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Abstract This is a continuation of Ikoma and Ishii (Ann Inst H Poincaré Anal Non
Linéaire 29:783–812, 2012) and we study the eigenvalue problem for fully nonlinear
elliptic operators, positively homogeneous of degree one, on finite intervals or balls.
In the multi-dimensional case, we consider only radial eigenpairs. Our eigenvalue
problem has a general first-order boundary condition which includes, as a special case,
the Dirichlet, Neumann and Robin boundary conditions. Given a nonnegative integer
n, we prove the existence and uniqueness, modulo multiplication of the eigenfunction
by a positive constant, of an eigenpair whose eigenfunction, as a radial function in the
multi-dimensional case, has exactly n zeroes. When an eigenfunction has n zeroes,
we call the corresponding eigenvalue of nth order. Furthermore, we establish results
concerning comparison of two eigenvalues, characterizations of nth order eigenvalues
via differential inequalities, the maximum principle for the boundary value problem in
connection with the principal eigenvalue, and existence of a solution having n zeroes,
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as a radial function in the multi-dimensional case, of the boundary value problem with
an inhomogeneous term.

Keywords Eigenvalue problem · Fully nonlinear equation · General boundary
conditions · Principal eigenvalues · Higher order eigenvalues

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
2 Main results in the one-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
3 Main results in the radial case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
4 Preliminary observations and results in the one-dimensional case . . . . . . . . . . . . . . . . 463

4.1 Two basic symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
4.2 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
4.3 The strong maximum principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
4.4 The maximum and comparison principles . . . . . . . . . . . . . . . . . . . . . . . . . . 467
4.5 Basic estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

5 Proofs of the main results in the one-dimensional case . . . . . . . . . . . . . . . . . . . . . . 475
5.1 Comparison of eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
5.2 Existence of principal eigenpairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
5.3 Higher order eigenpairs in the one-dimensional case . . . . . . . . . . . . . . . . . . . . . 479
5.4 Characterizations of eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
5.5 Inhomogeneous equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

6 Preliminary observations in the radial case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
7 Proofs of the main results in the radial case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

8.1 Non-uniqueness for (18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
8.2 Non-uniqueness for (26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

1 Introduction

This paper is a continuation of [25] and deals with the eigenvalue problem

F(D2u, Du, u, x) + μu = 0 in Ω, (1)

B(Du, u, x) = 0 on ∂Ω. (2)

Here F : SN ×R
N ×R× Ω → R and B : RN ×R× ∂Ω → R are given functions,

S
N denotes the set of all N × N real symmetric matrices, Ω ⊂ R

N is an interval
(a, b) if N = 1 and, otherwise, an open ball BR with radius R > 0 centered at the
origin, and (μ, u) represents an unknown pair of a real number and a function on Ω

in a Sobolev space, which will be specified later.
For a function u on Ω in a Sobolev space, if Eq. (1) holds in the almost everywhere

sense, then we call u a solution of (1).
We call a pair (μ, u) of a constant and a function onΩ an eigenpair of (1)–(2) [resp.

of (1)) if (μ, u) satisfies (1)–(2) [resp. (1)] and u �≡ 0. When (μ, u) is an eigenpair,
we call μ and u an eigenvalue and an eigenfunction, respectively. For an eigenpair
(μ, u), if either u(x) > 0 in Ω or u(x) < 0 in Ω , then we call (μ, u) [resp. μ and
u] a principal eigenpair [resp. a principal eigenvalue and a principal eigenfunction].
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Eigenvalue problem for fully nonlinear second-order elliptic… 453

Furthermore, if u(x) > 0 [resp. u(x) < 0] in Ω , then we call the eigenpair (μ, u)

and the eigenfunction u positive [resp. negative]. When N ≥ 2, an eigenpair (μ, u) is
called a radial eigenpair if u is radially symmetric.

The eigenvalue problem for fully nonlinear PDE (1) has been paid much attention
since the work of P.-L. Lions [28]. For the recent developments, we refer to [2,3,6–
14,18,19,21,22,26,30–32]. See also [1,4,5,17,24] for the recent contributions and
overviews on the eigenvalue problem for linear elliptic operators.

In [25], under theDirichlet boundary condition, that is, in the casewhere the function
B is given by B(p, u, x) = u, the authors have proved the existence of sequences
of eigenpairs [resp. radial eigenpairs] of (1)–(2) when N = 1 [resp. N ≥ 2] and
that, modulo multiplication of eigenfunctions by positive constants, there is no other
eigenpairs [resp. radial eigenpairs] of (1)–(2) when N = 1 [resp. N ≥ 2].

Our aim of this paper is to establish the existence of eigenpairs when N = 1 and
radial eigenpairs when N ≥ 2 of the problem (1)–(2), and to provide basic properties
of eigenpairs. We thus generalize the results in [25] to cover the eigenvalue problem
(1) with general boundary conditions. The results due to Patrizi [30] concern the
eigenvalue problem for (1) with the Robin boundary condition, and are related closely
to our results in this paper.

Throughout this paper, as far as we are concerned with (1)–(2), wemake the follow-
ing assumptions on F . The conditions (F1)–(F4) below are the same as those in [25]
except that the case of (N ,�) = (1,∞) is excluded and an integrability requirement
on the function x �→ F(0, 0, 0, x) is added in (F2) below. See also Esteban, Felmer
and Quaas [21] for a formulation of eigenvalue problems similar to the one below.

(F1) The function F : SN × R
N × R × Ω → R is a Carathéodory function, i.e., the

function x �→ F(M, p, u, x) is measurable for any (M, p, u) ∈ S
N × R

N+1

and the function (M, p, u) �→ F(M, p, u, x) is continuous for a.e. x ∈ Ω .
(F2) There exist constants 0 < λ ≤ � < ∞, q ∈ [1, ∞] and functions β, γ ∈

Lq(Ω) such that

F(M1, p1, u1, x) − F(M2, p2, u2, x) ≤ P+(M1 − M2) + β(x)|p1 − p2|
+γ (x)|u1 − u2|

for all (M1, p1, u1), (M2, p2, u2) ∈ S
N × R

N+1 and a.e. x ∈ Ω . Furthermore,
the function x �→ F(0, 0, 0, x) belongs to Lq(Ω). For the definition of P+,
see below.

(F3) F(tM, tp, tu, x) = t F(M, p, u, x) for all t ≥ 0, all (M, p, u) ∈ S
N × R

N+1

and a.e. x ∈ Ω .

Here and in what follows P± denote the Pucci operators defined as the functions given
by

P+(M) = sup{ tr (AM) : A ∈ S
N , λIN ≤ A ≤ �IN },

and

P−(M) = inf{ tr (AM) : A ∈ S
N , λIN ≤ A ≤ �IN },
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454 N. Ikoma, H. Ishii

where IN denotes the N × N identity matrix and the relation, X ≤ Y , is the standard
order relation between X,Y ∈ S

N . For instance, if N = 1, then P+(m) = λm for
m ≤ 0 and P+(m) = �m for m > 0.

Condition (F3) represents a characteristic of our eigenvalue problem, where every
eigenpair (μ, u) is supposed to have the positive homogeneity property, that is, (μ, tu)

is also an eigenpair for any t > 0. This is the fundamental property in our eigenvalue
problem, and a natural requirement on the function B in (2) is then that B(p, u, x)
should be positively homogeneous of degree one in the variables (p, u). Furthermore,
remark that (F3) implies F(0, 0, 0, x) = 0 a.e. in Ω .

Instead of using the equation B(Du, u, x) = 0, we actually use the membership
relation (differential inclusions) to describe the boundary condition of our eigenvalue
problem, which is a more suitable treatment of the boundary condition having the
positive homegeneity.

Before introducing this relation,wemake the followingobservation in the casewhen
N = 1.Letu ∈ C1([a, b]) and consider the situationwhereu(x) > 0 for all x ∈ (a, c)
and some c ∈ (a, b), and (u(a), u′(a)) �= (0, 0) (Fig. 1). We have two cases: (1)
u(a) > 0, or (2) u(a) = 0 and u′(a) > 0. The set of points (ξ, η) := (−u′(a), u(a))

in R2, where u ranges over all such functions u, is the half-plane (Fig. 2) given by

Fig. 1 Three typical behaviors near x = a

Fig. 2 The half-plane H+
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Fig. 3 Half-line l(θ)

H+ := R × (0, ∞) ∪ (−∞, 0) × {0}.

We set

H− := −H+ = R × (−∞, 0) ∪ (0, ∞) × {0},

and note that H− is the set of points (−u′(a), u(a)), where u ranges over all u ∈
C1([a, b]) such that (u(a), u′(a)) �= (0, 0) and u(x) < 0 in (a, c) for some c ∈ (a, b).
Note also that the punctured plane R2\{(0, 0)} is the disjoint union of the half-planes
H+ and H−. We observe in view of the polar coordinates in the plane that any open
half-line l in H+ with vertex at the origin can be parametrized by the angle θ ∈ (0, π ].
That is, such an open half-line l can be described by a constant θ ∈ (0, π ] as

l = {(r cos θ, r sin θ) : r > 0},

which we denote by l(θ) (Fig. 3).
Similarly, any open half-line with vertex at the origin in H− is parametrized by

θ ∈ (π, 2π ] and described as

l(θ) := {(r cos θ, r sin θ) : r > 0}.

Obviously, the closure of the half-line l(θ) in the plane R2 is given by

l(θ) = {(r cos θ, r sin θ) : r ≥ 0} = l(θ) ∪ {(0, 0)}.

We note that

H+ =
⋃

θ∈(0, π ]
l(θ) and H− =

⋃

θ∈(π, 2π ]
l(θ),

and that for each (ξ, η) ∈ R
2\{(0, 0)}, the relation (ξ, η) ∈ l(θ) determines θ ∈

(0, 2π ] uniquely. We introduce a function Θ : (ξ, η) �→ θ, R
2\{(0, 0)} → (0, 2π ]

by

Θ(ξ, η) =
⎧
⎨

⎩

cos−1 ξ√
ξ2+η2

for (ξ, η) ∈ H+,

π + cos−1 −ξ√
ξ2+η2

= 2π − cos−1 ξ√
ξ2+η2

for (ξ, η) ∈ H−.
(3)
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456 N. Ikoma, H. Ishii

The relation, (ξ, η) ∈ l(θ), can be stated as θ = Θ(ξ, η). It is easily seen that the
function Θ is continuous on R

2\[0, ∞) × {0}.
Next, let u ∈ C1([a, b]) be a function which satisfies (u(b), u′(b)) �= (0, 0) and

observe that

u(x) > 0 for all x ∈ (c, b) and some c ∈ (a, b) if and only if (u′(b), u(b)) ∈ H+,

and

u(x) < 0 for all x ∈ (c, b) and some c ∈ (a, b) if and only if (u′(b), u(b)) ∈ H−.

In view of the direction of outer normal of [a, b] at a or at b, for any u ∈ C1([a, b])
we set

B−(u, a) := (−u′(a), u(a)) ∈ R
2 and B+(u, b) := (u′(b), u(b)) ∈ R

2.

In the case of N = 1 we replace the boundary condition (2) by the condition

B−(u, a) ∈ l(θ−) and B+(u, b) ∈ l(θ+),

with given constants θ−, θ+ ∈ (0, 2π ]. This boundary condition for u ∈ C1([a, b])
requires that it should satisfy (u(a), u′(a)) �= (0, 0) and (u(b), u′(b)) �= (0, 0).
Later we shall see that if (μ, u) satisfies (1) and either (u′(a), u(a)) = (0, 0) or
else (u′(b), u(b)) = (0, 0), then u ≡ 0 in [a, b] holds. See Proposition 1. Hence, we
may require solutions of (1) to satisfy (u′(x), u(x)) �= (0, 0) at x = a, b without loss
of generality. Furthermore, the boundary condition has the positive homogeneity prop-
erty: if B−(u, a) ∈ l(θ−) [resp., B+(u, b) ∈ l(θ+) ], then B−(tu, a) ∈ l(θ−) [resp.,
B+(tu, b) ∈ l(θ+) ] for all t > 0. We write B(u, a, b) = (B−(u, a), B+(u, b))
and L(θ−, θ+) = l(θ−) × l(θ+), so that the boundary condition above is stated
as B(u, a, b) ∈ L(θ−, θ+). In the one-dimensional case, our eigenvalue problem is
stated as

F(u′′, u′, u, x) + μu = 0 in (a, b), (4)

B(u, a, b) ∈ L(θ−, θ+). (5)

The boundary condition (5) prescribes the sign of eigenfunctions near the boundary
points a and b, and it may be called the unilateral Robin boundary condition.

