
+ y@n@)lr(}
< PT(m) + B0 pl + v (0Irl,
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where B;, v, € L'(a, b) are given by

Be(x) = B(x) +2AL(x)|n'(x)| and
Ye(x) = y(x) + AL " ()] + B)E )0 ()]
By Lemma 21, with 8 and y replaced by B, and y;, we can choose 1 € R and

w € W>!(a, b) so that (35) holds.
We set ¥ = nw on [a, b], and note that ¢ > 0 on [a, b],

0> F;[w] + pw
= (FH((qw)”, qw)’, nw, x) + py) = ((FY Y]+ py) in (a,b),

andhence, FT[y¥]+uy <0 in (a, b). Observethat 0 = w'(a) = p~ ¥ (a)+v¥/(a)
and therefore

B~ (Y, a)=(=y¥'(a), ¥ (@)=(p"¥(a), ¥(a)) = SI;/;(;), (cosO~, sinf™) € [(67).
Similarly, we get BT (v, b) € (™). The proof is complete. m|

4.5 Basic estimates

Lemma 22 Assume that (F1) and (F2) hold. Let (c, d) be a subinterval of (a, b), z €
lc, d] and v € W>Y(c,d). If F[v] € L'(a, b), then

Il = (IW@1+ 0@+ A7 (IF1L ey
HIFIOM 1 ey)) €50 (12718 + )+ UlLie) -
Proof Let gr be the function as in Lemma 12. Setting f = F[v], we have
v'(x) = gr(W'(x), v(x), f(x),x) in (c, d),
and moreover,
V()] < AW @]+ y @]+ £+ [FI0J)  in (e, d). (36)

Hence, setting 2(x) = |v(x)| + |[v'(x)]| for x € [c, d], we have

h(x) < h(z) + 217!

/ [(B@) + IV O +yOlv®] + | f O]+ FI01(0)]] dr

< h(z)+

’

/ @(Oh(t) + f(1)dr
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where &(1) := A" 1(B(1) + ¥ (1)) + 1 and f(t) := A1 (| f ()| + |FI0](#)]). By the

Gronwall inequality, we get
X X
)+ / exp(/ a(s)ds
z t

/x a(r)de

= (h@ + 1 ey ) exp (161 11 )

h(x) < h(z)exp (

) f(r)dr

for all x € [c, d], which completes the proof. O

Lemma 23 Assume that (F1) and (F2) hold. Let (c, d) be a subinterval of (a, b) and
set

Co=exp (I B+ 1)+ e -
Let v € W*l(c,d), and assume that F[v] € L'(a,b), that either v(c) = 0 or
v(d) = 0 and that the inequality, |V'(z)| < o|v(z)|, holds for some o > 0 and
z € [c, d]. Then

||U||W1-00(c,d)
< Co ((1 +0)d = vllwrooeay + A IFIIL gy + ||F[01||L1(C,d)) :

Furthermore, if Co(1 +0)(d —¢) < 1, then

ol < SR OFWI ) + I FION L)
whoo(e,d) = ol o)d — 0

Proof By the assumption that v(c) = 0 or v(d) = 0, we get |v(x)| < ||v’||L1(C,d) for
all x € [c, d]. Since |V (2)| < o|v(z)], we have |v(z)| + [V/(2)] < (1 + o)|v(2)].
Hence, we get

@I+ (@] = A+ ) @I<A+ )V lIL1cq) < (1+0)d = Olvlyree.a)-

We combine this with Lemma 22, to get

||U||W1~oo(c,d)
<Co ((1 +o)d = )lvllwreceq) + At (||F[U]||Ll(c,d) + ||F[0]||Ll(c,d))) .

Moreover, it follows that if Co(1 + o)(d — ¢) < 1, then

ol <SP UFOeq) + PO c.0)
wheo(e,d) = 1—Co(l+0)d—0) .

O
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Lemma 24 Assume that (F1) and (F2) hold and F[0] = 0. Let {filren C
L'(a,b), {ilkeny C R and {vilrey C W?>'(a, b). Assume that for some f €
L'(a,b) and n € R,

lim fx = f stronglyin L'(a,b) and lim px = p,
k— o0 k— o0
and that for any k € N, v is a solution of F[vr] 4+ uxvr + fr =0 in (a, b). If

sup min(|vg| 4 |vp]) < oo, (37)
keN la.b]

then {vi} has a convergent subsequence in W' (a, b) and the limit v of the subse-
quence is a solution of F[v]+ uv+ f =0 in (a, b).

Proof Choose a sequence {zxlren C [a, b] so that |vi(zp)| + [v(zx)| =
mingg p)(|vg| + |v,’<|) for all k € N. By Lemma 22, we have

okl wroe ) < Mok @Ol + 10p @O+ A7 fill 1)

forallk € N, where My = exp (||A_l(ﬁ + v+ k) + 1||L1(a’b)).Thus, we see from
(37) that

sup ||Uk||W1,o<:(a’b) < OQ. (38)
keN

According to (36) or Lemma 12, we have

v (0]
< AN B@Iv )+ @)+l vk )| + [ /e ()] in (a, b) forall k €N,

which shows together with (38) that {v;} is uniformly integrable on (@, b) and hence

the sequence {vy} is relatively compact in C!([a, b]). Observe by using Lemma 12
that forany k, £ € N,

lvg — vyl = 18F (v, vk, —prvk — fr, X) — &F (g, v, —peve — fo, X)|
< A7V (Blvp — vl 4y lvk — vel + lkvk — pevel + 1 fi — fe)  in (a, b),

where g is the function given by Lemma 12. Thus, we find that {v;} contains a strongly
convergent subsequence in L' (a, b) and the sequence {vy} is relatively compact in the
strong topology of W2!(a, b). Let v be a limit point of the sequence {vy}. That is,
v = limj_, o0 vg; in the strong topology of W?21(a, b) for some subsequence {vk; )
of {vr}. By passing once again to a subsequence if necessary, we may assume that
W’ (x), v (x), v(x)) = limj_mo(v,/c’j (x), v,/cj (x), vg; (x)) for a.e. x € (a, b). It is now
easy to conclude that v""(x) = gp(V'(x), v(x), —u(x)v(x) — f(x)) a.e. in (a, b),
which assures that v is a solution of F[v] + uv + f = 0in (a, b). O
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5 Proofs of the main results in the one-dimensional case

In this section, we prove Theorems 2-5. Throughout this section we assume that
(F1)—(F3) hold.

5.1 Comparison of eigenvalues

We give here the proof of Theorem 4.

Proof of Theorem4 For i = 1,2, set 6; = (Qi_,9i+) and let (ui, @) € R x
W2l(a,b) be an n;th order eigenpairs of (4)—(5), with (97,67) replaced by
(6, ,6;"), and assume that (n, 01) < (n2, 62).

We argue by contradiction, and suppose that ©; > .

Let {x j};f': J(r)l, {y j};f:{)l be the increasing sequences of points in [a, b] such that
X0 = Y0 =4, Xp;+1 = Yn,+1 = b,and the x;, with 0 < j < ny + 1, and the y;, with
0 < j < np + 1, are zeroes of the functions ¢; and ¢, , respectively.

By assumption, there exist nonnegative integers k~ and k* such that (11)—(15)
hold.

Consider first the case when K~ = kT = 0. We note that n; = n, and Xpi41 =
Yni+1 =b,set m =min{j € {1,...,n1 + 1} : y; < x;} and observe that x,,_1 <
Ym—1 < Ym < Xp.Since k~ = 0, which implies together with (12) that p1¢ > 0 in
(a, min{xy, y1}),and ¢; and ¢, changesignat x; and y; forevery 0 < j <nj+1,
respectively, we see that @19 > 0 in (y,—1, ym). Furthermore, observe that, if
Ym—1 = a, then B~ (¢1,a) € [(9;) and B~ (¢2,a) € [(0,) and, if y,, = b, then
B* (1, ym) € 10" and BT (92, yw) € 1(65), and that i(6;) = i(6;), 6; <
6, ,i(0]) =i®;) and 6} <65

Consider next the case when either k~ = Q0 and kT > Qor k™ = 0 and k= > 0.
In view of (S2), we may assume that k=~ = 0 and kt > 0. We have ny > n; and
Ynj+1 < b = Xxp,41. Asabove, weset m =min{j € {1,...,n1+1} : y; <x;} and
observe that 912 > 0in (yy—1, Ym), Ym < band,if y,, 1 = a, theni(0;) =i(6,)
and 6 <0, .

Consider the case whenk™ > Oandk™ > 0.Ifk~ isan oddinteger, thatis, ;@2 < 0
in (a, min{xy, y1}), then we note that y, 12 < Yu;4+3 < Yu,4k—+k++1 = Xn+1 = b,
setm = min{j € {2,...,n1 + 2} : y; < xj_1} and observe that @12 > 0 in
(Ym=1, ym) and a < y,—1 < ym < b. Similarly, if ¥~ is an even integer, that is,
@192 > 0in (a, min{xy, y1}), then we note that y,, 43 < Yn;4+4 < Y h—4k++1 =
b = xy,41,setm = min{j € {3,...,n1 +3} : y; < x;j_»} and observe that
0192 > 0 in (y—1, ym) and a < yp—1 < ym < b.

Thus, in all possible cases there exists a nonempty subinterval (c, d) C [a, b]
having the properties: (1) ¢1¢2 > 0 in (c, d), (2)if c = a, theni(;) = i(8, ) and
0 <6,,3)if ¢ # a,then p2(c) =0 (4)if d # b, then ¢2(d) = 0 and (4) if
d =b,theni(0;") =i(0y)and 0;" < 65.

By the symmetry (S1) we may assume that ¢; > 0 and ¢ > 0 in (¢, d). Asa
consequence, we have Fl@1] + ua@; <0 in (c, d).

@ Springer



476 N. Ikoma, H. Ishii

We choose 1,7, T e (0, 7], with i = 1, 2, so that B(gi,c,d) € L(z;, .+) for
i=1,2. Notethatlfc_a thenr; =6, fori = 1,2, if ¢ > a, then ¢2(c) = 0 and
T, < Tz =um,ifd = b, thenr _9+ fori = 1,2,and if d < b, then ¢(d) =0
and ‘L’l < 12 = m. We use the maximum principle, Theorem 16 with the interval
(a, b) and the function F(m, p,r, x) replaced by (¢, d) and F(m, p,r, x) + por,
respectively, to obtain ¢» < 0 on [c, d], which is a contradiction. Thus, we see that
the inequality, ;1 < 2, holds. O

Applying Theorem 4 twice, under the assumptions (F1)—(F3), for any admissible
(n,0) € Ny x (0, 2772, an nth order eigenvalue of (4)—(5) is unique.

5.2 Existence of principal eigenpairs
We prove the existence of principal eigenpairs of (4)—(5) in this subsection.
Lemma 25 There exist ¢ € (a, bl and (i, v) € R x W*(a, ¢) such that
Flvl]+uv >0 and v>0 in(a, c), and v(a) =v(c)=0. (39)
According to [25], there exist a positive principal eigenpair of (4) with the Dirichlet
boundary condition, and the lemma above follows from this observation. But, for the

reader’s convenience, we give a proof of the lemma above.

Proof Let ¢ € (a, b] be a constant to be fixed later. Set f = g8 + y,

M= dr

wkx) = / (/ f)dr — )dr for x € [a, c].

Clearly, we have w(a) = w(c) =0, 0 <M < ||f||L1(a’c),

and

w' (x) :/ f@)dt — M forall x € [a, c],

"= fin(a, ¢), we Wra,c) and |w'l|z%@.e) < 1F L)
Observe moreover that for all x € [a, c],

0 < —w) <[l L2, min{lx —al, [x = cl} I fll 1 (q,c) min{lx —al, |x —cl}.

Recalling that the inequality, sinx > (2/7) min{|x|, |x —m|}, holds forall x € [0, 7],
we see that

c—alfllprge . 7x—a)
sin

— <
wl) = 2 c—a

for all x € [a, c].
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Hence, setting d = (¢ — @) fllz1¢.¢ and x(x) = dsin(7(x — a)/(c — a)) for
x € [a, c], wehave x(x)+ w(x) > x(x)/2 >0 forall x € (a, ¢).

Weset v =w+ x on[a, c]and observe that v(a) = v(c) =0, v(x) > x(x)/2 >
0 for all x € (a, c). Using the inequalities w” > 0, x” <0and v < x in (a, b) and
(F2), we get fora.e. x € (a, ¢),

Fv](x) =aw"(x) + Ax"(x) — BV ()| — y (x)v(x)
> fO)A = (V)] + x @)+ Ax"(x)

wd 7\
> [A - <||f||L1W) + — +d)] f&x)—A (—) x (x)
c—a c—a

N
>{A—U+m+c—a) | fllpige) fx) —2A (CT) v(x)

a

Now select ¢ € (a, b] sothat (1 +7 4+ ¢ —a) ||f||L1(a’c) <A, put u = 2A712/(c—
a)z, and conclude that v satisfies (39). O

Proof of Theorem 2 (2) in the case n = 0 In view of the symmetry (S1), we need only
to prove the existence of a principal eigenpair (i, ¢) in the case where 8 = (6, 67") €
©, 1%

We treat first the case where 6 € (0, 7)2.