One of our main interest is the study of sign changing eigenfunctions, and we call
an eigenpair (μ, u) ∈ R×W 2,1(a, b) [resp. eigenvalue μ and eigenfunction u] of (4)
and (5) of nth order if u has exactly n zeroes in the interval (a, b).

Finally, we remark that a general (linear) Robin boundary condition for u ∈
C1([a, b]) satisfying (u(x), u′(x)) �= (0, 0), for instance at a, is stated as

B−(u, a) ∈ l(θ) ∪ l(θ + π) for some θ ∈ (0, π ].

In the case when N ≥ 2, we are concerned only with radial eigenpairs of (1) on
the ball BR . We may identify any radial function u in BR with a function v in [0, R)
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such that u(x) = v(|x |) for a.e. x ∈ BR and we employ the convention to write
u(x) = u(|x |). Similarly to the case N = 1, in place of the boundary condition (2),
we use the condition B+(u, R) ∈ l(θ), with a given constant θ ∈ (0, 2π ].

Furthermore, when N ≥ 2, we assume throughout that F is radially symmetric as
stated below. Henceforth x ⊗ x denotes the matrix in S

N with the (i, j) entry given
by xi x j for x ∈ R

N .

(F4) The function F is radially symmetric, that is, for any (m, 
, q, u) ∈ R
4 and a.e.

r ∈ (0, R), the function

ω �→ F(mω ⊗ ω + 
(IN − ω ⊗ ω), qω, u, rω)

is constant on the unit sphere SN−1 := {ω ∈ R
N : |ω| = 1}.

We introduce the function F : R
3 × (0, R) → R by

F(m, p, u, r) := F(mω0 ⊗ ω0 + (p/r)(IN − ω0 ⊗ ω0), pω0, u, rω0),

where ω0 is any fixed unit vector in SN−1. We remark ([21,25]) that if u(x) = v(|x |)
and v ∈ W 2,1

loc (0, R), then for a.e. r ∈ (0, R) and for all ω ∈ SN−1, (F4) implies

F(D2u(rω), Du(rω), u(rω), rω) = F(v′′(r), v′(r), v(r), r). (6)

We warn the reader that the definition of F (also P± which will appear later) is not
the same as in [25].

Next, for N ≥ 2 and q ∈ [1, ∞], letW 2,q
r (BR) denote the space of those functions

in W 2,q(BR) which are radially symmetric. This space is also denoted byW 2,q
r (0, R)

when all functions u ∈ W 2,q
r (BR) are regarded as functions on (0, R). Similarly,

we write Lq
r (0, R) for the space of all radial functions in Lq(BR). According to the

Sobolev embedding theorem, if q > N/2, then we may regard u ∈ W 2,q
r (0, R) as a

function in C([0, R]) ∩ C1((0, R]). Thus, according to (6), the eigenvalue problem
in multi-dimensional case may be stated for u ∈ W 2,q

r (0, R) as

F(u′′, u′, u, r) + μu = 0 a.e. in (0, R), (7)

B+(u, R) ∈ l(θ). (8)

Any radial eigenpair (μ, u) of (1), when u is regarded as a function on [0, R], is
simply an eigenpair of (7). We call an eigenpair (μ, u) [resp. an eigenvalue μ and an
eigenfunction u] of (7) and (8) of nth order if u has exactly n zeroes in [0, R) as a
function on [0, R]. We note that a radial eigenpair (μ, u) is a principal eigenpair if
and only if it is of zeroth order as an eigenpair of (7)-(8).

The main contributions in this paper are described briefly as follows.
We show the existence of nth order eigenpairs of (4)-(5) and of (7)-(8) for any

n ∈ N ∪ {0}, provided the triplet (n, θ−, θ+) is admissible when N = 1 [see for the
admissibility the second paragraph after Proposition 1 below]. This is done under the
same hypotheses on F as those in [25], where eigenvalue problems with the Dirichlet
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458 N. Ikoma, H. Ishii

boundary condition are treated, except for the case (N ,�) = (1, ∞). Furthermore,
our requirement on the exponent q from (F2) seems relatively sharp, as remarked
in [25], in the viewpoint of the existence of eigenfunctions or solutions of (1). For
comparison, we refer to [15,16,20,23,27,29,32].

In this paper, to establish the existence of eigenpairs, we employ the shooting
method in ODE theory, while the so-called inverse power method is adapted in [25].

We establish general comparison theorems for nth order eigenvalues with possibly
different n’s and angles (θ−, θ+) (or θ in the case of N ≥ 2).

It may be a general principle (cf. Berestycki, Nirenberg and Varadhan [5] and Lions
[28]) that the solvability of the inhomogeneous PDE

F(D2u, Du, u, x) + μu + f (x) = 0 in Ω,

where f ∈ Lq(Ω) is a given nonnegative function, with the boundary condition
like (5) or (8) is closely related to the principal eigenvalues. We establish general
theorems in this direction that relate the solvability of boundary value problems for
the inhomogeneous PDE

F(D2u, Du, u, x) + μu + sgn(u) f (x) = 0 in Ω (9)

and the nth order eigenvalue for the corresponding homogeneous PDE.
It is also a general understanding (cf. [5,28]) that the principal eigenvalues are

thresholds to the validity of the maximum principle for PDE (1). See also [1,3,7–
10,12,13,24,26,31,32]. Theorems 16 and 34 below state roughly that the principal
eigenvalues have this role of threshold for our general boundary value problems. See
also the comments after Theorem 16.

Two other characterizations of nth order eigenvalues are formulated and established
via the existence of nth order solutions (i.e. solutions having n zeroes) of differential
inequalities [see (16), (17), (24) and (25)].

This paper is organized as follows. We present the main results in the one-
dimensional and radial cases in Sects. 2 and 3, respectively. Sections 4 and 6 provide
preliminary observations, including both the strong and weak maximum principles,
needed for the proofs of the mains results in the one-dimensional and radial cases,
respectively. The proofs of the main results are provided in Sects. 5 and 7. In Sect. 8,
we give two examples that have many first order solutions of (9).

NotationWe denote by N0 the set of all nonnegative integers, that is,N0 = N∪{0}.
Given a function f on Ω which may not be continuous, we write f = 0 in Ω

for writing f = 0 a.e. in Ω, f > 0 in Ω for writing f > 0 a.e. in Ω , etc. We
regard u ∈ W 2,q(a, b), with q ∈ [1, ∞], as a C1-function on [a, b] in view of the
Sobolev embedding theorem. We use the notation F[u] to denote the function x �→
F(u′′(x), u′(x), u(x), x). The sign function is denoted by sgn, that is, sgn : R → R is
the function defined by sgn(r) = 1 for r > 0, sgn(0) = 0 and sgn(r) = −1 for r < 0.

2 Main results in the one-dimensional case

In this section we are concerned with the one-dimensional case and present the main
results concerning the eigenvalue problem (4)-(5). It is worth emphasizing at this point
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that the boundary condition (5) has the positive homogeneity of degree one in the sense
that if u ∈ C1([a, b]) satisfies (5), then so does the function tu for any t > 0. A similar
remark applies to the boundary condition (8). The proofs of the results in this section
are given in Sect. 5.

We begin with a few basic observations on solutions of (4).

Proposition 1 Assume that (F1) and (F2) hold and that the function F(0, 0, 0, x) ≡ 0
in (a, b). Let (μ, ϕ) ∈ R × W 2,1(a, b) be such that u is a solution of (4), with the
given μ, and ϕ(x) �≡ 0 on [a, b]. Then
(1) (ϕ(x), ϕ′(x)) �= (0, 0) for all x ∈ [a, b].
(2) The function ϕ has a finite number of zeroes in [a, b].
(3) The function ϕ changes sign at every zeroes of ϕ in (a, b).
(4) Let n be the number of zeroes of ϕ in (a, b) and let θ−, θ+ ∈ (0, 2π ] be such

that B−(ϕ, a) ∈ l(θ−) and B+(ϕ, b) ∈ l(θ+). If n is an even integer, then we
have either θ−, θ+ ∈ (0, π ] or θ−, θ+ ∈ (π, 2π ]. Otherwise, we have either
θ−, θ+ − π ∈ (0, π ] or θ− − π, θ+ ∈ (0, π ].

We introduce an “indicator” function i : (0, 2π ] → {0, 1} by setting i(t) = 0 if
t ∈ (0, π ] and i(t) = 1 otherwise.
Let (n, θ−, θ+) ∈ N0 × (0, 2π ]2. We say that (n, θ−, θ+) is admissible if either

n is even and i(θ−) = i(θ+) or n is odd and i(θ−) �= i(θ+).
One of our main results for N = 1 is stated as follows.

Theorem 2 Let (n, θ−, θ+) ∈ N0 × (0, 2π ]2. Assume that (F1)–(F3) hold and
(n, θ−, θ+) is admissible. (1) For i = 1, 2, let (μi , ϕi ) ∈ R × W 2,1(a, b) be an
nth order eigenpair of (4)-(5). Then μ1 = μ2 and, if, in addition, ‖ϕ1‖L∞(a,b) =
‖ϕ2‖L∞(a,b), then ϕ1 = ϕ2 on [a, b]. (2) There exists an nth order eigenpair
(μ, ϕ) ∈ R × W 2,q(a, b) of (4)-(5).

It follows from the theorem above that an nth order eigenvalue of (4)-(5) exists and
is unique. Henceforth, we use the notation μn(θ−, θ+, a, b) to denote a unique nth
order eigenvalue of (4)-(5) for any admissible (n, θ−, θ+) ∈ N0 × (0, 2π ]2.

According to Proposition 1 and Theorem 2, the admissibility of (n, θ−, θ+) ∈
N0 × (0, 2π ]2 is a necessary and sufficient condition for the existence of nth order
eigenpairs of (4)–(5).

If we replace the unilateral boundary condition (5) by a bilateral boundary condition
[see (10) below], then the notion of admissibility does not make sense. Indeed, let
θ−
1 , θ+

1 ∈ (0, π ] and θ−
2 , θ+

2 ∈ (π, 2π ], and consider the boundary condition

B−(u, a) ∈ l(θ−
1 ) ∪ l(θ−

2 ) and B+(u, b) ∈ l(θ+
1 ) ∪ l(θ+

2 ). (10)

It is easily seen that for any n ∈ N0, either (n, θ−
1 , θ+

1 ) or (n, θ−
1 , θ+

2 ) is admissible.
Similarly, either (n, θ−

2 , θ+
1 ) or (n, θ−

2 , θ+
2 ) is admissible.

Note that the boundary condition (10) in the case where (θ−
1 , θ−

2 ) = (π, 2π)

[resp. the case where (θ+
1 , θ+

2 ) = (π, 2π)] corresponds to the Dirichlet condition at
a [resp. at b], (10) in the case where (θ−

1 , θ−
2 ) = (π/2, 3π/2) [resp. the case where

(θ+
1 , θ+

2 ) = (π/2, 3π/2)] corresponds to the Neumann condition at a [resp. at b],
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and (10) in the case where θ−
1 ∈ (0, π) and θ−

2 = π + θ−
1 corresponds to [resp. the

case where θ+
1 ∈ (0, π) and θ+

2 = π + θ+
1 ] a general linear Robin condition at a

[resp. at b].
The following corollary generalizes [25, Theorem 1.1] to the general first-order

boundary condition.

Corollary 3 Assume (F1)–(F3) hold. Let n ∈ N0, θ−
1 , θ+

1 ∈ (0, π ] and θ−
2 , θ+

2 ∈
(π, 2π ]. Then there exist nth order eigenpairs {(μ±, ϕ±)} ⊂ R × W 2,q(a, b) of (4)
and (10) and increasing sequences {x±

k }n+1
k=0 ⊂ [a, b], with x±

0 = a and x±
n+1 = b,

such that

(1) ‖ϕ±‖L∞(a,b) = 1 and ±(−1)i−1ϕ± > 0 in (x±
i−1, x

±
i ) for all 1 ≤ i ≤ n + 1.

(2) If (μ, ϕ) ∈ R × W 2,q(a, b) is an nth order eigenpair of (4) and (10) with
‖ϕ‖L∞(a,b) = 1, then either (μ, ϕ) = (μ+, ϕ+) or else (μ, ϕ) = (μ−, ϕ−).

An important remark complementing Corollary 3 is that, due to Proposition 1, every
eigenfunction of (4) and (10) has at most a finite number of zeroes.

To state a general comparison theorem of eigenvalues, we introduce a partial
order relation ≤ on the set of all admissible (n, θ) ∈ N0 × (0, 2π ]2. Let α1 :=
(n1, θ1), α2 := (n2, θ2) ∈ N0 × (0, 2π ]2 be admissible. We write α1 ≤ α2 if there
exist k−, k+ ∈ N0 having the properties (11)–(15) below:

n1 + k− + k+ = n2, (11)

i(θ−
1 ) + k− ≡ i(θ−

2 ) (mod 2), (12)

i(θ+
1 ) + k+ ≡ i(θ+

2 ) (mod 2), (13)

θ−
1 ≤ θ−

2 if k− = 0, (14)

θ+
1 ≤ θ+

2 if k+ = 0, (15)

where θi = (θ−
i , θ+

i ) ∈ (0, 2π ] × (0, 2π ] for i = 1, 2.
As above, let α1 := (n1, θ1), α2 := (n2, θ2) ∈ N0 × (0, 2π ]2 be admissible. It

is easily checked that, in the case when n1 = n2, we have α1 ≤ α2 if and only
if i(θ−

1 ) = i(θ−
2 ), i(θ+

1 ) = i(θ+
2 ), θ−

1 ≤ θ−
2 and θ+

1 ≤ θ+
2 . Note moreover that

when n1 = n2, we have i(θ−
1 ) = i(θ−

2 ) and i(θ+
1 ) = i(θ+

2 ) if and only if either
i(θ−

1 ) = i(θ−
2 ) or i(θ+

1 ) = i(θ+
2 ). Also, when n1 + 1 = n2, we have α1 ≤ α2 if and

only if either i(θ−
1 ) = i(θ−

2 ) and θ−
1 ≤ θ−

2 or i(θ+
1 ) = i(θ+

2 ) and θ+
1 ≤ θ+

2 . When
n1 + 2 = n2, we have α1 ≤ α2 if and only if one of the following three conditions
holds: (1) i(θ−

1 ) = i(θ−
2 ) and θ−

1 ≤ θ−
2 , (2) i(θ+

1 ) = i(θ+
2 ) and θ+

1 ≤ θ+
2 and (3)

i(θ−
1 ) �= i(θ−

2 ). This last condition is equivalent to the condition, i(θ+
1 ) �= i(θ+

2 ).
Furthermore, when n1 + 3 ≤ n2, we have always α1 ≤ α2.

Theorem 4 Assume that (F1)–(F3) hold. Let (n1, θ1), (n2, θ2) ∈ N0 × (0, 2π ]2 be
admissible. If (n1, θ1) ≤ (n2, θ2), then μn1(θ1, a, b) ≤ μn2(θ2, a, b).

We consider the differential inequalities

(F[u] + μu)u ≤ 0 in (a, b), (16)
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and
(F[u] + μu)u ≥ 0 in (a, b), (17)

and we give characterizations of the nth order eigenvalues based on solutions (μ, u)

of (16) or (17).
Let (μ, u) ∈ R × W 2,1(a, b). We call such a pair (μ, u) a solution of (16) [resp.

(17)] and (5) if it satisfies (16) [resp. (17)] and (5), and call it an nth order solution of
(16) [resp. (17)] and (5) if u has exactly n zeroes in (a, b) and changes sign at each
zero of u in (a, b).

We denote by E−(n, θ−, θ+) [resp. E+(n, θ−, θ+) ] the set of μ ∈ R such that,
for some u ∈ W 2,1(a, b), the pair (μ, u) is an nth order solution of (16) [resp. (17)]
and (5). We set

Ẽ−(n, θ) =
⋃

{E−(α) : α admissible, α ≤ (n, θ)},
Ẽ+(n, θ) =

⋃
{E+(α) : α admissible, α ≥ (n, θ)}.

Theorem 5 Under the hypotheses (F1)–(F3), if (n, θ) ∈ N0 × (0, 2π ]2 is admissible,
then

μn(θ, a, b) = max E−(n, θ) = max Ẽ−(n, θ) = min E+(n, θ) = min Ẽ+(n, θ).

Given μ ∈ R, f ∈ L1(a, b) and θ ∈ (0, 2π ]2, we consider the solvability of the
boundary value problem for the inhomogeneous ODE

F[u] + μu + sgn(u) f = 0 in (a, b) and B(u, a, b) ∈ L(θ). (18)

We say that u is an nth order solution of (18) if u satisfies (18), has exactly n zeroes
in (a, b) and changes sign at each zero. Regarding the solvability of (18), we have the
following result.

Theorem 6 Assume that (F1)–(F3) hold. Let f ∈ L1(a, b), n ∈ N0, θ ∈ (0, 2π ]2,
and μ ∈ R. Assume that f ≥ 0 and f �≡ 0 in (a, b) and (n, θ) is admissible.
(1) If μ < μn(θ, a, b), then there exists an nth order solution of (18). (2) If μ <

μ0(θ, a, b), then the zeroth order solution of (18) is unique. (3) If μ ≥ μn(θ, a, b),
then there exists no nth order solution of (18).

The uniqueness of first order solutions of (18) does not hold in general as is shown
in Sect. 8.

3 Main results in the radial case

In this section, we assume throughout that N ≥ 2 and Ω = BR and we deal with the
ODE (7).

As in [25], under the assumption that � < ∞, we set λ∗ = λ/� and q∗ =
N/(λ∗N + 1 − λ∗). Note that 0 < λ∗ ≤ 1 and q∗ ∈ [1, N ).
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In the radial case, we need to specify the integrability of functions given in (F2).

(F5) For the exponent q from (F2), the inequality q > max{N/2, q∗} holds and
β ∈ LN (BR) if q < N .

Theorem 7 Assume that (F1)–(F5) hold. Let (n, θ) ∈ N0× (0, 2π ]. (1) For i = 1, 2,
let (μi , ϕi ) ∈ R × W 2,q

r (0, R) be an nth order eigenpair of (7)-(8). Then μ1 = μ2
and if, in addition, ‖ϕ1‖L∞(0,R) = ‖ϕ2‖L∞(0,R), then ϕ1 = ϕ2 on [0, R]. (2) There

exists an nth order eigenpair (μ, ϕ) ∈ R × W 2,q
r (0, R) of (7)-(8).

In view of the unique existence of an nth order eigenvalue of (7)-(8) due to the
theorem above, we may denote by μn

r (θ, R) the nth order eigenvalue of (7) and (8).
Let (θ1, θ2) ∈ (0, π ]×(π, 2π ], andwe introduce a bilateral version of the boundary

condition (8) as follows.
B+(u, R) ∈ l(θ1) ∪ l(θ2). (19)

Corollary 8 Assume that (F1)–(F5) hold. Let (n, θ1, θ2) ∈ N0 × (0, π ] × (π, 2π ].
Then there exist nth order eigenpairs {(μ±, ϕ±)} ⊂ R× W 2,q

r (0, R) of (7) and (19),
and increasing sequences {r±

i }n+1
i=0 ⊂ [0, R], with r±

0 = 0 and r±
n+1 = R, such that

(1) ‖ϕ±‖L∞(0,R) = 1, ±ϕ±(0) > 0 and ±(−1)i−1ϕ± > 0 in (ri−1, ri ) for every
1 ≤ i ≤ n + 1.

(2) If (μ, ϕ) ∈ R × W 2,q
r (0, R) is an nth order eigenpair of (7)–(19) with

‖ϕ‖L∞(0,R) = 1, then either (μ, ϕ) = (μ+, ϕ+) or (μ, ϕ) = (μ−, ϕ−).

We state the following theorem which is a counterpart of Theorem 4 in the one-
dimensional case.

For α1 = (n1, θ1), α2 = (n2, θ2) ∈ N0 × [0, 2π), we write α1 ≤ α2 if one of the
following four conditions holds.

n2 ≥ n1 + 2, (20)

n2 = n1 + 1, i(θ1) �= i(θ2), (21)

n2 = n1 + 1, i(θ1) = i(θ2), θ1 ≤ θ2, (22)

n2 = n1, i(θ1) = i(θ2), θ1 ≤ θ2. (23)

Theorem 9 Assume that (F1)–(F5) hold. Let (n1, θ1), (n2, θ2) ∈ N0 × (0, 2π ]. If
(n1, θ1) ≤ (n2, θ2), then μ

n1
r (θ1, R) ≤ μ

n2
r (θ2, R).

Next, we proceed to give characterizations by nth order solutions to the following
inequalities as in Sect. 2:

(F[u] + μu)u ≤ 0 in BR, (24)

(F[u] + μu)u ≥ 0 in BR . (25)

Here we call u ∈ W 2,q
r (0, R) an nth order solution of (24) [resp. (25)] and (8) if u

satisfies (24) [resp. (25)] and (8), has exactly n zeroes in (0, R) and changes sign at
each zero of it in (0, R).
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For any α = (n, θ) ∈ N0 × (0, 2π ], we denote by E−
r (α) [resp. E+

r (α)] the set of
all μ ∈ R for which there corresponds a function u ∈ W 2,q

r (0, R) such that (μ, u) is
an nth order solution of (24) [resp. (25)] and (8). We set

Ẽ−
r (α) :=

⋃
{E−

r (α̃) : α̃ ∈ N0 × (0, 2π ], α̃ ≤ α},
Ẽ+
r (α) :=

⋃
{E+

r (α̃) : α̃ ∈ N0 × (0, 2π ], α̃ ≥ α}.

Theorem 10 Under the hypotheses (F1)–(F5), for every α = (n, θ) ∈ N0 × (0, 2π ]
we have

μn
r (θ, R) = max E−

r (α) = max Ẽ−
r (α) = min E+

r (α) = min Ẽ+
r (α).

Finally, we consider the solvability of the boundary value problem

F[u] + μu + sgn(u) f = 0 in BR and B+(u, R) ∈ l(θ), (26)

where θ ∈ (0, 2π ], μ ∈ R and f ∈ Lq
r (0, R). A function u ∈ W 2,q

r (0, R) is called
an nth order solution of (26) if it satisfies (26), has exactly n zeroes in (0, R) and
changes sign at every zeroes of it in (0, R).

Theorem 11 Assume that (F1)–(F5) hold. Let (n, θ) ∈ N0 × (0, 2π ], μ ∈ R and
f ∈ Lq

r (0, R). Assume that f ≥ 0 and f �≡ 0 in (0, R). (1) If μ < μn
r (θ, R), then

there exists an nth order solution of (26). (2) If μ < μ0
r (θ, R), then the zeroth order

solution of (26) is unique. (3) Ifμ ≥ μn
r (θ, R), then there exists no nth order solution

of (26).

When n = 1, the nth order solution of (26) in the claim (1) of the theorem above
is not unique in general. An example that shows this failure of uniqueness is given in
Sect. 8.

4 Preliminary observations and results in the one-dimensional case

This section deals with the case N = 1 and discusses some basic observations and
results concerning (4).

4.1 Two basic symmetries

We state two structural symmetries of eigenvalue problem (4)–(5) under reflection,
which will be useful for simplification of our presentation.

(S1) Let (μ, u) ∈ R×W 2,1(a, b), F : R
3 × (a, b) → R and (θ−, θ+) ∈ (0, 2π ]2.