Given a constant u € R, we consider the initial value problem

Flul4+ puu =0 1in (a, b) and (u(a), u'(a)) = (sind~, —cosf~). (40)

Thanks to Lemma 12, we know that this problem has a unique solution u, €
W24 (a, b). Proposition 1 assures that (uﬂ(x),uil(x)) # 0 for all x € [a, b].
We may choose 6, € (0, 2] so that B*(uu, b) € 1(6,). We should note that
B~ (uy,a) e l(67).

Next, let (¢, u, v) € (a, b) x Rx W21(a, b) be those from Lemma 25. We denote
this constant u by vi. We show that

minu, <0 forall u > . 41
[a,b]

We prove this by contradiction. Fix any @ > v; and suppose that miny, pu;, > 0.
Accordingly, we have Fluy] + viuy, < 0 < F[v] +viv and v > 0 in
(a, ¢), B~ (v,a) € l(w), B~ (uy,a) € [(07), and v(c) = 0. Also, since u,, > 0
in [a, b], we have B+(uﬂ, c) € 1(8,) for some 6. € (0, ). We apply the maximum
principle, Theorem 16 with the interval (a, b) and the function F (m, p, r, x) replaced
by (a, c¢) and F(m, p, r, x) 4+ vir, respectively, to obtain max[q, ;v < 0, whichis a
contradiction. Hence, (41) is valid.

Now, let (u, ¥) € R x W21(a, b) be the pair given by Proposition 19. We refer
this constant u as vy in what follows. We show that

%nlhr}uu >0 and 6, <6% forall u <vy. (42)
a,
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Let 1 < vp, and we first show that minf, ) u, > 0. Suppose to the contrary that
min, p) 1, < 0 and choose d € (a, b] suchthat u, > 0 in (a, d) and u,(d) = 0.
Observe that ¥ > 0, F[y] + uy < FHyl+ vy < 0 = Fluyl + pu, and
Flyl+uy £0in (a, d), B~ (Y, a), B~ (uy,a) € 1(67), and u, (d) = 0. We also
remark by Proposition 13, applied to u = 0 and v = v, that BT (¥, d) € [(6;) for
some 0 € (0, 7] since (¥ (x), ¥'(x)) # (0, 0) holds for any x € [a, b]. Indeed, we
just need to put 6y = O(—v'(d), ¥(d)) and see (3) for the definition of ®. Hence,
by the maximum principle, we get max[q qju, < 0, which is a contradiction. This
proves that ming, p u, > 0 for all u < vg. This and (41), in particular, show that
Vo < Vi.

We next show that if u < v, then 9, < 0. Indeed, if we fix any u < vy and
suppose to the contrary that 6, > 0, then, by Theorem 16, we obtain maxg,py Uy <0,
a contradiction.

In view of a classical result on the continuous dependence of the solutions u,, of
(40) in w, we know that the function p +> mingg p) 1, is continuous on R. By (41)
and (42), there exists a & € (vg, v1] such that

minu; =0 and minu, >0 forall u < [.
[a,b] [a,b]

Since (u;(x), u;l(x)) # 0 forall x € [a, b], we deduce that u;(b) =0 and u; > 0
in[a, b). Consequently, we have 6; = 7. The continuous curve u (uit(b), u, (b)),
with u € [vg, 1), starts at a point on the line [(6,,), where 0,, < 0, lies in the upper
half-plane {(x,y) € R> : y > 0}, and, as 4 — [, approaches to the line /().
This simple geometric observation assures that there exists u € (vg, i) such that
Bt (uy, b) €1(0T).
We now treat the general case where 6 € (0, 7]>. We choose two nondecreasing

sequences {0, }ueN, {0, }hen C (0, ) such that

lim 7 =6~ and lim 6 =67,

n— oo n— o0
According to the argument above, for eachn € N, we may choose a principal eigenpair
(in, tn) € R x W24 (a, b) of (4)—(5), with (6, 67) replaced by the pair (6, , 6,1).
By multiplying by positive constants, we may assume that [lu,||y1.00, = 1 for
all n € N. By inequality (41), we deduce that u,, < v;, and by Theorem 4, we have
un > 1 forall n € N. Hence, we have 1 < u, < v; forall n € N and we see that
{ttn}nen has a convergent subsequence {iip, }xen. By Lemma 24, we may assume that
{u,, } converges to a function u € W21(a, b) and the function u satisfies (4). Since
{u,, } is convergent in Cl([a, b]), we see that

lim B(uy,,a,b) = B(u,a,b).
k— 00

This assures that B(u,a,b) € L(0). It is clear that u > 0 in (a, b) and
||M||W1.oo(a’b) = 1. By Proposition 1, we have (u(x),u'(x)) # (0,0) in [a, b].
Hence, we see that B(u,a,b) € L) and u > 0 on (a, b). Thus, (u,u) is a
principal eigenpair of (4)—(5). Finally, we note by Lemma 12 that u € W>4(a, b). O
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5.3 Higher order eigenpairs in the one-dimensional case

We give first the proof of Theorem 2 (1).

Proof of Theorem 2 (1) Let (i, ¢;i), with i = 1,2, be both nth order eigenpairs of
A-(5).

As remarked after the proof of Theorem 4, we know that 1 = w@>. In what follows
we assume that

lotllLoe@,py = Nl@2llLoea,bys (43)

and prove that @1 = ¢;.

We treat first the case where n = 0. We have either 6—, 61 € (0, 7]or6—, 6% ¢
(7r, 2m]. Thanks to (S1), we need only to consider the case where 86—, 6 € (0, 7].
We have ¢ > 0 and ¢2 > 0in (a, b). We set p := sup, ) ¢1/¢2 and observe,
as in the first part of the proof of Theorem 15, that p € (0, co). Obviously, we have
p@2(x) > ¢1(x) forall x € [a, b]. By the strong maximum principle, Lemma 14, we
get pp2 = ¢ on [a, b]. Hence, we see by (43) that p = 1 and conclude that ¢ = ¢»
on [a, b].

Next, we assume thatn > 1. Let {x /} and {y; }'H'l be the increasing sequences
of points in [a, b] such that xg = yg = a Xp4+1 = Yn+1 = b, and the x; and y;,
with 1 < j < n are zeroes of ¢; and ¢, in (a, b), respectively. We may assume, by
interchanging the role of ¢ and ¢, if needed, that x; < y;. Using the argument in the
previous step, with the interval (a, b) replaced by (xg, x1), we deduce that pj¢r = ¢
on [xg, x1] for some p; € (0, 0o0), which implies that x; = y;. Repeating the same
argument as above, with (a, b) replaced by (x1, x2),...,(X,, X,+1) in this order, we

n+1

obtain x; = y; and ¢ ,ojgoz in [x;_1, x;] for some p; € (0, co) and all
2 <j<n-+1.Since ¢; € C! ([a b]) and <pl(x]) # 0 forall 1 < j <n and
i =1,2, weseethat p = pp = --- = pu41. Using (43), we get p; = 1 for all

1 < j <n+1 and, therefore, ¢; = ¢> in [a, , b]. This completes the proof. O

The following lemma states that the nth order eigenvalue " (0, ¢, d) and its eigen-
function depend continuously on the angles = (§~, #7) and the interval (c, d).

Lemma26 Ler n € N, {(ej—,ej)}jeN c (0,271% (0,61 € (0, 27)>%
{(cj,dj)}jen C la, b1% ¢,d € [a, b] and {(j, )} jen C R x W21(a, b). Assume
that ¢; < dj forall j € N, ¢ < d and, forany j € N, (uj, ;) is an nth
eigenpair of (4)—(5), with the interval (a, b) and the pair (0~,0%) replaced by
(cj, dj) and (9;, B;F), respectively. Furthermore, assume that ||§0j||WI,oo(cj’dj) =1,

i07)=i(07), i(6)) =i(®%) forall j €N, and

lim (07,67, ¢cj.dj)=©,0",c.d) in R (44)

]4)00

Then there exists an nth order eigenpair (i, @) € R x W2 (a, b) of (4)—(5), with
(a, b) replaced by (c, d), such that

lim u;=p and lim @j=¢ in w2l(a, b).
j—>00

_]—)OO
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A remark here is that in the lemma above, the admissibility of (n, 0 9*) and

b ] 9
(n,0=,0%)is implicitly assumed.

Lemma 27 Let{g;}ren C Cl(la, b)) andp € C'([a, b]). Letn € Ny, {(ck, di)}ken
C [a, b1%, (c.d) € [a, b1, {0 . 6)}ken C (0, 271?, and (6=,67) € (0, 271>
Assume that ¢y, < di forallk € N, c < d, andi(6,) = i(07) and i(@,j) =i
forall k € N, that as k — oo,

o > ¢ in C'(la, b)) and (ck, d,07,6) — (c,d,07,0") in R*, (45)

and that
(p(x), ¢ (x)) # (0,0) forall x € [a, b]. (46)

Assume furthermore that every ¢y has exactly n zeroes in (cy, dy) and B(¢k, ¢k, dy) €
L@, , 0,:‘). Then ¢ has exactly n zeroes in (a, b) and B(¢, c,d) € L(6~,67).

Proof For each k € N let {xy, l}’”ol C [a, b] be the increasing sequence such that
Xk,0 = Ck, Xk,n+1 = di and the x; ;, with 1 < i < n, are zeroes of ¢ in (cx, di).

By passing to a subsequence if necessary, we may assume that, as k — o0, the
sequence {(xg.0, .- ., Xk.n+1)}keN converges to a point (xp, . .., Xp4+1) in R"*+2. Obvi-
ously, we have (p(x,) = O0Oforalli = 1, N, ¢c = x9) < x1 <xp < --- <
Xp < xXp+1 = d and B(p,c,d) € L(O~ 9+) This inclusion and (46) together
yield B(p,c,d) € L(O~,0"). Moreover, because of (46), we may assume that
(or(x), (p,/c(x)) # (0,0) forall x € [a, b] and k € N.

We show that

min{x; —x;—; : i €{l,...,n+1}} > 0. “n
To the contrary, suppose that x; = x;_1 for some i € {1,...,n + 1}. In the case
where i € {2,...,n}, by the mean value theorem, for each k € N there exists

Yk € (Xk.i—1. Xk,;) such that go,’((yk) = 0. Taking the limit as k — oo, we get
(¢(xi), ¢’ (x;)) = 0, which is a contradiction.

Consider next the case where i = 1. We have now ¢ = xo = x;. Hence, we have
¢(c) = 0. We may assume by replacing ¢ and ¢ by —¢x and —¢ if necessary that
i(6,) = i(0") = 0 forall k € N. Since ¢(c) = 0, the condition, 6~ € (0, 7],
implies that ¢'(c) > 0. Since 0, € (0, w] and @y (x,1) = 0, we have go,i(ka) <0
and, in the limit, ¢’(c¢) < 0. This contradicts the previous observation that ¢’(c¢) > 0.
In the case where i = n + 1, we argue in a way parallel to the case of i = 1, to obtain
a contradiction. Hence, (47) is valid.

Since {x;}}_, C (¢, d) consists of distinct zeroes of ¢, the function ¢ has at least
n zeroes in (c, d). It remains to show that ¢(x) # O forall x € (¢, d) \ {x1, ..., x,}.
To prove this, we suppose that ¢ (y) = Oforsome y € (c, d)\{x1,...,x,}. We choose
ie{l,...,n+1}andd > 0,in view of (46),sothatx;_| < y—5 <y <y+d§ <ux;
and ¢'(x) # O forall x € (y — 68, y + ). Clearly, we have ¢(y + 8)p(y —8) < 0
and, by (45), ox(y + 8)pr(y — 8) < O for sufficiently large k € N. The condition,
k(Y +8)pr(y — &) < 0, ensures that ¢ (yx) = 0 for some y; € (y —38, y+96).Ifkis
large enough, then we have ¢ (yx) = Oand yx € (xk,;—1, X, ;). Thisis a contradiction.
That is, ¢(x) # 0 for all x € (c, d) \ {x1, ..., n}. The proof is complete. O
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Proof of Lemma 26 In view of (S1), we need only to consider the case when 6~ €
O, m].

We show first that {u;};en is bounded from below. We choose 6=(0,0" €
0, 7)% sothat 6~ > 6~ and 67 > 9. (Notice that if n is odd, then 617 > 7 > ¢
for every t € (0, m).) Next choose a principal eigenpair (v, ¢p) € R x W2l(a, b)
of (4) (5) with the interval (a, b) and the pair (9=, 87) replaced by (c, d) and
6,61, respectively. (Recall our convention, explained just after (28), that ¢ is
defined on the interval [a, b] as a solution of (4), with u = vg.) Since 6 € (0, 7)2,
we have ¢9 > 0 on [c, d]. Hence, there exists an open interval I, relatively to
[a, b], so that [c, d] C I and @y > 0 in I. Since (¢;(x), po(x)) # (0,0) in I, we
may find 1~ (x), T (x) € (0, m) for every x € I such that B~ (¢g, x) € I(t7(x))
and BT (g, x) € [(tT(x)), that is, 1*(x) = O (£} (x), ¢o(x)). Note that 1~ (c) =
6=, tT(d) = 6% and r*(x) depend continuously on x € I.