Set F−(m, p, r, x) := −F(−m,−p,−r, x) for (m, p, r, x) ∈ R
3 × (a, b)

and u−(x) := −u(x) for x ∈ [a, b], and select (θ−
1 , θ+

1 ) ∈ (0, 2π ]2 so that
θ−
1 ≡ θ− − π, θ+

1 ≡ θ+ − π (mod 2π). If (μ, u) satisfies (4)–(5), then
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{
F−[u−] + μu− = 0 a.e. in (a, b),

B−(u−, a) ∈ l(θ−
1 ) and B+(u−, b) ∈ l(θ+

1 ),

and the converse is also true.

This is a simple observation and is easily checked.Notice that the dualities (F−)− =
F and (u−)− = u hold. We note moreover that if F satisfies (F1)–(F3), then so does
F−.
(S2) Let (μ, u) ∈ R×W 2,1(a, b), F : R

3 × (a, b) → R and (θ−, θ+) ∈ (0, 2π ]2.
Set F˜(m, p, r, x) := F(m,−p, r,−x) for (m, p, r, x) ∈ R

3 × (−b, −a) and
u˜(x) := u(−x) for x ∈ [−b, −a]. If (μ, u) satisfies (4)–(5), then

{
F˜[u˜] + μu˜ = 0 a.e. in (−b, −a),

B−(u˜,−b) ∈ l(θ+) and B+(u˜,−a) ∈ l(θ−),

and the converse is also true.

The proof of this property is straightforward by observing that the dualities
(F˜)˜ = F and (u˜)˜ = u hold and that B−(u˜,−b) = (−(u˜)′(−b), u˜(−b)) =
(u′(b), u(b)) = B+(u, b) and B+(u˜,−a) = ((u˜)′(−a), u˜(−a)) = (−u′(a), u(a))

= B−(u, a). Furthermore, we remark that conditions (F1)–(F3) hold for F˜.

4.2 Proof of Proposition 1

We give here a proof of Proposition 1, for which we need a result from [25] [see also
[21]].

Lemma 12 Let F satisfy (F1) and (F2). Then there exists a Carathéodry function
gF : R3 × (a, b) → R such that for a.e. x ∈ (a, b) and any (m, p, u, d) ∈ R

4, m =
gF (p, u, d, x) holds if and only if F(m, p, u, x) = d. Moreover, the estimates

|gF (0, 0, 0, x)| ≤ λ−1|F[0](x)|,
|gF (p1, u1, d1, x) − gF (p2, u2, d2, x)| ≤ λ−1(β(x)|p1 − p2| + γ (x)|u1 − u2|

+|d1 − d2|)

for all (p, u, d), (p1, u1, d1), (p2, u2, d2) ∈ R
3 and a.e. x ∈ (a, b).

This lemma is a consequence of [25, Lemma 2.1], except that the function gF is a
Carathéodry function onR3×(a, b). Arguing as in [21,25], for eachm, p, u, d ∈ R

4,
we find that for any (m, p, u) ∈ R

3,

{x ∈ (a, b) : m ≤ gF (p, u, d, x)} = {x ∈ (a, b) : F(m, p, u, x) ≤ d},

which says that the function x �→ gF (p, u, d, x) is measurable for every (p, u, d) ∈
R
3. The continuity of gF (m, p, u, x) in (p, u, d) follows from the second inequality

in Lemma 12.
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The lemma above allows us to rewrite (4) in the normal form

u′′(x) = gF (u′, u,−μu, x) in (a, b). (27)

This observation and the general theory of ODE assure that, given c ∈ [a, b] and
(p, q) ∈ R

2, under the assumptions that (F1) and (F2) hold, the initial value problem

F[u] = 0 in (a, b) and (u(c), u′(c)) = (p, q) (28)

has a unique solution u ∈ W 2,q(a, b).
Let c, d ∈ [a, b] be such that a ≤ c < d ≤ b. Under the assumptions (F1) and (F2)

hold, given a solution u ∈ W 2,1(c, d) of (4), by solving the initial value problem (28)
in [a, b], with (p, q) = (u(c), u′(c)), we can always extend the domain of definition
of u to [a, b] as a solution of (4). In what follows, under the assumptions of (F1)
and (F2), we may and do regard a solution u ∈ W 2,1(c, d) of (4) in (c, d) , with
a ≤ c < d ≤ b, as a function in W 2,1(a, b) that is a solution of (4) in (a, b).

Proof of Proposition 1 By assumption, we have F[0] ≡ 0 in (a, b) and, hence,
u(x) ≡ 0 is a solution of (4). We see by the uniqueness of solutions of the initial
value problem (28) that if (ϕ(c), ϕ′(c)) = (0, 0) for some c ∈ [a, b], then ϕ(x) ≡ 0
in [a, b]. Claim (1) follows readily from this observation.

To see that every zero of the function ϕ is isolated, we assume that ϕ(c) = 0 at
some c ∈ [a, b], which implies that ϕ′(c) �= 0, and observe that ϕ is increasing or
decreasing near the point c. All the zeroes of ϕ are thus isolated points in [a, b] and
hence the number of the zeroes is finite. That is, claim (2) is valid.

Let c ∈ (a, b) be a zero of ϕ. Then the function ϕ is increasing or decreasing near
the point c, and claim (3) follows.

As a general remark, we note here that θ−, θ+ are uniquely determined in (0, 2π ]
since B−(ϕ, a) = (−ϕ′(a), ϕ(a)) �= (0, 0) and B+(ϕ, b) = (ϕ′(b), ϕ(b)) �= (0, 0).

In the case where n = 0, we have either ϕ(x) > 0 in (a, b) or ϕ(x) < 0 in (a, b).
If ϕ(x) > 0 in (a, b), then we have either ϕ(a) > 0 or else ϕ(a) = 0 and ϕ′(a) > 0,
which implies that θ− ∈ (0, π ]. Similarly, if ϕ(x) > 0 in (a, b), then we have either
ϕ(b) > 0 or else ϕ(b) = 0 and ϕ′(b) < 0, which ensures that θ+ ∈ (0, π ]. In a
similar way, we may conclude that if ϕ(x) < 0 in (a, b), then θ−, θ+ ∈ (π, 2π ].

Now we assume that n ≥ 1. Let {xi }ni=1 be the increasing sequence of the zeroes of
ϕ in (a, b). The argument above for n = 0, applied to the intervals (a, x1) and (xn, b),
shows that if ϕ(x) > 0 in (a, x1), then θ− ∈ (0, π ], if ϕ(x) < 0 in (a, x1), then
θ− ∈ (π, 2π ], if ϕ(x) > 0 in (xn, b), then θ+ ∈ (0, π ], and if ϕ(x) < 0 in (xn, b),
then θ+ ∈ (π, 2π ]. By induction, we can show that if n is an even integer, then the
function ϕ has the same sign on the intervals (a, x1) and (xn, b), and if n is odd, then
ϕ has opposite signs on (a, x1) and (xn, b). Thus, if n is even and ϕ(x) > 0 in (a, x1),
then θ−, θ+ ∈ (0, π ], if n is even and ϕ(x) < 0 in (a, x1), then θ−, θ+ ∈ (π, 2π ],
if n is odd and ϕ(x) > 0 in (a, x1), then θ− ∈ (0, π ] and θ+ ∈ (π, 2π ], and if n is
odd and ϕ(x) < 0 in (a, x1), then θ− ∈ (π, 2π ] and θ+ ∈ (0, π ]. Thus claim (4) is
valid. ��
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4.3 The strong maximum principle

We now state the strong maximum principle for F . For a proof, see [25, Theorem 2.6].

Proposition 13 Assume that (F1) and (F2) hold. Let u, v ∈ W 2,1(a, b) satisfy

F[u] ≥ F[v] and u ≤ v in (a, b).

Then either u ≡ v in [a, b] or else u < v in (a, b), max{(v−u)(a), (v−u)′(a)} > 0
and max{(v − u)(b),−(v − u)′(b)} > 0.

The following lemma is a consequence of the proposition above, which is useful in
the arguments below.

Lemma 14 Assume that (F1)–(F2) hold. Let u, v ∈ W 2,1(a, b) and θ−
u , θ+

u ∈
(0, 2π ] and θ−

v , θ+
v ∈ (0, π ]. Assume that F[v] ≤ F[u] in (a, b) and

B(u, a, b) ∈ L(θ−
u , θ+

u ) and B(v, a, b) ∈ L(θ−
v , θ+

v ).

Furthermore, assume that v > 0 in (a, b) and sup(a,b) u/v = 1 and that θ−
u ≥ θ−

v

and θ+
u ≥ θ+

v . Then we have u = v on [a, b].

In the statement above, L(θ−
u , θ+

u ) denotes the closure of the set L(θ−
u , θ+

u ) in R4.

We remark that L(θ−
u , θ+

u ) = l(θ−
u )× l(θ+

u ) = ({(0, 0)}∪ l(θ−
u ))× ({(0, 0)}∪ l(θ+

u )).

Proof We argue by contradiction and suppose that u �≡ v. By assumption, we have
sup(a, b) u/v = 1 and thus u ≤ v on [a, b]. By the strong maximum principle,
Proposition 13, we see that

⎧
⎪⎨

⎪⎩

v(x) > u(x) for all x ∈ (a, b),

max{v(a) − u(a), v′(a) − u′(a)} > 0,

max{v(b) − u(b), u′(b) − v′(b)} > 0.

(29)

From this we observe that if v(a) = u(a), then −v′(a) < −u′(a) and that if v(b) =
u(b), then v′(b) < u′(b). Hence, if v(a) = u(a) > 0, then we obtain

θ−
v = cos−1 −v′(a)√

v′(a)2 + v(a)2
> cos−1 −u′(a)√

u′(a)2 + u(a)2
= θ−

u

[see also Fig. 4], which is a contradiction. Similarly, if v(b) = u(b) > 0, we obtain
θ+
v > θ+

u , a contradiction.
Note by (29) that u(x)/v(x) < 1 for all x ∈ (a, b). If v(a) > u(a) and v(b) >

u(b), then we have v(x) > u(x) for all x ∈ [a, b]. This shows that sup(a,b) u/v < 1 ,
which is a contradiction.

What remains is the case where either v(a) = u(a) = 0 or v(b) = u(b) = 0,
which can be divided into three subcases: (1) v(a) = u(a) = 0 and v(b) = u(b) = 0,
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Fig. 4 Comparison of angles

(2) v(a) = u(a) = 0 and v(b) > u(b) or (3) v(a) > u(a) and v(b) = u(b) = 0.
If v(a) = u(a) = 0, then we have v′(a) > u′(a), θv = π and v′(a) > 0 , a
consequence of the inclusion B−(v, a) ∈ l(π) , and moreover, by l’Hôpital’s rule,

lim
x→a+0

u(x)

v(x)
= u′(a)

v′(a)
< 1.

Similarly, if v(b) = u(b) = 0, then

lim
x→b−0

u(x)

v(x)
< 1.

It is now easy to see in each subcases (1)–(3) that

lim
x→a+0

u(x)

v(x)
< 1 and lim

x→b−0

u(x)

v(x)
< 1,

which yields the inequality, sup(a,b) u/v < 1, a contradiction, and concludes that
u ≡ v on [a, b]. ��

4.4 The maximum and comparison principles

Inwhat followswedenote by F+ the functiononR3×[a, b]givenby F+(m, p, r, x) =
P+(m) + β(x)|p| + γ (x)|r |, where β, γ ∈ L1(a, b) are from (F2). Remark that F+
satisfies (F1)–(F3).

Theorem 15 Assume that (F1) and (F2) hold and F[0] ≡ 0. Let μ ∈ R and θ =
(θ−, θ+) ∈ (0, π ]2, and assume that there exists a function ψ ∈ W 2,1(a, b) such that

{
F+[ψ] + μψ ≤ 0, F+[ψ] + μψ �≡ 0 and ψ > 0 in (a, b),

B(ψ, a, b) ∈ L(θ).
(30)

If u ∈ W 2,1(a, b) satisfies
{
F[u] + μu ≥ 0 in (a, b),

B(u, a, b) ∈ L(τ ) for some τ ∈ [θ−, 2π ] × [θ+, 2π ],

then u ≤ 0 in (a, b).
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Proof Suppose to the contrary that sup(a,b) u > 0. Set ρ = sup(a,b) u/ψ . It is easily
checked that, if ψ(a) > 0 and ψ(b) > 0, then 0 < ρ < ∞ and sup(a,b) u/ρψ =
1. Setting τ = (τ−, τ+), we observe that if ψ(a) = 0, then, since B(ψ, a, b) ∈
L(θ−, θ+), we have π = θ− ≤ τ−, ψ ′(a) > 0 and u(a) ≤ 0, and, moreover, by
using l’Hôpital’s rule, we get

lim
x→a+0

u(x)

ψ(x)
= u′(a)

ψ ′(a)
< ∞ if u(a) = 0 and lim

x→a+0

u(x)

ψ(x)
= −∞ otherwise.