Now by (44) and the choice of 8, for sufficiently large j € N, we have

cj,dj €1, t_(Cj)<9; and Z‘+(dj)<9j.

Noting that (vo, ¢o) is a principal eigenpair of (4)—(5) with the interval (c;, d;) and the
angles (™ (c;), 17 (d;)) in place of (a, b) and (§~, 67), respectively, which implies
that vy = y,o(t_(cj), t+(dj), ¢j,dj), and that, if j is large enough, then the order
relation, (0,17 (c;), t+(dj)) < (n,0;), holds, where 0; = (9]._, Q;F), we conclude by
Theorem 4 that vy = ,uo(t_(c i) tT(d i), cj,dj) < uj for j sufficiently large and that
inf ey puj > —o0.

Next we show that {14} ;e is bounded from above. To see this, we fix an increasing
sequence {ek}’”’1 C (c, d) and set

v = max{u’(m, 7, ex_1, ex), 0@, 21, 1, ex) T ke f{l, ..., n+1}}.

We select K € N so that ¢; < eg and d; > e,qq for all integers j > K. Fix
any integer j > K, and let {x j’k}z;“(l) be the increasing sequence such that x; o =
Cj, Xjnt1 = dj and the x;, with k € {1,...,n}, are zeroes of ¢;. We define
m =min{k € {1,...,n+ 1} : ex < x;} and observe thatm € {I,...,n + 1} and
(em—1, em) C (Xjm—1, Xjm). We use Theorem 4, with (e, 1, e;,) in place of (a, b),
to see that u; < max{,uo(n, T, em_1,€m), MO(ZJT, 27, em—1, em)}. Thus, we obtain
mj < v for all j > K, and conclude that SUpjeN Mj < OO.

We may thus choose a convergent subsequence {ij, Jreny Of {14} and set u =
limy_ o t j, . Furthermore, combining Lemma 22 and the fact that ||¢; || Wloo(ej.dj) =
1, we see that 1 < sup;~ [l¢jllwioq,p < 00. By Lemma 24, we may assume by
taking a further subsequence if needed that {¢, }xcv converges to a function ¢ strongly
in W>!(a, b) and ¢ satisfies F[p]+ ne = 0 in (a, b). Set 8 = (60—, 61). Since
l@jllwico@p = 1, wehave [[@llyi.c0(, ) > 1. Hence, ¢ # Oin [a, b], which means
[see Proposition 1] that (¢(x), ¢'(x)) # (0, 0) for all x € [a, b]. This combined with
the limit relation, B(g, c,d) € L(0), assures that B(p,c,d) € L(A). By Lemma
27, we see that ¢ has exactly n zeroes in (c, d). Therefore, (i, ¢) is an n th order
eigenpair of (4) and (5), with the interval (c, d) in place of (a, b). In particular, we
have u = u" (6, c, d).
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Because of the normalization, |[l¢;|| Wleo (e d;) = 1, we obtain [|¢|ly1.0(q) = 1.
By Theorem 2 (1), the n th order eigenpair (i, ¢) of (4)—(5), with the interval (c, d)
in place of (a, b), is unique. It is a standard observation that this uniqueness assertion
combined with the argument above applied to any subsequence of the original sequence
{(nj, 9j)}jen assures that

¢ = lim ¢; in W>'(a,h) and pu= lim pu;.
j—o00 j—o0

This completes the proof. O

Lemma 28 Letn € Ngand 0 € (0, 2. If (n, 0, ) (resp. (n, 0, 21)) is admissible,
then

liminf inf w"(@,7,c,c+¢&)=Iliminf inf p*(m,0,d—¢e,d) =00

e—>0 a<c<b-—e¢ e—>0 a+e<d<b
(resp.

liminf inf w©"(@,2n,c,c+¢€)=1liminf inf w"'Q2n,0,d —¢,d) = 00).

e—>0 a<c<b—se e—>0 a+te<d<b
Proof In view of (S1) and (S2), we need only to prove that for 6 € (0, 7]

liminf inf " (@, 7, c,c+¢) = oo.
e—>0 a<c<b-—e
We note that if (n, 6, 7r) is admissible, then n is even, that if (n, 6, 277) is admissible,
then n is odd, and that the order relations, (0,6, 7) < (2k,0,7) and (0,0, 7) <

2k — 1,6, 2m), hold for all k € N. Hence, we deduce by Theorem 4 that for any
neNypy,O<e<b-—aandc € la, b]withc+¢ <b,

W@, mc,c+e) if (n, 0, ) is admissible,

0
0,m,c,c+e)< . . ..
wi( ) {,u”(@,Zn, c,c+e) if (n,0,2m) is admissible.

Thus, it is enough to prove that

liminf inf MO(Q, T, C,C+ &) = 00. (48)

e—>0 a<c<b—s

To prove (48), we argue by contradiction and suppose that there exist {¢;}, ¢; €
[a, b —¢;]and M > O such that

e —>0, pj:= /LO(Q, m,cj,cj+ej) <M forallj.
Let 9; € W2!(cj,c; + ;) be an eigenfunction corresponding to ; and satisfy
l9jllwico(e; cj+e;) = 1. Then we have ¢j(cj +¢;) = 0 and Fjlg;] == Flg;] +

wje; =0in (¢, ¢; +¢&;). Moreover, F; satisfies (F1)—(F3) with 8;(x) := B(x) and
yj(x) == (y(x) + u;) in place of B8 and y.
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If & = 7, we may find some 7; € (cj, ¢j + &) so that ¢’;(tj) = 0.1f 0 = 7/2,
we also have <p’]. (cj) = 0. Therefore, when § = 7 or § = /2, one has |<p3. ()| =
0=0-]gj(z;)| for some z; € [cj, cj + &;]. On the other hand, if 6 # 7 /2, 7, then
the condition, B~ (¢}, ¢;) € 1(0), says that the point (§, ) = (—(p} (cj), pj(cj)) lies
on the line, n = s&, with the slope s € R \ {0}, which yields |<p;. )l < lgj(cpl/Is].
Thus in general, we have |<p}(zj)| <olpj(z;)|forsomeo > Oandz; € [c}, cj+¢]
where o is independent of ;.

Now, setting

Cj=exp (1A' + v + e e ap)

we see that {C;} is bounded due to the definition of y; and u; < M. Thus for
sufficiently large j, we obtain C;(1+0)e; < 1 and Lemma 23 gives a contradiction:

L= llg; o G
= M@jllwteo(c; cive) = 1—C;(1+0)e;

Hence, (48) holds. O

We now give a proof of Theorem 2 (2) in the case n > 1, which in turn completes
the proof of Theorem 2.

Proof of Theorem 2 (2) in the general case We have already shown that claim (2) of
Theorem 2 holds in the case where n = 0.

We prove the claim by induction on n, and we assume that the claim holds up to
n = k, with k € Np. Here we understand that this induction assumption is valid
not only on the interval [a, b], but also on any subintervals [a, c] and [c, b], with
¢ € (a, b). Hence, for any admissible (k + 1,67,67), where k € Ny, and any
¢ € (a, b), we have a kth order eigenpair (i, ¢.) of (4) in (a, c) and a zeroth order
eigenpair (v., ¥.) of (4) in (c, b) such that B~ (., a) € [(07), ¢.(c) = Y.(c) =0
and BT (Y., b) € [(T). More precisely, (¢, ¢c) [resp. (ve, ¥e)]is akth (resp. zeroth)
order eigenpair of (4) in (a, c) [resp. in (c, b)] and B(g., a,c) € L@, ™) [resp.
B, c,bl € L(t—,67)), where

P [(n, 2m) if k+i(67) iseven,
(" )= .
(2w, m) otherwise,
so that (k, ~, ) and (0, —, O) are admissible.

By Lemma 26, the functions ¢ +— . and ¢ +— v, are continuous on (a, b] and
[a, b), respectively, and moreover, by Lemma 28, we have lim._, 44+0(tte — V) = 00
and lim._p_o(e — ve;) = —oo. It follows by the intermediate value theorem that
there exists ¢; € (a, b) such that j., = v,. Since (k + 1,67, 67) is admissible, we
have (pé,l (01)1/&/-1 (c1) > 0. We choose a constant p > 0 so that (pél (c1) = ,Ol/fél (c1). It
is obvious that if we define the function x on [a, b] by
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@e(x)  for x € [a, c1],
x(x) =
pYe (x) for x € [cy, b],
then x € W29(a,b) and (Mer> x) 18 a (k + 1)st order eigenpair of (4)—(5). This
completes the proof. O

Proof of Corollary 3 1f n is an even integer, then triplets (n, 6", 91+ )and (n, 0, , 02+ )
are admissible. Otherwise, (1, 0, , 65") and (n, 65, 6;") are admissible.

Assume temporarily that n is even. By Theorem 2, there are nth order eigenpairs
(nE, 9%) € R x W4(a, b) of (4)—(5), with (9~,07F) replaced by (6, ,6;") and
0, , 9;‘ ), respectively. Let {xii};'iol C la, b] be the increasing sequences such that
xgt = a, x,ii = b and (pi(xii) = 0foralli € {l,...,n}. We may assume by
multiplying ¢™ by positive constants if necessary that ||§0i||L°°(a,b) = 1. With this
choice of ¢ and {xii}?iol, the condition (1) is satisfied. Let (i, ¢) € R x W24 (a, b)
be an nth order eigenpair of (4) and (10) normalized so that ||¢| o, = 1. For
some § > 0, we have either ¢ > 0 in (a, a + ) or ¢ < 0 in (a, a + §), and, if
¢ > 0in (a, a + 8) [resp. ¢ < 01in (a, a + §)], then (u, ¢) is an nth order eigenpair
of (4)—(5), with (9, 6™) replaced by (Ch 91+ ) [resp. (6, , 9;’ )]. Theorem 2 ensures
that if (i, @) is an nth order eigenpair of (4)—(5), with (8, 67) replaced by (I 01+ )
[resp. (65, 657)], then we have (i, 9) = (u*, @) [resp. (u, 9) = (1, ¢ 7). This
shows that the condition (2) is satisfied.

The case where n is odd can be treated similarly to the above, and we skip the
details. O

5.4 Characterizations of eigenvalues

We present here a proof of Theorem 5.
Regarding the symmetry (S1), we remark that for (u«,u) € R x W2L(a, b), the
equality

(Flul + pwyu = (=F[—(=w)] + p(=u))(—u) in (a, b),

holds and that the inequality (16) [resp. (17)] holds for (i, u) € R x W2l(a, b),
then (u, —u) satisfies (16) [resp. (17)], with the function F'(m, p, r, x) replaced by
—F(—m, —p, —r, x). Thus, the symmetry (S1) is valid for both (16) and (17). The
symmetry (S2), as well, is obviously valid for both (16) and (17).

Proof of Theorem 5 Let ¢ € W?!(a,b) be an eigenfunction corresponding to
W (@,a,b)andset u = u"@,a,b).

We prove first the inequality, u > sup E~(n, 0). To do this, we suppose to the
contrary that u < sup E~(n,6). We may choose an nth order solution (v, ¥) €
R x W21(a, b) of (16) and (5) such that u < v.

Let {x j}';‘:l and {y; ;?:1 be the increasing sequences of zeroes in (a, b) of ¢ and
Y, respectively. We set xo = yo = a and x,41 = Yy4+1 = b. As in the proof of
Theorem 4, let k be the smallest j € {I,...,n + 1} such that x; < y; and note
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that (xx—1, xxr) C (Vk—1, Yx) and ¥ > 0 in (xx—_1, xg). In view of the symmetry
stated prior to this proof, we need only to treat the case where ¢ > 0 and ¥ > 0 in
(Xk—1, Xk).

From (16), since u < v, we get

FlYyl+uy < Flyl+vy <0= Flo]l+ne in (xx_1, xi).

Now, by Theorem 16, we see that ¢ < 0 in (xx—_1, xx), which is a contradiction.
Here we have used the fact that B(y, x¢_1, xx) € L(0y) for some 0y = (6‘;, 912') €

(0, 7], which is a easy consequence of Proposition 13, the inequality ¥ > 0 in
(xk—1, xx) and the above inequality. Thus we obtain © > sup E~ (n, 0).
Next, we note that (u, ¢) satisfies (16) with equality, which shows that p €
E~(n,0) and u < max E~ (n, ). Hence, we concludes that © = max E~ (n, 0).
Leta = (m, 1) € Ngx (0, 271]2 be admissible and satisfy @ < (n, 8). By Theorem
4, we have u™(t,a,b) < u and, as observed above, 1" (t, a, b) = max E~ (m, 7).
Thus, we obtain

max E_(n, f) = max max £~ (¢) = max E~ (n,0) = u.
a<(n,0)

We prove next the inequality o < inf E™(n, 6™, 07). We suppose to the contrary
that 4 > inf E*(n, 6). We may choose an nth order solution (v, ) € R x W2, b)
of (17) and (5) such that p > v.

Let {x; };?:1 and {y j}’}zl be the increasing sequences of zeroes in (a, b) of ¢ and
Y, respectively. We set xo = yo = @ and x,4+1 = y,+1 = b. Let k be the smallest
Jj €{l,...,n+1} suchthat y; < x; and note that (yx—1, yx) C (xx—1, xx). We have
oY > 0 in (yk—1, k). In view of the symmetry (S1), we need only to treat the case
where ¢ > 0 and ¢ > 0 in (yx—1, yk). From (17), we have

Flpl+vp < Flpl+pnp =0 < F[Y 1+ py  in (yk—1, Vo).

Hence, by Theorem 16, we get ¥ < 0 in (yx—1, yx), which is a contradiction. This
proves that u < inf ET(n, 9).

Note that (i, ¢) satisfies (17), which ensures that u € E*(n,6), and proves
that 4 = min E*(n, 6). Using Theorem 4, we easily deduce that min Et(n,0) =
min E*(n, 6) and conclude that i = min ET(n, 8) = min E*(n, 0). O

5.5 Inhomogeneous equations

We treat now (18) and prove Theorem 6.
We start by noting that for (u, u) € R x W2l(a, b),

—(Flul + pu +sgn) f) = —F[—(=u)] + p(—u) — sgn(—(=u)) f
= —F[-(=w)]+ u(-u) +sgn(—u) f in (a,b),
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and therefore that if (i, u) satisfies Flu]+uu+sgn(u) f = 0in (a, b),then (u, v) :=
(., —u) satisfies — F[—v]+pv+sgn(v) f = 0in (a, b).Hence, (18) has the symmetry
(S1). Also, it is obvious that (18) has the symmetry (S2).

Proof of Theorem 6 (3) We argue by contradiction and suppose that there were an nth
order solution (i, u) € R x W1 (a, b) of (18). Note that u satisfies

(Flul + puw)u = —sgn(u)uf <0 in (a, b).

It follows from Theorem 5 that u" (6, a, b) > u, which implies, together with our
assumption on w, that u = 1" (0, a, b).

Let ¢ be an nth order eigenfunction corresponding to u" (6, a, b). Let {x; }"+1 and
{yi }7+01 be the increasing sequences of points in [a, b] such that xo = yg = a,

Xn+1 = Yn+1 = b, and the x; and y;, with 1 <i < n, are zeroes of u and ¢ in (a, b),
respectively.

We show that u and ¢ have the same zeroes, that is, x; = y; forall i € {1,...,n}.
To see this, we assume for the moment that » > 1 and, to the contrary, suppose that
xi # yi forsomei € {1,...,n}.Set j =min{i € {1,...,n} : x; # y;}andk = j
ifx; >y;. If y; > xj,thenwesetk =min{i € {j+1,....,n+1} : y; < x;}.
(Notice that j < n + 1 and x,+1 = yp+1). Observe that (yx—1, yk) C (xx—1, Xx) and
the inclusion is strict, that is, (xx—1, xXt) 7# (Vk—1, Yk)-

In view of (S1), we may assume that © > 0 and ¢ > 0 in (yk—1, yr). We set
p = SUP(, |y ¢/u. Since Flu] + pu < 01in (yx—1, Yk), using Proposition 13,
we get (u/(x), u(x)) # (0,0) for all x € [yr—1, yx], from which we deduce that
0 < p < oo. Noting that F[pu]+ pupu <0 = Fle]+ pne in (xg—1, xx) and applying
the strong maximum principle, Lemma 14, we see that ¢ = pu in [yx—1, yx], which
implies that u(yx—1) = u(yx) = 0. This is a contradiction since u > 0 in (xx_1, x)
and either y;_; or y; belongs to (xx—1, x¢). Thus we conclude that x; = y; for all
ief{l,...,n}.

We set ¢ = a and d = b if n = 0 and, otherwise, we choose k € {1,...,n+ 1} so
that f & 0in (xx—1, xx),andsetc = xx—1 andd = x;. We may assume that ¢ > 0 and
u > 0in (xg—1, xr). Wenote that Flu]+puu <0 and Flu]+puu # 0 in (¢, d) and
by Proposmon 13 that B(¢, ¢, d), B(u,c,d) € L(9) where 6 = (9 9+) 0~ =6-

ifc = a, &= = 7 otherwise and 6+ = 1 if d = b, 6T = 7 otherwise. Thus
Theorem 16 gives ¢ < 0 in (c, d), a contradiction, which shows that there is no nth
order solution of (18). O

Leta <c <d < band (u,u) € W>'(c, d) be a solution of (18), with a and b
replaced by c and d, respectively. We may extend the domain of definition of u so that
u belongs to w2l(a, b) and satisfies Flu] + pu + f = 01in (a, c) U (d, b). Based
on the observation above, as in the case of (4), we agree henceforth that the original
u € W>1(c, d) is identified with the extended u € W2 (a, b).

Lemma 29 Let{ filreny C L'(a, b), f € L'(a, b), {(ck,di)}ren C la, b1%, (c,d)

€ [a, b1?, {O}reny C (0, 2712, 6 € (0, 2712, {uilkeny C R, and p € R. Assume
that fr >0 in (a, b) and c; < dy forall k € N, ¢ < d,
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lim (ck, dy, Ok, px) = (¢, d, 0, 1) in R,
k— 00

and
lim fy = f in L'(a,b).
k—o00

Set 0 = (07,0T) and 6 = (0, .6,") for k € N and assume that i(6;) = i(6;") =
i(07) =i(0F) forallk € N. For each k € N let {vi}rey C W>(a, b), and assume
that for any k € N, the function vy is a zeroth order solution of

Flue] + prvr +sgnug) fr =0 in (e, d) and  B(vg, ¢k, di) € L(0k).
Moreover; assume that f # 0 in (c, d). Then we have u < n°(8, ¢, d) if and only if

Sup ”vk”W]'oo(Ck,dk) < Q. (49)
keN

Furthermore, ifn < pn°(0, ¢, d), then the sequence {vi} has a convergent subsequence
in W2(a, b) whose limit v € W2 (a, b) is a zeroth order solution of

Flvl+ pv+sgn(w)f =0 in(c,d) and B(v,c,d) = L(6). (50)

Proof By (S1), we may assume that 6, 6x € (0, 713, so that vg > 0 in (ck, di) for
all k e N.

We first assume that (49) holds, and show that i < u°(, ¢, d). By Lemma 24,
{vk} has a convergent subsequence {vg; } jeN in W21 (a, b) whose limitv € W !(a, b)
satisfies

Flvl+puv+ f=0 in (a, b)) and v >0 in [c, d].

Since f # Oand F[v]4+uv+f = Oin[c, d], weseethatv = Oon|[c, d]. By the strong
maximum principle, Proposition 13, we see thatv > Oin (¢, d), (v(c), v'(c)) # (0, 0)
and (v(d), v'(d)) # (0, 0). Since {vk; }jen converges to v also in C'([a, b)), we get
B(v, ¢, d) = L(0). Thus v is a zeroth order solution of (50). Theorem 6 (3), with the
interval (a, b) replaced by (c, d), assures that u < MO(G, c,d).

Next we assume that . < (8, ¢, d). We argue by contradiction, and suppose to
the contrary that supy e [|villw1.oo(¢, ) = 00- We may then assume by passing to a
subsequence if necessary that limg— oo [[Vk[ly1.00(c, 4,y = 00 We set

~ —1 ; —1
Vi = ||vk||W1’OO(Ck,dk)vk and fk = ”vknwl,oc(c,{’dk)fk on [aa b] fOI k S N7
and observe that vy satisfy

F[ﬁk]+ﬂkl~)k+ﬁ(=0 in (a, b), v >0 in (ck, di) and B(vg, ¢k, dy) = L(6y).
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Note that limy_, o fk = 0 in Ll(a, b). By Lemma 24, {v;} has a convergent
subsequence {0} jen in W*!(a, b) whose limit w € W?!(a, b) satisfies F[w] +
uw = 0 in (a, b), w > 0 in [c, d] and ||w||W1,OO(C’d) = 1. Since B(w, c,d) €
L©®), u < u°@®, ¢, d) and Flpgl + ngo < 0 = F[w] + pw in (¢, d), where g is
a (positive) eigenfunction corresponding to 1°(6, ¢, d), by the maximum principle,
Theorem 16, we deduce that w < 0 in (¢, d), which implies that w = 0 on [a, b].
This is a contradiction, which completes the proof. O

Remark 30 We note that, in the proof above of the fact that u < u°(0, a, b) implies
(49), the condition f # 0 is not needed.

Proof of Theorem 6 (2) and (1) for n = 0 In view of (S1), we may assume that 6 €
(0, 71%. Let Qe W21(a, b) be an eigenfunction corresponding to MO(O, a,b).

The uniqueness of a zeroth order solution of (18) is a consequence of the comparison
principle, Proposition 18, with ¥ replaced by ¢.

We prove the existence of a zeroth order solution of (18). We treat first the case
where

6 € (0, m)%, f eC(a, b]) and {nibr}f > 0. (&2))
a,

Since ¢ > 0 on [a, b], we may choose positive constants py < pj so that
(1’6, a,b) = Wpop < f < (1°0,a,b) —Wpig on [a, bl.

Set o9 = poy and @1 = p1e on [a, b] and note that Flpg] + ueo + f > 0 >
Fle1]l + ne1 + f in (a, b). Also, set ro = ¢o(a)/sinf@~ and r; = ¢1(a)/sinf~.
Since sinf~ > 0, we have ryp > O and r; > 0.

For each o > 0 let v, € W2!(a, b) be the unique solution of the initial value
problem

Flvgl+ pve+ f =0 in (a, b) and (—v,(a), ve(a)) = a(cosf~,sind7).

We remark that if v, > 0 in [a, b], then F[v,] + nvgy = —f < 01in (a, b) and
Proposition 13 yield vy, > 0 in (a, b) and max{vy (b), —v,,(b)} > 0. Hence, we may
find a 0, € (0, 7] so that Bt (v, b) € [(6y).

Now we prove that vy > ¢1 in [a, b] for all @ > ry, in particular, 9, is well-defined
for « > ri. We argue by contradiction and suppose that for some « > ry, one has
Vo (d) = ¢1(d) and vy, > @1 in [a, d) due to vy (a) = asinf~ > r;sinf~ = @1(a).
Since ¢ > 0in [a, b], choose 64, , 04,4, € (0, 7) such that BT (ve, d) € 1(64,4,)
and Bt (¢1,d) € 1(64,p,). Moreover, it follows from vy, > ¢1 in (a, d) that vl (d) <
¢} (d), which implies 04 o, < 04, .

On the other hand, we have

Flo1]l + ugr < —f = Flvgl + e in (a, d),
B(p1,a,d) € L(0~,604,9,), B(va,a,d) € L(0,04.,).

Applying Proposition 18, we get v, < ¢; in [a, d], which is a contradiction. Thus
Vg > @1 in [a, b] forall o > ry.
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Next, we claim that 6, < 6% for each o« > r;. In fact, if 6, > 61 holds for some
o > rp, arguing as above, Proposition 18 gives us a contradiction v, < ¢ in [a, b].
Hence, 6, < 61 for every o > ri.

We set

A={a>0:6, <6 and vy > @o/2 on [a, b]} and «n = inf A.

The argument above shows that (r;, c0) C A and 0 < g < ry. Observe next that if
0 < a < ryg/2,then vy(a) = asinf™ < (ro/2)sinf@~ = @o(a)/2. Hence, we have
0, r0/2)yNA =0 and g > rp/2.

We now prove that

Oy = 0% and Vo > 0 on [a, b].

By general ODE theory, we know that the functions « +— min, (Ve — @0/2) and
o — 0y are continuous on (0, co) and on {a¢ € (0, ) : v, > 0in [a, b]},
respectively. By the definition of o together with the continuity mentioned above,
we have vy, > ¢o/2 on [a, b] and 6,, < 6T. Moreover, if 6,, < 0T, then, by
applying Proposition 18, we get vy, > ¢o on [a, b], which implies that, for some
al € (0, ap), Oy < 0t and Vo; = @o/2 on [a, b], and hence, by the definition of
ap, ap < oy, a contradiction. Thus, we find that 0,, = 0T and Vay = ¢0/2 > 0 on
[a, b].

The function vy, is a zeroth order solution of (18), and the proof of existence is
done under the additional hypotheses (51).

To remove the extra condition (51), given f € L! (a, b), with f > 0in (a, b), and
0 € (0, 7]%, we select sequences { fxlren C C([a, b]) and {Or}reny C (O, )2, s0
that minp, p) fx > 0 forall k € N.

Thanks to Lemma 26, we have the convergence

lim u’Ok, a,b) = u°@, a, b).
k— o0

We may therefore assume that < u%(6g, a, b) forall k € N. The previous argument
ensures that for each k € N there is a zeroth order solution vy € W !(a, b) of (18),
with f; and 6; inplace of f and 0, respectively. We apply Lemma 29, to conclude
that there exists a zeroth order solution of (18). This completes the proof. O

We give some definitions and observations needed for the proof of claim (1) of
Theorem 6.