Similarly, we have limx→b−0 u(x)/ψ(x) < ∞. Thus, we have 0 < ρ < ∞ and
sup(a,b) u/ρψ = 1.

We note that, since F[0] = 0, F+[ρψ] = ρF+[ψ] and F[u] + μu ≥ 0 ≥
F+[ρψ] + μ(ρψ) ≥ F[ρψ] + μρψ in (a, b). Hence, using Lemma 14, we have
u ≡ ρψ on [a, b] while F[u] + μu ≥ 0 �≡ F[ρψ] + μ(ρψ) in (a, b), which is a
contradiction. ��

The proof above can be used to show that the following maximum principle holds.
The proof will be left to the reader.

Theorem 16 Assume that (F1)–(F3) hold. Let θ = (θ−, θ+) ∈ (0, π ]2, and assume
that there exists a function ψ ∈ W 2,1(a, b) such that

{
F[ψ] ≤ 0, F[ψ] �≡ 0 and ψ > 0 in (a, b),

B(ψ, a, b) ∈ L(θ).
(31)

If u ∈ W 2,1(a, b) satisfies

{
F[u] ≥ 0 in (a, b),

B(u, a, b) ∈ L(τ ) for some τ ∈ [θ−, 2π ] × [θ+, 2π ],

then u ≤ 0 in (a, b).

A typical situation where (31) is satisfied is the following: let (ν, ψ) be a positive
principal eigenpair of (4)–(5). If we choose μ < ν, then F[ψ] + μψ < 0 in (a, b).
That is, condition (31) holds with this choice of μ and the function F(m, p, r, x)
replaced by F(m, p, r, x) + μr .

We give two propositions concerning the comparison principle for ODE (4).

Theorem 17 Assume that (F1) and (F2) hold. Let μ ∈ R and θ = (θ−, θ+) ∈
(0, π ]2, and assume that there exists a function ψ ∈ W 2,1(a, b) such that (30) holds.
If v, w ∈ W 2,1(a, b) satisfy

{
F[v] + μv ≥ F[w] + μw in (a, b),

B(v − w, a, b) ∈ L(τ ) for some τ ∈ [θ−, 2π ] × [θ+, 2π ],

then v ≤ w in (a, b).
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Proof We set u = v − w and observe that

0 ≤ F[v] − F[w] + μ(v − w) ≤ F+[u] + μu in (a, b).

We apply Theorem 15, with the function F replaced by the function F+, to conclude
that v ≤ w in (a, b). ��
Proposition 18 Assume that (F1)–(F3) hold. Let θ = (θ−, θ+) ∈ (0, π ]2, and
assume that there exists a function ψ ∈ W 2,1(a, b) that satisfies (31). If v, w ∈
W 2,1(a, b) satisfy

{
F[w] ≤ 0, F[w] ≤ F[v] and w > 0 in (a, b), B(w, a, b) ∈ L(θ), and

B(v, a, b) ∈ L(τ ) for some τ ∈ [θ−, 2π ] × [θ+, 2π ],

then v ≤ w in (a, b).

Proof Suppose to the contrary that max[a, b](v − w) > 0. Since B−(w, a) ∈ l(θ−)

and B−(v, a) ∈ l(τ−), where τ− ∈ [θ−, 2π ], if w(a) = 0, then we have θ− =
π, w′(a) > 0 and v(a) ≤ 0. Similarly, if w(b) = 0, then we have w′(b) < 0
and v(b) ≤ 0. Therefore, setting ρ = sup(a,b) v/w, we have ρ ∈ (1, ∞). We set
f = F[v] and g = F[w] , and note that f, g ∈ L1(a, b), g ≤ 0 and g ≤ f in

[a, b], and

F[ρw] = ρg ≤ g ≤ f = F[v] in (a, b),

and apply the strong maximum principle, Lemma 14, to obtain ρw ≡ v on [a, b].
Hence, the inequalities above are indeed equalities, from which we get (ρ − 1)g ≡ 0
and F[w] = 0 in (a, b). By Theorem 16, we get w ≤ 0 on [a, b], which is a
contradiction. The proof is complete. ��

The following proposition states that for any θ ∈ (0, π)2, condition (30) holds for
some μ ∈ R and ψ ∈ W 2,1(a, b). In the following three propositions we always
assume without further comment that (F2) holds.

Proposition 19 For any θ = (θ−, θ+) ∈ (0, π)2 there exist μ ∈ R and ψ ∈
W 2,1(a, b) that satisfy (30).

We need two lemmas for the proof of the proposition above.
For M > 0 we define γM ∈ L1(a, b) by γM (x) = (γ (x) − M)+.

Lemma 20 For any ε > 0 there exist M > 0, α ≥ 0 and v ∈ W 1,1(a, b) such that

λv′ + β|v| + γM = α and |v| < ε in (a, b), and v(a) = v(b) = 0.

Proof We fix any M > 0. For each α ≥ 0 we solve the initial value problem

λv′ + β|v| + γM = α in (a, b) and v(a) = 0. (32)
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We denote the unique solution v(x) of (32) by v(x;α). We set β̄(x) =
sgn(v(x;α))β(x) for x ∈ (a, b),

B(c, d) =
∫ d

c
λ−1β(t) d t and B(c, d) =

∫ d

c
λ−1β̄(t) d t for a ≤ c ≤ d ≤ b,

and note that the function v(x) = v(x;α) satisfies

v′(x) + λ−1β̄(x)v(x) = λ−1(α − γM (x)) in (a, b).

Consequently, we have

v(x;α) = λ−1 e−B(a,x)
∫ x

a
eB(a,t)(α − γM (t)) d t for x ∈ [a, b].

Hence, noting that |B(c, d)| ≤ B(c, d) ≤ B(a, b) for a ≤ c < d ≤ b, we have for
all x ∈ [a, b],

v(x;α) = λ−1
∫ x

a
e−B(t,x)(α − γM (t)) d t

≤ λ−1
(∫ b

a
eB(a,b) α d t −

∫ x

a
e−B(a,b) γM (t) d t

)

≤ λ−1
(
(b − a) eB(a,b) α − e−B(a,b) ‖γM (t)‖L1(a,x)

)
, (33)

and
v(x;α) ≥ λ−1

(
(x − a) e−B(a,b) α − eB(a,b) ‖γM‖L1(a,b)

)
. (34)

In particular, we get v(b; 0) ≤ 0, and v(b;α) ≥ 0 if α ≥ (b −
a)−1 e2B(a,b) ‖γM‖L1(a,b). The general theory of ODE or an application of the Gron-
wall inequality assures that the function α �→ v(b;α) is continuous on [0, ∞).
Thus, the intermediate value theorem assures that there exists αM ∈ [0, ∞) such
that v(b;αM ) = 0 and, moreover, αM ≤ (b − a)−1 e2B(a,b) ‖γM‖L1(a,b).

Now, we fix any ε > 0. By (33) and (34), we get

max
x∈[a,b] |v(x;αM )| ≤ λ−1 eB(a,b) max{(b − a)αM , ‖γM‖L1(a,b)}

≤ λ−1 e3B(a,b) ‖γM‖L1(a,b).

Note that limM→∞ ‖γM‖L1(a,b) = 0, and choose M > 0 so that λ−1 e3B(a,b)

‖γM‖L1(a,b) < ε, which implies that |v(x;αM )| < ε for all x ∈ [a, b]. The proof is
complete. ��
Lemma 21 There exist μ ∈ R and w ∈ W 2,1(a, b) such that

{
P+[w] + β|w′| + γ |w| + μw < 0 in (a, b),

w > 0 on [a, b] and w′(a) = w′(b) = 0.
(35)
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Proof According to Lemma 20, there exist v ∈ W 1,1(a, b), M > 0, and α ≥ 0 such
that

λv′ + β|v| + γM = α and |v| ≤ 1

8(b − a)
in (a, b), and v(a) = v(b) = 0.

We define w ∈ W 2,1(a, b) by

w(x) = 1

2
+
∫ x

a
v(t) d t.

Observe that λw′′ + β(x)|w′| + γM = α in (a, b), w′(a) = w′(b) = 0, 1/4 <

w < 1 in (a, b) and (w′′)+ ≤ λ−1α in (a, b). Therefore,

F+[w] ≤ λw′′ + (� − λ)(w′′)+ + β|w′| + γw ≤ λw′′ +
(
λ−1� − 1

)
α

+ β|w′| + γMw + Mw

≤ λw′′ + β|w′| + γM +
(
λ−1� − 1

)
α

+ Mw ≤ λ−1�α + Mw < (4λ−1�α + M)w.

The pair of the constant μ = −4λ−1�α − M and function w has all the required
properties. ��
Proof of Proposition 19 We set p− = cos θ−/ sin θ− and p+ = − cos θ+/ sin θ+,
and select a function ζ ∈ C2([a, b]) and a constant δ ∈ (0, (b − a)/2) such that

ζ(x)

⎧
⎪⎨

⎪⎩

= ep
−(x−a) for x ∈ [a, a + δ),

= ep
+(x−b) for x ∈ (b − δ, b],

> 0 for x ∈ [a + δ, b − δ].

Set also η(x) = 1/ζ(x) for x ∈ [a, b]. We define the function F+
ζ on R

3 × [a, b]
by

F+
ζ (m, p, r, x) = ζ(x)F+(η(x)m + 2η′(x)p + η′′(x)r, η(x)p + η′(x)r, η(x)r, x),

and calculate that for any (m, p, r, x) ∈ R
3 × (a, b),

F+
ζ (m, p, r, x)

≤ ζ(x)
{
P+(η(x)m) + P+(2|η′(x)p| + |η′′(x)r |)

+ β(x)(|η(x)p| + |η′(x)r |) + γ (x)|η(x)r |}

≤ P+(m) + ζ(x)
{
�(2|η′(x)p| + |η′′(x)r |) + β(x)(η(x)|p| + |η′(x)r |)

+ γ (x)η(x)|r |}

≤ P+(m) + βζ (x)|p| + γζ (x)|r |,
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where βζ , γζ ∈ L1(a, b) are given by

βζ (x) = β(x) + 2�ζ(x)|η′(x)| and

γζ (x) = γ (x) + �ζ(x)|η′′(x)| + β(x)ζ(x)|η′(x)|.

By Lemma 21, with β and γ replaced by βζ and γζ , we can choose μ ∈ R and
w ∈ W 2,1(a, b) so that (35) holds.

We set ψ = ηw on [a, b], and note that ψ > 0 on [a, b],

0 > F+
ζ [w] + μw

= ζ(F+((ηw)′′, (ηw)′, ηw, x) + μψ) = ζ(F+[ψ] + μψ) in (a, b),

and hence, F+[ψ]+μψ < 0 in (a, b). Observe that 0 = w′(a) = p− ψ(a)+ψ ′(a)

and therefore

B−(ψ, a)=(−ψ ′(a), ψ(a))=(p−ψ(a), ψ(a)) = ψ(a)

sin θ− (cos θ−, sin θ−) ∈ l(θ−).

Similarly, we get B+(ψ, b) ∈ l(θ+). The proof is complete. ��

4.5 Basic estimates

Lemma 22 Assume that (F1) and (F2) hold. Let (c, d) be a subinterval of (a, b), z ∈
[c, d] and v ∈ W 2,1(c, d). If F[v] ∈ L1(a, b), then

‖v‖W 1,∞(c,d) ≤
(
|v(z)| + |v′(z)| + λ−1 (‖F[v]‖L1(c,d)

+‖F[0]‖L1(c,d)

))
exp
(
‖λ−1(β + γ ) + 1‖L1(c,d)

)
.