Fix any admissible (n, 6) and u € (—o0, u" (6, a, b)). Let ¢, be an eigenfunction
corresponding to (6, a, b) and {x;}?_, be the increasing sequence of zeroes of ¢,
in (a, b). We set xo = a and x,4+1 = b. We set 0, = 0~ and Q,TH = 671, choose
two sequences {Gi_}?izl, {9i+}§':1 C {m, 2} so that B(g,, xi—1,x;) € L(O;, 9i+)
foralli € {1,...,n + 1}, and set 6, = (91._,9i+) for i € {1,...,n + 1}. Note that
/JLO(O,',xiq,xi) =u"@,a,b)foralli e {l,...,n+1}.

Let M > 0 and c,d € [a, b] be such that ¢ < d. Fix any i € {l,...,n + 1}.
Let u; € Wz’l(c, d) be a zeroth order solution of (18), with 6, a and b replaced
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by 6;, ¢ and d, respectively, provided ¢ < d and pu < MO(Oi, c,d). The existence
and uniqueness of u; is assured by the claims (2) and (1) for n = 0 of Theorem 6,
which have already been proved above. We define @), (c,d, i), CDL(C, d,i) € R,
respectively, by

0 if c=d,
@y, (c,d,i) = ymin{|u;(c)| + |u§(c)|, M} if ¢ <d and pu < u°@;, ¢, d),
M otherwise,
and
0 if c=d,
dDII(c,d, i) = {min{|u; (d)| + |u§(d)|, M} if ¢ <d and p < u1°@;, ¢, d),
M otherwise.

Similarly, we write

_ . 0 if ¢ =d,
® (¢, d, i) = . 0
lui ()| + |u;(c)| if ¢ <d and u < p’H;, c,d),
and
0 f =d7
®F(c,d, i) = e 0
|ui(d)|+|u;(d)| if c<d and pu < u’6;,c,d).
In the definition above we note that for any i € {2,...,n + 1}, if ¢ < d and

w < u°@;, ¢, d), then ui(c) = 0 and ®,,(c,d, i) = min{M, |u.(c)|} > 0, that for
anyi € {l,...,n},ifc <dand u < /J,O(Oi, c,d), then u; (d) = 0 and @'At,(c, d,i) =
min{M, |u;(d)|} > (. Note also that forany i € {1,...,n + 1} and C > 0, we have

min{®,,(c,d,i), C} = qu:lin{M,C}(C’d’ i) and
min{®}, (c,d, i), C} = q>$m{M’C}(c, d,i).

Lemma 31 Letr M > 0, u € R and {6; };’Ll be as above. Let f € C(la, b)) satisfy
f >0on la, bl. Foranyi € {1, ...,n + 1} the functions (¢, d) — dﬁ,l(c, d,i) are
continuous on the set {(x, y) € [a, b? i x < v}

Proof Set A = {(x,y) € |a, b1? : x < v}. Fix any convergent sequence
{(ck, di)}ren of points in A. Set (c, d) = limg_ oo (ck, di). We need to prove that

Jim 7 (e, di, i) = Dy (c,d, i), (52)
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In the proof which follows, foreachk € N, u; ; € W21 (ck, di) denotes the unique
zeroth order solution of (18), with 8, a and b replaced by 6;, ¢ and di, respectively,
provided a < cx < dp < band i < u°(8;, c, dp).

We consider first the case when ¢ = d. By definition, we have Cbil(c, d,i) =0.
To prove (52), we suppose to the contrary that either

limsup @, (ck, di,i) >0 or limsup CID'Atl(ck, di,i) > 0. (53)

k— 00 k—o00

We may choose a subsequence {(cx;, di;)} jen of {(ck, dk)} so that

lim <I>;,(ck/., dkj, i) = limsup @}, (ck, dy,i) and
j—o0 ' k—o00

. + T + .
l)rr;OCDM(ij’dkjvl)—llknlscgpq>M(cksdkvl)'

J

Obviously, we may assume by passing again to a subsequence if necessary that
ck; < dk_/. and dk_/. - < b —a for all j € N. By Lemma 28, we
have lim;_, ,uO(Qi, Ck; dkj) = 00. Hence, we may moreover assume that u <
/LO 0, ck s dy j) for all j € N. Noting by our choice of 6; that either Uik, (ckj) =0or
Ui k; (dkj) = O forall j € N and that dkj —Ck; — 0, we apply Lemma 23, to obtain

Lim ;. |, =0
P ” ikj ”W c’0(::/(1.,dkj) ’

which readily yields limj_, oo @ (ck;. di;, 1) = im0 CDI,I(ckj o di;, i) = 0. This
contradicts (53), which proves (52).

What remains is the case where ¢ < d. We may assume by replacing {(ck, dx)}
by {(ck+k, dk+x)}ren, With K € N sufficiently large if necessary, that ¢; < di for
all k e N.

Now we consider the case where u < u?(6;, ¢, d). In view of the continuity of the
eigenvalues, Lemma 26, we may now assume that © < ,uO(G,-, ck,dy) forall k € N.
We denote by u; the zeroth order solution of (18), with 6, a and b, replaced by 6;, ¢
and d, respectively. By Lemma 29, we deduce that limg_. 0 #; x = #; in CY([a, b)),
which, in particular, ensures that (52) holds.

Next we consider the case where ¢ < d and u > ,uo(éi, c,d). Note that
®y,(c,d, i) =} (c,d, i) = M.If n > u°@;, c, d), then, by the continuity of the
eigenvalues, we have y© > ,uo(@,-, Ck, di) and hence @, (¢, di, i) = CDL(ck, di,i) =
M for sufficiently large k € N, and (52) follows. We may therefore assume that
w=u6;, ¢, d). To prove (52), we argue by contradiction, and suppose that

liminf &} (ci. dy. i) < M or 1ikrgioréfq>;4(ck,dk,i) <M. (54)

This, in particular, implies that u < ,uo(é?i, ¢k, dy) for sufficiently large k € N. We
may select a subsequence {(ckj, dkj)}jEN of {(c,dy)} sothat u < MO(G,-, Ckjs dkj)
forall j e N,
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Jim @} (ci dig 1) = liminf @) (cx, di. )

and

. —+ AN T . —+ .
]li)n;o qDM(ij, dkj7 l) - hkn_l)géf CDM(Ckv dk7 l)'

Since lim;_, o n0;, Ck;» dk;) = |, by applying Lemma 29 together with Lemma
24, we see that SUp jeN mingg,p)(Jui k; | + |”;,kj |) = oo, which yields

Jim @ cu,ds 1) = lim inf @ (e, de 1) = M.

This contradicts (54), which proves (52). The proof is complete. O

Proof of Theorem 6 (1) The claim (1) for n = 0 has already been proved.

We assume for the moment that f € C([a, b]) with f > 0in [a, D], and prove the
existence of an nth order solution of (18).

Set

n
Anz[y:(yl,...,yn)eRn Ly >0 forall i€ (l,....n), D> v <b—a}.
i=1

Given y = (y1, ..., yn) € R", we write y,41 =b —a — >, y; and note that
an{yz(yl,...,yn) eR" : y; >0 forall i €{l,...,n}, 0 <y, gb—a}.
Fix any M > 0 and define a mapping Ty; : A, — R” by

Ty (y) = Tpua(y), ... Tyun(y)),

where Ty (y) = ®3;(zi—1,2i, i) — Py, (ziv zig1, i+ 1) fori € {1,...,n}, z0=a
and z; :a—}—Z;:lyj forie{l,...,n+1}.

Note by the assumption that f € C([a, b]) and f > Oin [a, b] and by Lemma 31
that 7, : A, — R” is a continuous mapping.

We show that Ty, has a zero in A,, and for this, we consider the degree,
deg(Ty, 0, A,), of Tyy on A, and prove that deg(7yy, 0, A,) = 1.

Observe that 04, = I, 0U I},1, where I, 0 = {y € A, Yo+l > 0, yi =
Oforsomei € {l,...,n}}and I}, ={y € A, : yus1 =0}.

Lety € I,1, note that >7 , y; =b —a > Oand set j = max{i € {I,...,n} :
yi # 0}. Since y; > O and y;11 = 0, we have

4 (zj-1,2j, ) >0, ®y(zjzj1,j+1) =0 and Ty ;(y) > 0.
Observe moreover that for any ¢ € [0, 1],

(I =0Ty ;(y) +1y; >0,
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which shows, together with the continuity of 73, and the compactness of I, 1, that

min{|[(1 — )Ty (y) +ty| : y € I,1, t € [0, 1]} > 0.

Hence, fixing a point p = (p1, ..., pn) € A,, we may choose § € (0, 1) so that
(A =0)Tu(y) +t(y —8p) #0 forall (y,7) € I;,1 x [0, 1]. (55)
Nextlety € I},0. Set j = max{i € {I,...,n} : y; = 0} and note that y; = 0 and

yj+1 > 0. Accordingly, we have
Y (zj-1.2j. ) =0, ®y(zj.2j41.j+1) >0 and Ty ;(y) <O.
Note here that for any ¢ € [0, 1],

(I=0)Ty,;j(y)+1(y;—dpj))=0—-0Tm ;j(y) —dtp; <0,

which shows that

A=Ty(y)+t(y —6p) #0 forall (y,t) € I,0 x [0, 1].
This together with (55) ensures that

A =0Ty(y)+1t(y—6p) #0 forall (y,t) € 04, x [0, 1].

Hence, by the homotopy invariance of degree, we have deg(Ty,0, A,)
= deg(h, 0, Ay,), where h is the function on R" defined by A(y) = y — §p. Thus,
noting that /& vanishes exactly at the point 6p € A, and that §p is a regular value of A,
we see that deg(h, 0, A,) = 1 and conclude that deg(7y,, 0, A,) = 1.

The fact that deg(T}ys, 0, A,) = 1 guarantees that there exists a zero yy € A, of
Ty.

We intend to show that there is a constant M > 0 such that

&, G@mi-1,2m,i.1) <M and
O (i1, zmi, i) <M forall i € {l,....,n+1}, (56)

where

1
M0 =a, zM,,»=a+ZyM,,~ for i e {l,....,n} and zy 41 =b. (57)
j=I

For any M > 0, let yy = (ym.1,.-->YMmn) € Ay be a zero of Ty, and define
the sequence {zM’,-}l"l:Ol by (57). We select a sequence {Mj}ren C (0, 00) so that
limy_, 0o My = 00 and limg_, o0 2y, = 2, Where z = (20, 215 - - - » Zns Znt1) € R*F2

satisflesa = zp <z1 < -+ < zy41 = b.
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The first step is to show that if either z;_1 = z;, or z;_1 < z; and u <
MO(Oi, Zi—1,z;) forsome i € {1, ..., n + 1}, then, for sufficiently large k € N,
Dy @Mpi-1s TMyis ) < My and Y (Zmg i1, Zmyis i) < M. (58)

To see this, assume that either z; | = z;,0rz;—| < z; and u < ,LLO(QI‘, zi—1, z;) for
somei € {l,...,n+ 1}.
Since limy_, oo M} = 00, by Lemma 31, we get forany M > &~ (z;,_1, z;, 1),

lim min{M, &, (Zpm..i—1,2Mm..i,1)} = Iim O (Zpn i1, 2m,is 1
0o { Mk( My, i—1s SMy,i )} 6o M( My, i—1s SMy,i )
=&, (zi-1,2i,1) = D (zi-1,2i, 1),

which implies that

kli)ﬂgo @y @Mpi—1s 2min 1) = P (2i-1, 20, D).
Similarly, we get

i + . Yy = DT (o .

Jim Dy (@ri—1s Imin 1) = PT(2i-1s i ).

Thus, for sufficiently large k € N, we have

— . + .
D@y, @My i—15 2Myin 1) < My and @y, (2agi—15 2Mpi0 1) < M.

Next we show that there exists i € {1, ..., n + 1} such that either
zici=2zi, or zi-y<z and p<p’@,zio1,2). (59)
Recalling the definition of {x,-}fliol, weset j =min{i € {I,...,n+ 1} : z; < x;},

and note that the inclusion, (z;_1, z;) C (xj—1, x;), holds.

If z;_1 = zj, then we have nothing to prove. We may thus assume that z; 1 < z;.
Noting that zo = a, zy+1 = b, ¢u(x;) = O for alli € {l,...,n}, and |@,| >
0in (xj_1, x;) for all i € {1,...,n + 1}, the function ¢, can be regarded as a
zeroth order eigenfunction of the problem, Fl¢] + u"(6,a,b)p = 01in (z;-1, z;)
and B(¢,zj_1,2;) € L(t), for some t € (0, 271]2 satisfying the order relation,
(0, 7) < (0,0;). By Theorem 4, we see that ,uo(t, Zj-1,2j) < MO(Gj, Zj-1,25). Itis
obvious that ,uO(T, Zj-1,2j) = w'(0,a,b). Hence, we have . < uo(r, 7j-1,2j) <
1), zj-1.2))-

Now we prove that (59) holds for all i € {1, ..., n 4+ 1}. It is enough to show that
foranyi, j € {l,...,n+ 1},if |i — j| = 1 and (59) holds for this i, then (59), with
j in place of i, holds. Fix any 7, j € {l,...,n+ 1} sothat |i — j| = 1 and (59) holds
for i. According to (58), choosing k € N sufficiently large, we have

- . + .
D@y @Myi—1: 2My i 1) < My and - @y (2agi—1, 2m.is 1) < M.
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Since Ty, (ym,) = 0, the inequalities above yield

CDJACIk(ZMk,j7171Mk,j7 =Py @mpi-1,2myir 1) < My if j=i—1,
and

Dy @My =15 2My s J) = qDLk(ZMk,ifl,ZMk,i, D<My if j=i+1,

which implies that (59), with j in place of i, holds.

Thus, (59) holds for alli € {1, ..., n + 1} and, consequently, (56) holds for some
M > 0.

We now fix M > 0 so that (56) holds. Since yyy € A,, we have zp,—1 <
zm, forall i € {1,...,n 4+ 1}. By (56), we get u < ;LO(ZM,,-,l,zM,i,i) for all
i €{l,...,n+ 1}, and moreover, since Ty (yy) = 0 and CIDZT,[(ZM,F],ZM,,-, i) =
<I>i(ZM,i—1, Zm.i i) foreveryi e {1,...,n+ 1},

Ot (zpiotyzmini) = @ (amis Zmi1,i + 1) forall i € {1,...,n}.  (60)

Consequently, for any i € {1,...,n + 1}, there exists a zeroth order solution u; €
W2 (zp i1, zm i) of

Fluil+ pui +sgn(u;) f =0 in (zpri-1,zm,i) and  B(u;, zm,i—-1, 2m.i) € L(6;),
and moreover, thanks to (60)
wi(zm,i) = uj(zp) forall i e{l,... n}.
If we define u € W?!(a, b) by setting
u(x) =u;(x) for x € [zm,i-1,2m,i] and i € {1,...,n+ 1},

then u is an nth order solution of (18).

Finally, we remove the additional assumption that f € C([a, b]) and f > 0 in
[a, b], and assume just that f > 0 and f # O in (a, b). We introduce a sequence
{filken C C([a, b]) suchthat f; > 0 on [a, b] and limy_.o fi = f in L'(a, b).
For k € Nlet wy € W%!(a, b) be an nth order solution of (18), with f replaced
by fk, and let {& ; f’:] be the increasing sequence of zeroes of wi. We set o = a
and & ,+1 = b, and we may assume by taking a subsequence of {fi} if necessary
that limg_, o (§¢.0, - - - » &k.nt1) = (M0, - - ., 1) in R for some (1, - .., uy1) €
R"*+2 such that a = no <n < --- < nuy1 = b. Moreover, since either wy > 0 in
(&k,is &kiv1) for all k or else wy < 0 in (§,i, &k i+1) for all k, it is not difficult to
check that

sen(wg) fr — f (resp. sgn(wg) fx — —f) strongly in L' (n;, nit1)
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provided wy > O [resp. wr < O] in (§k,;, &k.i+1) and n;+1 — n; > 0. Therefore, we
have either

n

sgn(wi) fx > & = Z(_l)lx(’)i»'liﬂ)f or
i=0
n

sgn(we) fk > & = Z(—l)lHX(m,mﬂ)f
i=0

strongly in L'(a, b) where x1 denotes the characteristic function of / C R. Remark
that | f| = |g| in (a, b).

Weset j = min{i € {1,...,n+ 1} : n; < x;}, and as before, we have either
nj—1 = njoru < uo(elj,xj_l,xj) < MO(Q/, nj—1,1;). Using Lemmas 29 and
24 and Remark 30, we deduce that {wy} has a convergent subsequence {wy, }¢eN in
w2l (a, b) and the limit w := lim¢_, o Wy, is a solution of Flw] + pw + g = 0in
(a, b).

Fix any i € {1,...,n + 1}, and observe that if n,_; = n;, then B~ (w, ni—1) €
1), Bt (w,n;) € l(6i+) and, hence, w(n;) = w'(n;) = 0 due to the fact that
(0, 6;) is admissible. Observe by the strong maximum principle, Proposition 13, that
if ni_1 < n;,thenw =0on [n;_1, n;], w > 0in (n;—1, n;) orw < Oin (;_1, 1;).
Moreover, in the case where |[w| > 0in (n;_1, 1;), wehave [w(n;_1)|+|w'(n;_1)| > 0
and |lw(n;)| + |w’'(n;)| > 0. Also, we have w(n;) = O foralli € {1,...,n}. Note
here by the continuity of w that the condition, |w| > 0 in (n;_1, 1n;), is equivalent to
stating that either w > O in (n;—_1, n;) or w < 01in (n;—y, 1;).

Since f # 0in (a, b),thereexistsani € {1, ...,n}suchthatn;_; < n;and f #0
in (9i—1, n;), which implies that [w| > 0in (n;i—1, ), [w®i—1)| + [w'(i-1)] > 0
and [w(n;)| + |w'(n;)| > 0. Because of the C'-regularity of w, we see that if j €
{1,....,n+1}and |j —i| = 1, then n;_1 < n;, lw®;-)|+ |w'(nj—1)| > 0 and
lw(n;)| + |w’(nj)| > 0. This shows that for alli € {1,...,n + 1}, we have n;_1 <
iy lw| > 0in (i—1, 1), lwli—)| + [w'(ni—1)| > 0 and [w®n;)| + [w'(;)] > 0.
Thus we conclude that g = limy_ o sgn(wy) fx = sgn(w) f in L'(a, b) and w is an
nth order solution of (18). O

6 Preliminary observations in the radial case

This section provides some preliminaries for the proof of main results in the radial
case.

Leta € [0, R) and g € [1, oo]. We denote by L?(BR\B_a) the space of all those
u € L9(Bg\B,) which are radially symmetric. We also write L{ (a, R) for this space
when any u € L{(Bg\B,) is regarded as a function on (a, R). We define the norm
on L{(a, R) by

1/q

R
lell ooy = (/ |u(r)|qu_1dr) if ¢ < oo,
a
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and ||u ”L?(a,R) = |lull L>(q,r) if ¢ = 00, which is obviously equivalent to the original

norm on LY (Bg\By). Moreover, we define the norm on W% (a, R) by

”””erq(a’R) = ”””L?(Q’R) + ”u//r”L?(a,R) + ”u//”L?(a,R) if ¢ < o0,

and ||u||Wr2,q = [lully2o0 gy if ¢ = 00, which is equivalent to the norm on

@R) *
Wr2 (B R\B_a). See [25, Lemma 6.1] for this equivalence.

In this and next sections we often deal with functions u € Wr2 a (a, R), witha €
(0, R) and ¢ > N/2, satisfying u’(a) = 0 and, without further comment, we use
the convention that such a function u is identified with its extension & € Wrz’q 0, R)
defined by u(r) = u(a) forr € (0, a) and it(r) = u(r) forr € [a, R].

We remark, thanks to (F2) and (F4), thatfora.e.r € (0, R) andall (w, m;, p;, u;) €
SNV=1 x R3 withi = 1, 2, we have

]:(ml’ pla ulvr) - f(mZ’ p25 uz,r)
< P ((mi —m)o®@w+r " (p1 — p)Iy — 0 ® w))
+ BGro)|p1 — p2| + y(ro)|luy — us|.

Noting that the functions
w > Pi(ma) R w+ rilp(IN —wQ w))
are constant for all (m, p, r), we set
PE(m, p,r) = PE(mo @ o + r_lp(IN —wQ w))
for (m, p,r) € R x (0, R), and integrating the inequality above over the unit sphere
SV-1 with respect to the surface measure, fora.e.r € (0, R) andall (m;, p;, u;) € R3,

withi = 1, 2, we obtain

f(m17p17u15r)_F(m29p27u25r) (61)
< PT(m1 —ma, p1 — p2, 1) + B()p1 = pal + 7 (P)u1 — ual.

Here B (r) and y (r) denote the averages of B(rw) and y (rw), respectively, over Sh-1

with respect to the surface measure, that is,

B(r) = a;,l/ B(rw)dS and y):= oeg,]/ y(rw)dSs,
SN-1 gN-1

where dS and « )y denote the (N — 1)-dimensi(_)na1 surface measure and the area of the
sphere SV !, respectively, and the functions 8 and 7 belong to L{ (0, R). Indeed, the
inequalities
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- -1 _ —1
1Bl 908 <oy “IBlLasny and (171,908 <oy 1Y lLecse

hold. For instance, the first inequality can be checked, with use of Holder’s inequality,
as follows:

R q
2119 _ —1 N—1
”ﬂ”L?(O,R) —/0 (aN /SN?l ,B(ra))dS) r dr

R
< aﬁl/ﬂ /stl Bro)?dsrN=ldr = 0‘1:/1 ”ﬂH‘IIﬂ(BR)'

For any o € SV we set M := Iy — w ® w and observe that M > 0 and
tr M = N — 1, to deduce that PT(M) < (N — 1)A. Hence, we have

Pt(m, p,r) < P(m) + (N — DA|p|/r forall (m, p,r) € R® x (0, R), (62)

where P1+ denotes the one-dimensional Pucci operator.

Here an important remark is that under the assumptions (F2) and (F4), the function
F satisfies (F2) and (F4) on the interval [a, R]forany a € (0, R). However, because
of the factor 1/ in the last term in (62), F does not satisfy (F2) on [0, R].

In what follows we write F[u] and P [u] for F@u'(r),u'(r), u(r),r) and
P’ (r), u'(r), r), respectively.

For later reference, we remark that if (i, u) € R x WrZ’q(a, R) is an eigenpair of
(7)1in (a, R), then both ¢ = u and ¢ = —u satisfy

PHel+ Bl¢'| + 7ol + ue >0 in (a, R). (63)

Now, we recall some facts from [25, Lemmas 7.1, 7.2, Theorems 7.5, 7.6 and 7.7].

Lemma 32 Assume that (F2) and (F5) hold. Let a € [0, R), u € Wrz’q(a, R) and
f, f1. € Li(a, R). Assume that u'(a) = 0 ifa > 0. (1) If u satisfies P*[u] +
Blu'| + f = 0in (a, R), then there exists a constant C > 0 depending only on
A, A, q, N and ”B”Ly(o’R) such that

().

< ClIFell o a - (64)
Li@a,R)

Furthermore,

D

(g—D/q
max]u(t) —u(R) < C (R(Zq*N)/(qfl) _ a(zqu)/(qfl)) ||f+||L;1(a,R)~

tela, R
2) If u(R) = 0 and u satisfies

PHul+ Bl |+ f1 >0 and P [ul —Blu'| — <0 in (a, R),
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then there exists a constant C > 0 depending only on q, ., A, N, R, ||l§||L{V(O,R) and
||ﬁ||L;1(0’R) such that

bl 2 gy < COCPD 4180 ) 102+ 120 -

(3) Assume a = 0 and that u > 0in [0, R] and P~ [u] — Blu’| —yu <0in (0, R).
Then either u = 0in [0, R] or u > 0in [0, R) and max{u(R), —u'(R)} > 0.

A few comments regarding the proof of the lemma above may be in order. The
inequality (64) above is proved in the first half of the proof of Theorem 7.5 in [25],
and the latter of assertion (1) follows form Lemma 7.2 in [25] applied to the function
u(r) — u(R). The inequality, max{u(R), —u’(R)} > 0, in assertion (3) follows from
Proposition 13, applied on an interval [a, R], witha € (0, R).

Proposition 33 Assume (F1)—(F5) hold. Let (i, u) € R x Wrz’q(O, R) be a solution
of (7). If u # 0, then u(0) #~ 0.

Proof By Lemma 32 (1) and (63), if u(b) = 0 for some b € (0, R], we obtain

max u| < CO* N9 7 + 1D lullg05 < CON N7 + Il g0, ma ul.

where C is a positive constant depending only on A, A, ¢, N and ”B”L{V(O,R)' We
thus get

(1= C16> M%) max |u| <0, (65)
[0,b]
where Ci := Clly + |rlll 4 p- Note that maxjo,p) [u| > 0. Indeed, if we assume

that maxpo 5] |#| = 0, then u(b) = u’(b) = 0. Hence, for each ¢ € (0, R), applying
Lemma 12 and invoking (27) on [¢, R],weseethatu(x) = Oon[c, R] which, however,
is a contradiction. From (65) we get C1b*>~N/4 > 1. Thus, choosing ¢ € (0, R) so
that C;c2~N/4 < 1, we have either u(x) > 0 for all x € (0, ¢) or else u(x) < O for
all x € (0, ¢). Lemma 32 (3) now ensures that u(0) # 0. O

The following maximum principle and comparison principle are valid.