Proof Let gF be the function as in Lemma 12. Setting f = F[v], we have

v′′(x) = gF (v′(x), v(x), f (x), x) in (c, d),

and moreover,

|v′′(x)| ≤ λ−1(β(x)|v′(x)| + γ (x)|v(x)| + | f (x)| + |F[0](x)|) in (c, d). (36)

Hence, setting h(x) = |v(x)| + |v′(x)| for x ∈ [c, d], we have

h(x) ≤ h(z) + λ−1
∣∣∣∣
∫ x

z

[
(β(t) + λ)|v′(t)| + γ (t)|v(t)| + | f (t)| + |F[0](t)|] dt

∣∣∣∣

≤ h(z) +
∣∣∣∣
∫ x

z
(α̂(t)h(t) + f̂ (t))dt

∣∣∣∣ ,
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where α̂(t) := λ−1(β(t) + γ (t)) + 1 and f̂ (t) := λ−1 (| f (t)| + |F[0](t)|). By the
Gronwall inequality, we get

h(x) ≤ h(z) exp

(∣∣∣∣
∫ x

z
α̂(t)dt

∣∣∣∣

)
+
∣∣∣∣
∫ x

z
exp

(∣∣∣∣
∫ x

t
α̂(s)ds

∣∣∣∣

)
f̂ (t)dt

∣∣∣∣

≤
(
h(z) + ‖ f̂ ‖L1(c,d)

)
exp
(‖α̂‖L1(c,d)

)
.

for all x ∈ [c, d], which completes the proof. ��
Lemma 23 Assume that (F1) and (F2) hold. Let (c, d) be a subinterval of (a, b) and
set

C0 = exp
(
‖λ−1(β + γ ) + 1‖L1(c,d)

)
.

Let v ∈ W 2,1(c, d), and assume that F[v] ∈ L1(a, b), that either v(c) = 0 or
v(d) = 0 and that the inequality, |v′(z)| ≤ σ |v(z)|, holds for some σ ≥ 0 and
z ∈ [c, d]. Then

‖v‖W 1,∞(c,d)

≤ C0

(
(1 + σ)(d − c)‖v‖W 1,∞(c,d) + λ−1‖F[v]‖L1(c,d) + ‖F[0]‖L1(c,d)

)
.

Furthermore, if C0(1 + σ)(d − c) < 1, then

‖v‖W 1,∞(c,d) ≤ C0λ
−1
(‖F[v]‖L1(c,d) + ‖F[0]‖L1(c,d)

)

1 − C0(1 + σ)(d − c)
.

Proof By the assumption that v(c) = 0 or v(d) = 0, we get |v(x)| ≤ ‖v′‖L1(c,d) for
all x ∈ [c, d]. Since |v′(z)| ≤ σ |v(z)|, we have |v(z)| + |v′(z)| ≤ (1 + σ)|v(z)|.
Hence, we get

|v(z)|+|v′(z)| ≤ (1 + σ)|v(z)|≤(1 + σ)‖v′‖L1(c,d) ≤ (1 + σ)(d − c)‖v‖W 1,∞(c,d).

We combine this with Lemma 22, to get

‖v‖W 1,∞(c,d)

≤ C0

(
(1 + σ)(d − c)‖v‖W 1,∞(c,d) + λ−1 (‖F[v]‖L1(c,d) + ‖F[0]‖L1(c,d)

))
.

Moreover, it follows that if C0(1 + σ)(d − c) < 1, then

‖v‖W 1,∞(c,d) ≤ C0λ
−1
(‖F[v]‖L1(c,d) + ‖F[0]‖L1(c,d)

)

1 − C0(1 + σ)(d − c)
.

��
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Lemma 24 Assume that (F1) and (F2) hold and F[0] ≡ 0. Let { fk}k∈N ⊂
L1(a, b), {μk}k∈N ⊂ R and {vk}k∈N ⊂ W 2,1(a, b). Assume that for some f ∈
L1(a, b) and μ ∈ R,

lim
k→∞ fk = f strongly in L1(a, b) and lim

k→∞ μk = μ,

and that for any k ∈ N, vk is a solution of F[vk] + μkvk + fk = 0 in (a, b). If

sup
k∈N

min[a,b](|vk | + |v′
k |) < ∞, (37)

then {vk} has a convergent subsequence in W 2,1(a, b) and the limit v of the subse-
quence is a solution of F[v] + μv + f = 0 in (a, b).

Proof Choose a sequence {zk}k∈N ⊂ [a, b] so that |vk(zk)| + |v′
k(zk)| =

min[a,b](|vk | + |v′
k |) for all k ∈ N. By Lemma 22, we have

‖vk‖W 1,∞(a,b) ≤ Mk(|vk(zk)| + |v′
k(zk)| + λ−1‖ fk‖L1(a,b))

for all k ∈ N, where Mk = exp
(‖λ−1(β + γ + |μk |) + 1‖L1(a,b)

)
. Thus, we see from

(37) that
sup
k∈N

‖vk‖W 1,∞(a,b) < ∞. (38)

According to (36) or Lemma 12, we have

|v′′
k (x)|
≤ λ−1(β(x)|v′

k(x)|+(γ (x)+|μk |)|vk(x)| + | fk(x)|) in (a, b) for all k ∈ N,

which shows together with (38) that {v′′
k } is uniformly integrable on (a, b) and hence

the sequence {vk} is relatively compact in C1([a, b]). Observe by using Lemma 12
that for any k, 
 ∈ N,

|v′′
k − v′′


 | = |gF (v′
k, vk,−μkvk − fk, x) − gF (v′


, v
,−μ
v
 − f
, x)|
≤ λ−1(β|v′

k − v′

|+γ |vk − v
| + |μkvk − μ
v
| + | fk − f
|) in (a, b),

where gF is the functiongivenbyLemma12.Thus,wefind that {v′′
k } contains a strongly

convergent subsequence in L1(a, b) and the sequence {vk} is relatively compact in the
strong topology of W 2,1(a, b). Let v be a limit point of the sequence {vk}. That is,
v = lim j→∞ vk j in the strong topology of W 2,1(a, b) for some subsequence {vk j }
of {vk}. By passing once again to a subsequence if necessary, we may assume that
(v′′(x), v′(x), v(x)) = lim j→∞(v′′

k j
(x), v′

k j
(x), vk j (x)) for a.e. x ∈ (a, b). It is now

easy to conclude that v′′(x) = gF (v′(x), v(x),−μ(x)v(x) − f (x)) a.e. in (a, b),
which assures that v is a solution of F[v] + μv + f = 0 in (a, b). ��
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5 Proofs of the main results in the one-dimensional case

In this section, we prove Theorems 2–5. Throughout this section we assume that
(F1)–(F3) hold.

5.1 Comparison of eigenvalues

We give here the proof of Theorem 4.

Proof of Theorem 4 For i = 1, 2, set θi = (θ−
i , θ+

i ) and let (μi , ϕi ) ∈ R ×
W 2,1(a, b) be an ni th order eigenpairs of (4)–(5), with (θ−, θ+) replaced by
(θ−

i , θ+
i ), and assume that (n1, θ1) ≤ (n2, θ2).

We argue by contradiction, and suppose that μ1 > μ2.
Let {x j }n1+1

j=0 , {y j }n2+1
j=0 be the increasing sequences of points in [a, b] such that

x0 = y0 = a, xn1+1 = yn2+1 = b, and the x j , with 0 < j < n1 + 1, and the y j , with
0 < j < n2 + 1, are zeroes of the functions ϕ1 and ϕ2 , respectively.

By assumption, there exist nonnegative integers k− and k+ such that (11)–(15)
hold.

Consider first the case when k− = k+ = 0. We note that n1 = n2 and xn1+1 =
yn1+1 = b, set m = min{ j ∈ {1, . . . , n1 + 1} : y j ≤ x j } and observe that xm−1 ≤
ym−1 < ym ≤ xm . Since k− = 0, which implies together with (12) that ϕ1ϕ2 > 0 in
(a, min{x1, y1}), and ϕ1 and ϕ2 change sign at x j and y j for every 0 < j < n1+1,
respectively, we see that ϕ1ϕ2 > 0 in (ym−1, ym). Furthermore, observe that, if
ym−1 = a, then B−(ϕ1, a) ∈ l(θ−

1 ) and B−(ϕ2, a) ∈ l(θ−
2 ) and, if ym = b, then

B+(ϕ1, ym) ∈ l(θ+
1 ) and B+(ϕ2, ym) ∈ l(θ+

2 ), and that i(θ−
1 ) = i(θ−

2 ), θ−
1 ≤

θ−
2 , i(θ+

1 ) = i(θ+
2 ) and θ+

1 ≤ θ+
2 .

Consider next the case when either k− = 0 and k+ > 0 or k+ = 0 and k− > 0.
In view of (S2), we may assume that k− = 0 and k+ > 0. We have n2 > n1 and
yn1+1 < b = xn1+1. As above, we set m = min{ j ∈ {1, . . . , n1 + 1} : y j ≤ x j } and
observe that ϕ1ϕ2 > 0 in (ym−1, ym), ym < b and, if ym−1 = a, then i(θ−

1 ) = i(θ−
2 )

and θ−
1 ≤ θ−

2 .
Consider the casewhen k− > 0 and k+ > 0. If k− is an odd integer, that is,ϕ1ϕ2 < 0

in (a, min{x1, y1}), then we note that yn1+2 < yn1+3 ≤ yn1+k−+k++1 = xn1+1 = b,
set m = min{ j ∈ {2, . . . , n1 + 2} : y j ≤ x j−1} and observe that ϕ1ϕ2 > 0 in
(ym−1, ym) and a < ym−1 < ym < b. Similarly, if k− is an even integer, that is,
ϕ1ϕ2 > 0 in (a, min{x1, y1}), then we note that yn1+3 < yn1+4 ≤ yn1+k−+k++1 =
b = xn1+1, set m = min{ j ∈ {3, . . . , n1 + 3} : y j ≤ x j−2} and observe that
ϕ1ϕ2 > 0 in (ym−1, ym) and a < ym−1 < ym < b.
Thus, in all possible cases there exists a nonempty subinterval (c, d) ⊂ [a, b]

having the properties: (1) ϕ1ϕ2 > 0 in (c, d), (2) if c = a, then i(θ−
1 ) = i(θ−

2 ) and
θ−
1 ≤ θ−

2 , (3) if c �= a, then ϕ2(c) = 0 (4) if d �= b, then ϕ2(d) = 0 and (4) if
d = b, then i(θ+

1 ) = i(θ+
2 ) and θ+

1 ≤ θ+
2 .

By the symmetry (S1) we may assume that ϕ1 > 0 and ϕ2 > 0 in (c, d). As a
consequence, we have F[ϕ1] + μ2ϕ1 < 0 in (c, d).
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We choose τ−
i , τ+

i ∈ (0, π ], with i = 1, 2, so that B(ϕi , c, d) ∈ L(τ−
i , τ+

i ) for
i = 1, 2. Note that if c = a, then τ−

i = θ−
i for i = 1, 2, if c > a, then ϕ2(c) = 0 and

τ−
1 ≤ τ−

2 = π , if d = b, then τ+
i = θ+

i for i = 1, 2, and if d < b, then ϕ2(d) = 0
and τ+

1 ≤ τ+
2 = π . We use the maximum principle, Theorem 16 with the interval

(a, b) and the function F(m, p, r, x) replaced by (c, d) and F(m, p, r, x) + μ2r ,
respectively, to obtain ϕ2 ≤ 0 on [c, d], which is a contradiction. Thus, we see that
the inequality, μ1 ≤ μ2, holds. ��

Applying Theorem 4 twice, under the assumptions (F1)–(F3), for any admissible
(n, θ) ∈ N0 × (0, 2π ]2, an nth order eigenvalue of (4)–(5) is unique.

5.2 Existence of principal eigenpairs

We prove the existence of principal eigenpairs of (4)–(5) in this subsection.

Lemma 25 There exist c ∈ (a, b] and (μ, v) ∈ R × W 2,1(a, c) such that

F[v] + μv ≥ 0 and v > 0 in (a, c), and v(a) = v(c) = 0. (39)

According to [25], there exist a positive principal eigenpair of (4) with the Dirichlet
boundary condition, and the lemma above follows from this observation. But, for the
reader’s convenience, we give a proof of the lemma above.