Theorem 34 Assume that (F1)—(F5) hold. (1) Let 6 € (0, 7], and assume that there
exists a function ¥ € Wrz’q(O, R) such that

{]—‘[1//]50, FIY1£0 and ¥ >0 in (0, R), ©6)

B+ (Y, R) €1(0).

Ifu e Wrz’q (0, R) satisfies

Flul =0 in (0, R),
Bt (u,R) € l(xr) forsome T € [0, 27],
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then u < 0 in (0, R). 2) Let u,v € Wrz’q(O, R), 6, € (0, 2m] and 0, € (0, ].
Assume that F[v] < Flu]in (0, R), BT (u, R) € [(6,) and B (v, R) € 1(6,) and
that v > 0 in (0, R), Sup(o, ) u/v = 1and 6, > 60,. Then u = v in [0, R]. (3)
Let 6 € (0, 7] and v, w € Wrz’q(O, R). Assume that there exists ¥ € Wrz’q(O, R)
satisfying (66) and that v, w satisfy

Flw] <0, Flw] <Fv] and w >0 in (0, R),
BT (w,R) €1(®), BT(v,R) €l(r) forsome t €0, 27].

Thenv < w in [0, R].

An important consequence of claim (1) of the theorem above is thatif u < u?(@, R)
andu € Wrz’q(O, R) satisfies F[u]+ puu > 0in (0, R) and Bt (u, R) € 1(7) for some
T € [0, 2n], then u < O in [0, R]. Indeed, choosing ¢ € Wrz’q(O, R) to be an
eigenfunction corresponding to /L?(@, R), we have F[¢]+ puyy <0 and ¢ > 0 in
0, R).

Proof We first show assertion (2). To show (2), we suppose to the contrary that u # v
on [0, R], and note by assumption that # < v in [0, R]. Setting w := v —u > 0,
we get P~ [w] — Blw'| — yw < 01in (0, R). Since w # 0 in [0, R], Lemma 32 (3)
assures that w > 0 in [0, R) and max{w(R), —w’(R)} > 0. When w(R) > 0, it is
easily seen that sup(y gy u/v < 1, which is a contradiction.

When w(R) = 0, we have two cases: either v(R) = u(R) > 0,0or v(R) = u(R) =
0. If v(R) = u(R) > 0, then we have u'(R) > v'(R), which yields the inequality
0, < 0y, a contradiction. If v(R) = u(R) = 0, then we get 6, = 7w, v/(R) < 0 and
v/(R) < u/(R). Hence, by I’'Hopital’s rule, we find that

u(r)y u'(R)
im — =
r—R+0 v(r) V' (R)

< 9

which gives a contradiction, sup gy #/v < 1. Thus, w = 0 in [0, R] and assertion
(2) holds.

Next, we prove assertion (1). To show (1), we note first that P~ [y ] — B|v/| -y <
Fl¥] < 0in (0, R) and by Lemma 32 (3) that ¥/(0) > 0. Suppose to the contrary
that maxjo gju > 0, set p = supy g)u/¥ and observe that p € (0, c0). Noting
Floy] = pF[¢¥] < 0 < Flu]l, assertion (2) gives pyy = u in [0, R]. Therefore, we
infer F[¢] = 0, however, this is a contradiction. Thus assertion (1) is valid.

In order to prove (3), we argue by contradiction and suppose maxo gj(v —
w) > 0. As in the proof of assertion (1), we obtain ¢¥(0) > 0, w(0) > 0 and
max{w(R), —w'(R)} > 0. Observe as in the proof of Proposition 18 thatif w(R) = 0,
then w'(R) < 0 and v(R) < 0. We set p := sup(, gy v/w and argue as in the proof
of Proposition 18, with Lemma 32 (3) as the strong maximum principle, to find that
p € (1, 00), pw =von[0, R] and F[w] = 01in (0, R). Moreover, using assertion
(1) above, we obtain w < 0, a contradiction. The proof is complete. O

Let 0 < a < R and consider the eigenvalue problem for (7) in (a, R) with
boundary condition u’(a) = 0 and BT (u, R) € [(8T). The Neumann condition
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u'(a) = 0 may be stated in terms of a unilateral boundary condition as B(u, a, R) €
L(®~,0%), where 0~ € {n/2, 3m/2}.

In what follows we use the notation ;' (6, a, R) to denote the nth order eigenvalue
of (7) with the boundary condition,

B(u,a, R) € L(6). (67)

Lemma 35 Assume that (F1)—(F5) hold. Let ¢ € (0, R) and (n,0) = (n,0=,6%) e
No x {7/2, 37/2} x (0, 27 ]. I (n, 0) is admissible, then sup,¢ (o ¢ |1y (0, a, R)| <
00.

Proof In view of (S1), it is enough to treat the case where 8+ € (0, m]. For each
a € (0, ¢) let g, € W21 (a, R) be an nth order eigenfunction of (7) and (67).

Note that (n+2, 6) is admissible and set vy = ,uf“(é, ¢, R). Wefixanya € (0, c)
and show that u' (6, a, R) < vg. Select O, € (0, 27] so that B~ (¢g4, ¢) € 1(9;6.),
that is, 9ch = O(—¢,(c), pa(c)), and set O, . = (e 07), and observe that the pair
of u'(6, a, R) and ¢, is an eigenpair of (7) and (67), with the interval (a, R) and the
angles 6 replaced by (¢, R) and 6, ., respectively. Let n, . € No be the number of
zeroes of ¢, in (¢, R), and note thatn, . < n and wree (Ba,coc, R) = pl(0,a, R). We
also remark that (n,4.¢, 64.c) < (n+2, 6) holds from the remark stated after (11)—(15).
Thus, by Theorem 4, we get e (Ba,c. ¢, R) < vp and hence (6, a, R) < vp.

Next we give a lower bound of ul' (6, a, R), witha € (0, ¢). Set 6y = (7/2, 0"),
and note that (0, 9y) is admissible and by Theorem 4 that ;L? (Bo,a, R) < ul@,a, R).
We need to find a lower bound, independent of a, of the u? (0o, a, R), witha € (0, ¢).

For each a € (0, ¢) let ¥, € W>!(a, R) be a principal eigenfunction of (7)
and (67), with the angles 6 replaced by 6. Clearly, ¥, > 0 in (a, R) and the
eigenvalue corresponding to ¥, is ,u?(@o,a, R). For each r € (a, R) we choose
(r) € (0, m) so that B~ (Y4, r) € I(t(r)). That is, we fix t(r) € (0, m) by setting
7(r) = O (=, (r), Y4(r)). Note that the pair of,u(r) (6o, a, R) and Y, is an eigenpair of
(7) and (67), with the interval (a, R) and angles 6 replaced by (r, R) and (z(r), 67),
respectively, for all » € (a, R).

Let x € W2Zl(c, R)bea principal eigenfunction of (7) and (67), with the interval
(a, R) and angles § = (~, 07) replaced by (c, R) and (r/4, 6T), respectively. Note
that x > Oon[c, R).Setv; = u?(n/4, 0%, c,R) and o (r) = O(—x'(r), x(r)) for
r € [c, R), note that B~ (x,r) € [(o(r)) forall r € [c, R) and (v1, x) is a principal
eigenpair of (7) and (67), with the interval (a, R) and angles 6 replaced by (r, R) and
(o(r), 67), respectively, for any r € [c, R).

Since r + o () is continuous on [¢, R), we may selectd € (¢, R) sothato (r) <
/3 forall r € [c, d]. Noting that

PHWal + BIYi + (7 + a)+¥a = 0 in(a, R),

we find by Lemma 32 (1) that there exists a constant C > 0, depending only on
A, A, g, N, ¢, dand ”:BHL?(O,d) such that
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v _
H (_a <Cl|(y + /La)-l—”L;f(c’d) max ¥, (68)
r 7 rde.a le.d]
max v < Va(d) + CI(7 + pa)+ Il 14 (c.q) MAX V. (69)
le,d] ris [e,d]

We set
50m) = CI@ +msllga formeR,

and observe that m +— §(m) is nondecreasing on R and lim,,_, _, 6(m) = 0. We
choose mq € R so that

8(mg) <1 and cos™! 3(mo) > /3.
(1 - S(mo))”l/r”[fr’(c,d)

Recall that the function cos™!

and cos~1(0) = /2.

We write , = u?(@o, a, R), for notational simplicity, and now show that u, >
min{vy, mo} forall a € (0, c]. To do this, we fix any a € (0, c]. If u, > my, there is
nothing to show, and hence, in what follows, we assume p, < mg and prove v; < ,.

From (68), (69) and the monotonicity of §, we get

: [—1, 1] — [0, 7] is nonincreasing and continuous

in(V)_ <$ 1/r)7) d 1-6 < Y, (d).
min (Vo)— = 8mo)ll1/rll g 4y maxya and (mO))r[IJ’E};J“//a_Wa((LO)

If ming. 41 Yo < (1 = 8(mo)) max(c q4) Vq, then there exists r, € [c, d) such that

Va(ra) < (1 - S(mo))l[lcla};]ﬁ Va < Ya(d),

which implies in view of the mean value theorem that ¥/ (s,) > 0 for some
sq € (rq, d). Note that 7(s;) > 7w/2 > w/3 > o(s;). Theorem 4 assures that
wO(t(sq), 0%, 50, R) > (0 (sa), 07, 54, R). That is, we have i, > vy .

Otherwise, we have minj. 41, > (1 — 8(mg)) max|c 4] ¥,. Combining this with
the first inequality of (70) yields

(mo)

1 4 -1
(wa)f(ta) =< T(mo)nl/r”L?(c’d)l/fa(ta)

for some ¢, € [c, d]. Hence,

) -1
l—(B’?r(iz)o) l l/r”L;i (c,d) Va (ta)

T(tg) = O (=Y, (ta), Valty)) > cos™
VULt + Ya(ta)?

_ d(mo) _
1 1
> cos (T(mo)”l/r”ﬂ(ad)) >7/3 > 0 (ta).
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Therefore, by Theorem 4, we find that v; = 1% (o (1), 07, t4, R) <ul(t(t,), 67, t4, R)
= [uq. Thus, we have u, > min{mg, v} for all a € (0, c]. Furthermore, recall-
ing that ,u?(@, a,R) < pi(0,a, R) < vo, we conclude that sup,c .o 41 (0, a, R)]
< OQ. O

We consider the boundary value problem

Flul + pu +sgn(u) f =0 in (a, R), a1
W@ =0 if a>0, and BY(u, R)€l(®)

where u € R, f € L0, R),and 6 € (0, 27]. The Neumann boundary condition at
a € (0, R) isrephrased as B~ (u, a) € [(w/2) Ul(31r/2).

Lemma 36 Assume (F1)—(F5) hold. Let {j1j}jen CR, n € R, {a;} C (0, R), 0 €
(0, 2], n € No, {uj}jen C W90, R), u € WS90, R), and f € LI (0, R).
Assume that, for every j € N, u; is an nth order solution of (71), with a and
replaced by a;j and i, respectively, that, as j — 00, u; — u weakly (weakly star
when g = 00) in Wrz’q(O, R), uj — pandaj — 0, and that u # 0 on [0, R]. Then
u is an nth order solution of (71), witha = 0.

Proof Due to the Sobolev embedding theorem, the sequence {u;} converges to u in
C ([0, R]) as well as in Clloc((O, R]).
n+1

For j € N, let {rj;};"y C (0, R] be the increasing sequence such that r; o =
aj, rjpr1 = R and uj(r;;) = 0 for all i € {I,...,n}. We may choose an
increasing sequence {jx}rcny of natural numbers so that as k — o0, the sequence
{(Tje,0, ¥, 15 - - Tjp,n+1)} converges to a point (ro, 71, ..., Tug1) € R"*2 1t is clear
thatro=0<r1 <--- <ryy1 = Randu(r;) =0foralli € {1,...,n}.

Observe that forany i € {1,...,n + 1}, if r;_1 < r;, then either

lim sgn(u; (r)) =1 forall r € (ri—1, r;), or
k— 00

lim sgn(u; (r)) = —1 forall r € (r;—1, ;).
k— 00

Hence, according to the Lebesgue convergence theorem, the sequence {sgn(u ) f}
converges, as k — 0o, to a function g in L1(0, R) such that gl = f in (0, R).
Furthermore, for any i € {2,...,n + 1},if 0 < r,_; < r;, then we have either

u>0 and g= f on [ri_, ri], or 72)
u<0 and g=—f on [ri_1, ri].

By Lemma 24, for each a € (0, R), we have Flu]+ pu + g =0 in (a, R), which
readily yields
Flul+puu+g=0 in (0, R). (73)

Because of the convergence of {u;} to u in Clloc((O, R]), we deduce that, fori €
{2,...,n+ 1},

if 0 <ri_y=r;, then (u(r;),u'(r;)) = (0,0). (74)
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Indeed, for i € {2,...,n}, by the mean value theorem, we have 0 = (u;(r;;) —
uj(rj,,-,]))/(rj,i — "j,ifl) = u/J (Zj,i) for some Zj,i € (}"j,i,] s rj,i), and, by putting
J = Jjr and sending k — oo, we obtain u'(r;) = 0. Similarly, by the boundary
condition at r = R, if r; = R fori < n, then we have (u(r;), u'(r;)) = (0, 0).