Proof Let c ∈ (a, b] be a constant to be fixed later. Set f = β + γ ,

M = 1

c − a

∫ c

a
dr
∫ r

a
f (t)dt and

w(x) =
∫ x

a

(∫ r

a
f (t)dt − M

)
dr for x ∈ [a, c].

Clearly, we have w(a) = w(c) = 0, 0 ≤ M ≤ ‖ f ‖L1(a,c),

w′(x) =
∫ x

a
f (t)dt − M for all x ∈ [a, c],

w′′ = f in (a, c), w ∈ W 2,1(a, c) and ‖w′‖L∞(a,c) ≤ ‖ f ‖L1(a,c).
Observe moreover that for all x ∈ [a, c],

0 ≤ −w(x)≤‖w′‖L∞(a,c) min{|x − a|, |x − c|}≤‖ f ‖L1(a,c) min{|x − a|, |x − c|}.

Recalling that the inequality, sin x ≥ (2/π)min{|x |, |x−π |}, holds for all x ∈ [0, π ],
we see that

−w(x) ≤ (c − a)‖ f ‖L1(a,c)

2
sin

π(x − a)

c − a
for all x ∈ [a, c].
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Hence, setting d = (c − a)‖ f ‖L1(a,c) and χ(x) = d sin
(
π(x − a)/(c − a)

)
for

x ∈ [a, c], we have χ(x) + w(x) ≥ χ(x)/2 > 0 for all x ∈ (a, c).
We set v = w +χ on [a, c] and observe that v(a) = v(c) = 0, v(x) ≥ χ(x)/2 >

0 for all x ∈ (a, c). Using the inequalities w′′ ≥ 0, χ ′′ ≤ 0 and v ≤ χ in (a, b) and
(F2), we get for a.e. x ∈ (a, c),

F[v](x) ≥ λw′′(x) + �χ ′′(x) − β(x)|v′(x)| − γ (x)v(x)

≥ f (x)(λ − (|v′(x)| + χ(x))) + �χ ′′(x)

≥
{
λ −

(
‖ f ‖L1(a,c) + πd

c − a
+ d

)}
f (x) − �

(
π

c − a

)2

χ(x)

≥ {
λ − (1 + π + c − a) ‖ f ‖L1(a,c)

}
f (x) − 2�

(
π

c − a

)2

v(x)

Now select c ∈ (a, b] so that (1 + π + c − a) ‖ f ‖L1(a,c) ≤ λ, put μ = 2�π2/(c−
a)2, and conclude that v satisfies (39). ��
Proof of Theorem 2 (2) in the case n = 0 In view of the symmetry (S1), we need only
to prove the existence of a principal eigenpair (μ, ϕ) in the case where θ = (θ−, θ+) ∈
(0, π ]2.

We treat first the case where θ ∈ (0, π)2.
Given a constant μ ∈ R, we consider the initial value problem

F[u] + μu = 0 in (a, b) and (u(a), u′(a)) = (sin θ−, − cos θ−). (40)

Thanks to Lemma 12, we know that this problem has a unique solution uμ ∈
W 2,q(a, b). Proposition 1 assures that (uμ(x), u′

μ(x)) �= 0 for all x ∈ [a, b].
We may choose θμ ∈ (0, 2π ] so that B+(uμ, b) ∈ l(θμ). We should note that
B−(uμ, a) ∈ l(θ−).
Next, let (c, μ, v) ∈ (a, b)×R×W 2,1(a, b) be those from Lemma 25. We denote

this constant μ by ν1. We show that

min[a,b] uμ ≤ 0 for all μ > ν1. (41)

We prove this by contradiction. Fix any μ > ν1 and suppose that min[a,b] uμ > 0.
Accordingly, we have F[uμ] + ν1uμ < 0 ≤ F[v] + ν1v and v > 0 in
(a, c), B−(v, a) ∈ l(π) , B−(uμ, a) ∈ l(θ−), and v(c) = 0. Also, since uμ > 0
in [a, b], we have B+(uμ, c) ∈ l(θc) for some θc ∈ (0, π). We apply the maximum
principle, Theorem 16 with the interval (a, b) and the function F(m, p, r, x) replaced
by (a, c) and F(m, p, r, x) + ν1r , respectively, to obtain max[a, c] v ≤ 0, which is a
contradiction. Hence, (41) is valid.

Now, let (μ,ψ) ∈ R × W 2,1(a, b) be the pair given by Proposition 19. We refer
this constant μ as ν0 in what follows. We show that

min[a,b] uμ > 0 and θμ < θ+ for all μ ≤ ν0. (42)
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Let μ ≤ ν0, and we first show that min[a,b] uμ > 0. Suppose to the contrary that
min[a,b] uμ ≤ 0 and choose d ∈ (a, b] such that uμ > 0 in (a, d) and uμ(d) = 0.
Observe that ψ > 0, F[ψ] + μψ ≤ F+[ψ] + ν0ψ ≤ 0 = F[uμ] + μuμ and
F[ψ] + μψ �≡ 0 in (a, d), B−(ψ, a), B−(uμ, a) ∈ l(θ−), and uμ(d) = 0. We also
remark by Proposition 13, applied to u ≡ 0 and v = ψ , that B+(ψ, d) ∈ l(θd) for
some θd ∈ (0, π ] since (ψ(x), ψ ′(x)) �= (0, 0) holds for any x ∈ [a, b]. Indeed, we
just need to put θd = �(−ψ ′(d), ψ(d)) and see (3) for the definition of �. Hence,
by the maximum principle, we get max[a,d] uμ ≤ 0, which is a contradiction. This
proves that min[a,b] uμ > 0 for all μ ≤ ν0. This and (41), in particular, show that
ν0 < ν1.
We next show that if μ ≤ ν0, then θμ < θ+. Indeed, if we fix any μ ≤ ν0 and

suppose to the contrary that θμ ≥ θ+, then, byTheorem16,weobtainmax[a,b] uμ ≤ 0,
a contradiction.

In view of a classical result on the continuous dependence of the solutions uμ of
(40) in μ, we know that the function μ �→ min[a,b] uμ is continuous on R. By (41)
and (42), there exists a μ̄ ∈ (ν0, ν1] such that

min[a,b] uμ̄ = 0 and min[a,b] uμ > 0 for all μ < μ̄.

Since (uμ(x), u′
μ(x)) �= 0 for all x ∈ [a, b], we deduce that uμ̄(b) = 0 and uμ̄ > 0

in [a, b). Consequently, we have θμ̄ = π . The continuous curveμ �→ (u′
μ(b), uμ(b)),

with μ ∈ [ν0, μ̄), starts at a point on the line l(θν0), where θν0 < θ+, lies in the upper
half-plane {(x, y) ∈ R

2 : y > 0}, and, as μ → μ̄, approaches to the line l(π).
This simple geometric observation assures that there exists μ ∈ (ν0, μ̄) such that
B+(uμ, b) ∈ l(θ+).

We now treat the general case where θ ∈ (0, π ]2. We choose two nondecreasing
sequences {θ−

n }n∈N, {θ+
n }n∈N ⊂ (0, π) such that

lim
n→∞ θ−

n = θ− and lim
n→∞ θ+

n = θ+.

According to the argument above, for each n ∈ N, wemay choose a principal eigenpair
(μn, un) ∈ R × W 2,q(a, b) of (4)–(5), with (θ−, θ+) replaced by the pair (θ−

n , θ+
n ).

By multiplying by positive constants, we may assume that ‖un‖W 1,∞(a,b) = 1 for
all n ∈ N. By inequality (41), we deduce that μn ≤ ν1, and by Theorem 4, we have
μn ≥ μ1 for all n ∈ N. Hence, we have μ1 ≤ μn ≤ ν1 for all n ∈ N and we see that
{μn}n∈N has a convergent subsequence {μnk }k∈N. By Lemma 24, we may assume that
{unk } converges to a function u ∈ W 2,1(a, b) and the function u satisfies (4). Since
{unk } is convergent in C1([a, b]), we see that

lim
k→∞ B(unk , a, b) = B(u, a, b).

This assures that B(u, a, b) ∈ L(θ). It is clear that u ≥ 0 in (a, b) and
‖u‖W 1,∞(a,b) = 1. By Proposition 1, we have (u(x), u′(x)) �= (0, 0) in [a, b].
Hence, we see that B(u, a, b) ∈ L(θ) and u > 0 on (a, b). Thus, (μ, u) is a
principal eigenpair of (4)–(5). Finally, we note by Lemma 12 that u ∈ W 2,q(a, b). ��
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5.3 Higher order eigenpairs in the one-dimensional case

We give first the proof of Theorem 2 (1).

Proof of Theorem 2 (1) Let (μi , ϕi ), with i = 1, 2, be both nth order eigenpairs of
(4)–(5).

As remarked after the proof of Theorem 4, we know that μ1 = μ2. In what follows
we assume that

‖ϕ1‖L∞(a,b) = ‖ϕ2‖L∞(a,b), (43)

and prove that ϕ1 = ϕ2.
We treat first the case where n = 0. We have either θ−, θ+ ∈ (0, π ] or θ−, θ+ ∈

(π, 2π ]. Thanks to (S1), we need only to consider the case where θ−, θ+ ∈ (0, π ].
We have ϕ1 > 0 and ϕ2 > 0 in (a, b) . We set ρ := sup(a,b) ϕ1/ϕ2 and observe,
as in the first part of the proof of Theorem 15, that ρ ∈ (0, ∞). Obviously, we have
ρϕ2(x) ≥ ϕ1(x) for all x ∈ [a, b]. By the strongmaximum principle, Lemma 14, we
get ρϕ2 = ϕ1 on [a, b]. Hence, we see by (43) that ρ = 1 and conclude that ϕ1 = ϕ2
on [a, b].

Next, we assume that n ≥ 1. Let {x j }n+1
j=0 and {y j }n+1

j=0 be the increasing sequences
of points in [a, b] such that x0 = y0 = a, xn+1 = yn+1 = b, and the x j and y j ,
with 1 ≤ j ≤ n are zeroes of ϕ1 and ϕ2 in (a, b), respectively. We may assume, by
interchanging the role of ϕ1 and ϕ2 if needed, that x1 ≤ y1. Using the argument in the
previous step, with the interval (a, b) replaced by (x0, x1), we deduce that ρ1ϕ2 = ϕ1
on [x0, x1] for some ρ1 ∈ (0, ∞), which implies that x1 = y1. Repeating the same
argument as above, with (a, b) replaced by (x1, x2),…,(xn, xn+1) in this order, we
obtain x j = y j and ϕ1 = ρ jϕ2 in [x j−1, x j ] for some ρ j ∈ (0, ∞) and all
2 ≤ j ≤ n + 1. Since ϕi ∈ C1([a, b]) and ϕ′

i (x j ) �= 0 for all 1 ≤ j ≤ n and
i = 1, 2, we see that ρ1 = ρ2 = · · · = ρn+1. Using (43), we get ρ j = 1 for all
1 ≤ j ≤ n + 1 and, therefore, ϕ1 ≡ ϕ2 in [a, , b]. This completes the proof. ��

The following lemma states that the nth order eigenvalue μn(θ, c, d) and its eigen-
function depend continuously on the angles θ = (θ−, θ+) and the interval (c, d).

Lemma 26 Let n ∈ N0, {(θ−
j , θ+

j )} j∈N ⊂ (0, 2π ]2, (θ−, θ+) ∈ (0, 2π ]2,
{(c j , d j )} j∈N ⊂ [a, b]2, c, d ∈ [a, b] and {(μ j , ϕ j )} j∈N ⊂ R×W 2,1(a, b). Assume
that c j < d j for all j ∈ N, c < d and, for any j ∈ N, (μ j , ϕ j ) is an nth
eigenpair of (4)–(5), with the interval (a, b) and the pair (θ−, θ+) replaced by
(c j , d j ) and (θ−

j , θ+
j ) , respectively. Furthermore, assume that ‖ϕ j‖W 1,∞(c j ,d j )

= 1,

i(θ−
j ) = i(θ−), i(θ+

j ) = i(θ+) for all j ∈ N, and

lim
j→∞(θ−

j , θ+
j , c j , d j ) = (θ−, θ+, c, d) in R

4. (44)

Then there exists an nth order eigenpair (μ, ϕ) ∈ R × W 2,1(a, b) of (4)–(5), with
(a, b) replaced by (c, d), such that

lim
j→∞ μ j = μ and lim

j→∞ ϕ j = ϕ in W 2,1(a, b).
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A remark here is that in the lemma above, the admissibility of (n, θ−
j , θ+

j ) and
(n, θ−, θ+) is implicitly assumed.