By the strong maximum principle, we infer that fori € {2,...,n + 1},

if 0<riy <ri and u #0 in (rj_1, r;), then |u| >0 in (ri_1, 1i),

(u(ri—1), u'(ri—1)) # (0,0) and (u(ri), u'(r;)) # (0, 0). (75)

As noted before, the condition, |u| > 01in (r;_1, r;), is equivalent to stating that either
u>0in (ri_y, ri)oru < 0in (ri_1, ri).

To examine that (75) holds, we may assume in view of (S1) and (72) that u > 0
and g = fin (rj_1, ri), where O < rj_; < r;. Noting by (73) that F[u] 4+ pu < 0in
(ri—1, r;) and applying Proposition 13 to the functions 0 and u, we obtain # > 0 in
(ri—1, ri), u'(ri—1) > 0 and u’(r;) < 0, from which we conclude that (75) holds.

Similarly, by using Lemma 32 (3), the strong maximum principle in the radial case
and the fact u(r;j) = 0 for 1 < j < n, we deduce thatfori € {1,...,n + 1},

if 0=ri_y<riand u # 0 in (ri—y1, ri), then i =1, |u| >0 in [0, r;)

and (u(r;), u'(r;)) # (0, 0). (76)
We note that
if (u(R),u'(R)) # (0,0), then BT (u, R) €1(). (77)
This is an immediate consequence of the fact that (u(R), u'(R)) = im0 (u
(R), w/;(R)) € 1(6).
Now, we intend to prove that for any i € {1,...,n 4 1}, either of the following

two conditions holds:

i=1, rioi1=0<r;,, |ul>0 in [rj_1, r;) and

(u(r), u'(r)) # (0, 0), (78)
or

i>1, O<riy<vri, |ul>0 in (ri_y, ri), (79)
(u(ri—1), u'(ri—1)) # (0,0) and (u(r;),u’(r;)) # (0, 0).
To see this, we set
I={iefl,...,n+1} : either (78) or (79) holds},
and show first that I # (.
By assumption, we have u # 01in (0, R). Hence, there existsani € {I,...,n+1}

such that r;_; < r; and u # 0 in (rj—1, r;). It follows from (75) and (76) thati € I.
Thus, I # @.
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Next, to show that I = {I,...,n + 1}, we suppose to the contrary that I #*
{1,...,n+1}. Wemay thenfindi € I and j € {1,...,n+1}\ [ suchthat|i —j| = 1.
Consider the case when j = i — 1. Sincei € I andi = j + 1 > 1, we have

rj = ri—1 > 0and (u(rj),u’(r;)) # (0,0). Hence, we have r;_; < r; by (74)
and u # O on [r;j_1, r;]. It follows now from (75) and (76) that j € I, which is a
contradiction.

We consider next the case when j =i + 1. Since i € I, we have (u(r;), u'(r;)) #
(0, 0), which implies together with (74) that r; = r; 1 < r;. It follows from (75) that
j € I, which is a contradiction.

We have thus proved that 7 = {1, ..., n + 1}. It is now clear that # has exactly n
zeroes in (0, R) and u(0) > 0. This property of u and (72) ensure that g = sgn(u) f
in (0, R). Moreover, we see from (77) that BT (u, R) € [(0). Thus, u is an nth order
solution of (71), with a = 0. O

7 Proofs of the main results in the radial case

Proof of Theorem 9 For i = 1,2, let (i, i) € R x W>9(0, R) be an nth order
eigenpairs of (7)—(8), with 6 replaced by 6;. Note by Proposition 33 that ¢; (0) # 0
fori =1, 2.

We argue by contradiction and thus suppose that 1 > us.

Let {x; };”;61, {y j}'}f{)l be the increasing sequences of points in [0, R] such that
x0 = yo = 0, Xy;4+1 = Yn,+1 = R, and the x;, with 0 < j < n; + 1, and the y;,
with 0 < j < ny + 1, are zeroes of the functions ¢; and ¢, , respectively.

We assume first that ny = np, i(0;) = i(6) and 6; < 6,. We note that
91(0)p2(0) > O, that x,;41 = Y +1 = R, set m = min{j € {1,...,n1 + 1} :
yj < x;} and observe that x;;—1 < Ym—1 < Ym =< Xp and @1(r)@2(r) > 0 for all
r € Ym—1, Ym)-

We consider next the case whenny =ny + 1, i(6)) = i(6;) and 6; < 6>. We note
that ¢1(0)¢2(0) < Oand y, 42 = R = X,41, set m = min{j € {2,...,n1 +2} :
yj < xj_1} and observe that x;,—2 < Yu—1 < Ym =< Xm—1 and @@y > 0 in
(Ym=15 Ym)-

Consider now the case whenny = n1+1andi(0;) # i(62). Note that ¢ (0)¢2(0)
0,setm = min{j € {1,...,n1 +1} : y; < x;} and observe that x;,—1 < ynu—1
Ym = Xms Ym < Ynp+1 = Rand @192 > 0in (Ym—1, ym)-

What remains is the case where no > ny + 2. If ¢1(0)¢2(0) > 0, then set m =
min{j € {1,...,n; +1} : y; < x;} and observe that x,,—1 < yu—1 < Ym =<
Xms Ym < Rand g1 > 01in (yiu—1, ym)- If 91(0)¢2(0) < 0, then set m = min{j €
{2,...,n1+2} : y; <x;_1}andobserve thatx,, > < yu—1 < ym < Xm—1, Ym < R
and 192 > 0in (Ym—1, ym)-

Thus there exists a nonempty subinterval [c, d] C [0, R] having the properties:
(1) p1¢2 > 0 in (¢, d), (2)if ¢ # 0, then ¢2(c) =0 3)if d # R, then ¢p2(R) =0
and (4)if d = R, theni(61) = i(6») and 6; < 0,.

By the symmetry (S1) we may assume that ¢; > 0 and ¢ > 0 in (c, d). Since
w2 < 1, we get Flo1] + uaer < 0 in (c, d).

AV
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We use the maximum principle, Theorem 34 (1) if ¢ = 0 and Theorem 16 if ¢ > 0,
to obtain ¢» < 0 on [c, d], which is a contradiction. Thus, we see that the inequality,
w1 < w2, holds. ]

Comment on the proof of Theorem 7 (1) We do not give the proof of claim (1) of The-
orem 7 since it is similar to that of Theorem 2 (1). Indeed, the uniqueness of nth order
(radial) eigenvalue of (7) and (8) is a consequence of Theorem 9. Regarding unique-
ness of nth order (normalized and radial) eigenfunctions, using the strong maximum
principle, Theorem 32 (2) and Lemma 14, one may easily adapt the proof of Theorem
2 (1). We leave it to the reader to check the details. m|

Comment on the proof of Theorem 10 We do not give the proof of Theorem 10 since
it is similar to that of Theorem 5, and we leave it to the interested reader to check the
details. O

Proof of Theorem 7 (2) Let (n,0) € Ng x (0, 2x]. We select 6~ € {m/2, 37/2}
so that (n,07, 0) is admissible, and fix a sequence {a;};en C (0, R/2) so that
lim oo a; = 0.Foreach j € N, setjuj = p" (0,0, a;, R) andletp; € W4 (0, R)
be the eigenfunction corresponding to ! (0~, 6, a;, R), with [|¢;|l 2~ r) = 1.

Thanks to Lemma 35, we see that the sequence {i;} ;N is bounded. By taking a
subsequence of {a;} if needed, we may assume that {u;};ecn is convergent, and we
set o :=1im; o0 ;.

Noting that £(¢; (r) — ¢;(R)) satisfy

PHul + Br)u'| + £j(r) = 0 in (a;, R)

where f;(r) := (v (r) +11;D1¢;(r)|, applying Lemma 32 (2) to r = ¢;(r) —¢;(R),
we deduce that {g;} ;<N is bounded in Wrz’q (0, R),and we may assume by passing toa
subsequence if necessary that it is convergent weakly in Wr2 “1(0, R) to a function ¢ €
Wrz’q (0, R), which implies that {¢; } converges to ¢ in C([0, R]) and ||¢|| L~ ,r) = 1.

Now, we apply Lemma 36, with f = 0, to see that (u, ¢) is an nth order eigenpair
of (7) and (8). O

Outline of proof of Corollary 8 The existence of nth order eigenpairs (u*, &) of (7)
and (19) satisfying condition (1) can be shown by applying Theorem 7 to (7)—(8), with
01 or 6> in place of 6. Given an nth order eigenpair (u, ¢) of (7) and (19), with
lellze© r) = 1, it is clear that if ¢(0) > 0, then (1, ¢) = (u", @) and otherwise,
(m, ) =™, ¢7). o

Outline of proof of Theorem 11 The proof of claims (2) and (3) is similar to that of
the corresponding claims of Theorem 6 thanks to Theorem 34.

For claim (1), recalling the proof of Theorem 7, we may selecta sequence {a; } jen C
(0, R/2)sothata; — Oand u!(0~,60,a;, R) — ur (@, R),where0~ € {n/2,3m/2}
is chosen so that (n,67,0) is admissible. Since u < w} (0, R), we may assume
n < puy@,0,a;, R) forall j € N. Thus by Theorem 6, there exists an nth order

solution u; € w290, R) of

Flujl+ puj+sgn(;)f =0 in (aj, R), B(uj,a;,R) € L6 ,6).
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Since both £u ; satisfy
Prlul + Blu'| + (7 + [uDlul + f = 0 in (aj, R),

once we show that {u;} is bounded in L°°(0, R), thanks to Lemmas 32 and 36, the
existence of nth order solution of (26) follows.

We show that {u;};cn is bounded in L*°(0, R). To the contrary, we suppose
llujll Loo0,r) — o0 and set v (r) :=u;(r)/lluj|lL>(,r). Then v; satisfies

sgn(u;) f

lvjllLe.r) =1, Flvjl+ pvj +
Il 1l Lo 0, R)

=0 in(a;, R).

Arguing as above, using Lemmas 32 and 36 and the fact that sgn(u ;) f/[lu || Lo 0, r) —
0 strongly in L1(0, R), we may find an nth order eigenpair (i, v) € R x Wrz’q(O, R).
However, since ;1 < pu} (6, R), this is a contradiction. Thus {u;} is bounded in
L®°(0, R) and the proof is complete. O

8 Examples
8.1 Non-uniqueness for (18)

We present examples of (18) that have many first order solutions.
Let £2 be the interval (0, 3) and consider the boundary value problem

Flul+ pu +sgn@)f =0 in (0,3) and B(u,0,3) € L(r/2,37/2) (80)

where w is a constant, the function F is given by F(m, p,u,x) = m, f =
X©,1) + x@,3 and x(,q) denotes the characteristic function of the interval (c, d).
The boundary condition in (80) is of the Neumann type.

For ¢t € [1/2, 3/2] we define the function u, : [0, 3] — R by

t— %xz forx € [0, 1],
u(x)={4t—3—x+1 for x € [1, 2],
t—2+1(x—3)2 for x €[2, 3] (Fig.5).

Fig. 5 The graph of the Y
function u

3/2 3
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It is easily seen that u; € W2°°(0, 3) and u, is a first order solution of (80)
for © = 0. By Theorem 6, we see that 0 < ,ul(n/Z, 37 /2,0, 3). Thus, the family
{u; =t € [1/2, 3/2]} tells us that the uniqueness of the first order solutions of (80)
does not hold.

8.2 Non-uniqueness for (26)

We treat the radial case and show that a simple modification of the previous example
yields an example of (26) that has many first order solutions.
Let R =5, define the functions F and f by

2

N-—-1/x T
FM, p,u,x) :=tr M — x1,5(x) —, p)+ —xa5(x)u
[x]\ x| 4

and f := x12 + x3,4 where x; ; denotes the characteristic function of the annulus
{x e RV : i < |x| < j}, and consider the boundary value problem for u e

W0, R):
F(D2u,Du,u,x)+Mu+sgn(u)f=0 in Bg and Bt(u,R) €l(2n), (81)

where ¢ > N /2 and p are constants. Here the boundary condition is of the Dirichlet
type. This problem can be rewritten as

FW” u' u,r)+ pu +sgn(u)g =0 in (0, 5) and Bt (u,5) e l2n),

where F and g are the functions given by

2

T
" xo,nT)p + TX(4,5)(V)M and g := x1,2) + XG3.4-

F@m, p,u,r):=m+

For ¢t € [1/2, 3/2], we define the function v, : [0, 5] — R by

‘ for r € [0, 1],
t—Le =1y for r € [1, 2],
v (r) = t—%—r+2 for r € [2, 3],
t—2+%(r—4)2 for r € [3, 4],

2 —1t)sin(w(r —5)/2) for r €[4, 5] (Fig. 6).

It is easily checked that this function v; belongs to Wrz’oo(O, 5) and satisfies (81)
with u = 0. Hence, the uniqueness for first order solutions of (81) does not hold in
general.
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Y

)
8

Fig. 6 The graph of the function v;
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