Lemma 27 Let {ϕk}k∈N ⊂ C1([a, b])andϕ ∈ C1([a, b]). Let n ∈ N0, {(ck, dk)}k∈N
⊂ [a, b]2, (c, d) ∈ [a, b]2, {(θ−

k , θ+
k )}k∈N ⊂ (0, 2π ]2, and (θ−, θ+) ∈ (0, 2π ]2.

Assume that ck < dk for all k ∈ N, c < d, and i(θ−
k ) = i(θ−) and i(θ+

k ) = i(θ+)

for all k ∈ N, that as k → ∞,

ϕk → ϕ in C1([a, b]) and (ck, dk, θ
−
k , θ+

k ) → (c, d, θ−, θ+) in R
4, (45)

and that
(ϕ(x), ϕ′(x)) �= (0, 0) for all x ∈ [a, b]. (46)

Assume furthermore that every ϕk has exactly n zeroes in (ck, dk) and B(ϕk, ck, dk) ∈
L(θ−

k , θ+
k ). Then ϕ has exactly n zeroes in (a, b) and B(ϕ, c, d) ∈ L(θ−, θ+).

Proof For each k ∈ N let {xk,i }n+1
i=0 ⊂ [a, b] be the increasing sequence such that

xk,0 = ck, xk,n+1 = dk and the xk,i , with 1 ≤ i ≤ n, are zeroes of ϕk in (ck, dk).
By passing to a subsequence if necessary, we may assume that, as k → ∞, the

sequence {(xk,0, . . . , xk,n+1)}k∈N converges to a point (x0, . . . , xn+1) in Rn+2. Obvi-
ously, we have ϕ(xi ) = 0 for all i = 1, . . . , n, c = x0 ≤ x1 ≤ x2 ≤ · · · ≤
xn ≤ xn+1 = d and B(ϕ, c, d) ∈ L(θ−, θ+). This inclusion and (46) together
yield B(ϕ, c, d) ∈ L(θ−, θ+). Moreover, because of (46), we may assume that
(ϕk(x), ϕ′

k(x)) �= (0, 0) for all x ∈ [a, b] and k ∈ N.
We show that

min{xi − xi−1 : i ∈ {1, . . . , n + 1}} > 0. (47)

To the contrary, suppose that xi = xi−1 for some i ∈ {1, . . . , n + 1}. In the case
where i ∈ {2, . . . , n}, by the mean value theorem, for each k ∈ N there exists
yk ∈ (xk,i−1, xk,i ) such that ϕ′

k(yk) = 0. Taking the limit as k → ∞, we get
(ϕ(xi ), ϕ′(xi )) = 0, which is a contradiction.

Consider next the case where i = 1. We have now c = x0 = x1. Hence, we have
ϕ(c) = 0. We may assume by replacing ϕk and ϕ by −ϕk and −ϕ if necessary that
i(θ−

k ) = i(θ−) = 0 for all k ∈ N. Since ϕ(c) = 0, the condition, θ− ∈ (0, π ],
implies that ϕ′(c) > 0. Since θ−

k ∈ (0, π ] and ϕk(xk,1) = 0, we have ϕ′
k(xk,1) < 0

and, in the limit, ϕ′(c) ≤ 0. This contradicts the previous observation that ϕ′(c) > 0.
In the case where i = n + 1, we argue in a way parallel to the case of i = 1, to obtain
a contradiction. Hence, (47) is valid.

Since {xi }ni=1 ⊂ (c, d) consists of distinct zeroes of ϕ, the function ϕ has at least
n zeroes in (c, d). It remains to show that ϕ(x) �= 0 for all x ∈ (c, d) \ {x1, . . . , xn}.
To prove this, we suppose that ϕ(y) = 0 for some y ∈ (c, d)\{x1, . . . , xn}.We choose
i ∈ {1, . . . , n+ 1} and δ > 0, in view of (46), so that xi−1 < y− δ < y < y+ δ < xi
and ϕ′(x) �= 0 for all x ∈ (y − δ, y + δ). Clearly, we have ϕ(y + δ)ϕ(y − δ) < 0
and, by (45), ϕk(y + δ)ϕk(y − δ) < 0 for sufficiently large k ∈ N. The condition,
ϕk(y+ δ)ϕk(y− δ) < 0, ensures that ϕk(yk) = 0 for some yk ∈ (y− δ, y+ δ). If k is
large enough, thenwe have ϕk(yk) = 0 and yk ∈ (xk,i−1, xk,i ). This is a contradiction.
That is, ϕ(x) �= 0 for all x ∈ (c, d) \ {x1, . . . , n}. The proof is complete. ��
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Proof of Lemma 26 In view of (S1), we need only to consider the case when θ− ∈
(0, π ].

We show first that {μ j } j∈N is bounded from below. We choose θ̃ = (θ̃−, θ̃+) ∈
(0, π)2 so that θ− > θ̃− and θ+ > θ̃+. (Notice that if n is odd, then θ+ > π > t
for every t ∈ (0, π).) Next choose a principal eigenpair (ν0, ϕ0) ∈ R × W 2,1(a, b)
of (4)–(5), with the interval (a, b) and the pair (θ−, θ+) replaced by (c, d) and
(θ̃−, θ̃+) , respectively. (Recall our convention, explained just after (28), that ϕ0 is
defined on the interval [a, b] as a solution of (4), with μ = ν0.) Since θ̃ ∈ (0, π)2,
we have ϕ0 > 0 on [c, d]. Hence, there exists an open interval I , relatively to
[a, b], so that [c, d] ⊂ I and ϕ0 > 0 in I . Since (ϕ′

0(x), ϕ0(x)) �= (0, 0) in I , we
may find t−(x), t+(x) ∈ (0, π) for every x ∈ I such that B−(ϕ0, x) ∈ l(t−(x))
and B+(ϕ0, x) ∈ l(t+(x)), that is, t±(x) = �(±ϕ′

0(x), ϕ0(x)). Note that t−(c) =
θ̃−, t+(d) = θ̃+ and t±(x) depend continuously on x ∈ I .

Now by (44) and the choice of θ̃ , for sufficiently large j ∈ N, we have

c j , d j ∈ I, t−(c j ) < θ−
j and t+(d j ) < θ j .

Noting that (ν0, ϕ0) is a principal eigenpair of (4)–(5) with the interval (c j , d j ) and the
angles (t−(c j ), t+(d j )) in place of (a, b) and (θ−, θ+), respectively, which implies
that ν0 = μ0(t−(c j ), t+(d j ), c j , d j ), and that, if j is large enough, then the order
relation, (0, t−(c j ), t+(d j )) ≤ (n, θ j ), holds, where θ j = (θ−

j , θ+
j ), we conclude by

Theorem 4 that ν0 = μ0(t−(c j ), t+(d j ), c j , d j ) ≤ μ j for j sufficiently large and that
inf j∈N μ j > −∞.
Next we show that {μ j } j∈N is bounded from above. To see this, we fix an increasing

sequence {ek}n+1
k=0 ⊂ (c, d) and set

ν1 = max{μ0(π, π, ek−1, ek), μ0(2π, 2π, ek−1, ek) : k ∈ {1, . . . , n + 1}}.

We select K ∈ N so that c j < e0 and d j > en+1 for all integers j ≥ K . Fix
any integer j ≥ K , and let {x j,k}n+1

k=0 be the increasing sequence such that x j,0 =
c j , x j,n+1 = d j and the x j,k , with k ∈ {1, . . . , n}, are zeroes of ϕ j . We define
m = min{k ∈ {1, . . . , n + 1} : ek ≤ x j,k} and observe that m ∈ {1, . . . , n + 1} and
(em−1, em) ⊂ (x j,m−1, x j,m). We use Theorem 4, with (em−1, em) in place of (a, b),
to see that μ j ≤ max{μ0(π, π, em−1, em), μ0(2π, 2π, em−1, em)}. Thus, we obtain
μ j ≤ ν1 for all j ≥ K , and conclude that sup j∈N μ j < ∞.
We may thus choose a convergent subsequence {μ jk }k∈N of {μ j } and set μ =

limk→∞ μ jk . Furthermore, combining Lemma 22 and the fact that ‖ϕ j‖W 1,∞(c j ,d j )
=

1, we see that 1 ≤ sup j≥1 ‖ϕ j‖W 1,∞(a,b) < ∞. By Lemma 24, we may assume by
taking a further subsequence if needed that {ϕ jk }k∈N converges to a function ϕ strongly
in W 2,1(a, b) and ϕ satisfies F[ϕ] + μϕ = 0 in (a, b). Set θ = (θ−, θ+). Since
‖ϕ j‖W 1,∞(a,b) ≥ 1, we have ‖ϕ‖W 1,∞(a,b) ≥ 1. Hence, ϕ �≡ 0 in [a, b], which means
[see Proposition 1] that (ϕ(x), ϕ′(x)) �= (0, 0) for all x ∈ [a, b]. This combined with
the limit relation, B(ϕ, c, d) ∈ L(θ), assures that B(ϕ, c, d) ∈ L(θ). By Lemma
27, we see that ϕ has exactly n zeroes in (c, d). Therefore, (μ, ϕ) is an n th order
eigenpair of (4) and (5), with the interval (c, d) in place of (a, b). In particular, we
have μ = μn(θ, c, d).
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Because of the normalization, ‖ϕ j‖W 1,∞(c j ,d j )
= 1, we obtain ‖ϕ‖W 1,∞(c,d) = 1.

By Theorem 2 (1), the n th order eigenpair (μ, ϕ) of (4)–(5), with the interval (c, d)

in place of (a, b), is unique. It is a standard observation that this uniqueness assertion
combinedwith the argument above applied to any subsequence of the original sequence
{(μ j , ϕ j )} j∈N assures that

ϕ = lim
j→∞ ϕ j in W 2,1(a, b) and μ = lim

j→∞ μ j .

This completes the proof. ��
Lemma 28 Let n ∈ N0 and θ ∈ (0, 2π ]. If (n, θ, π) (resp. (n, θ, 2π)) is admissible,
then

lim inf
ε→0

inf
a≤c≤b−ε

μn(θ, π, c, c + ε) = lim inf
ε→0

inf
a+ε≤d≤b

μn(π, θ, d − ε, d) = ∞

(resp.

lim inf
ε→0

inf
a≤c≤b−ε

μn(θ, 2π, c, c + ε) = lim inf
ε→0

inf
a+ε≤d≤b

μn(2π, θ, d − ε, d) = ∞).

Proof In view of (S1) and (S2), we need only to prove that for θ ∈ (0, π ]

lim inf
ε→0

inf
a≤c≤b−ε

μn(θ, π, c, c + ε) = ∞.

Wenote that if (n, θ, π) is admissible, then n is even, that if (n, θ, 2π) is admissible,
then n is odd, and that the order relations, (0, θ, π) ≤ (2k, θ, π) and (0, θ, π) ≤
(2k − 1, θ, 2π), hold for all k ∈ N. Hence, we deduce by Theorem 4 that for any
n ∈ N0, 0 < ε ≤ b − a and c ∈ [a, b] with c + ε ≤ b,

μ0(θ, π, c, c + ε) ≤
{

μn(θ, π, c, c + ε) if (n, θ, π) is admissible,

μn(θ, 2π, c, c + ε) if (n, θ, 2π) is admissible.

Thus, it is enough to prove that

lim inf
ε→0

inf
a≤c≤b−ε

μ0(θ, π, c, c + ε) = ∞. (48)

To prove (48), we argue by contradiction and suppose that there exist {ε j }, c j ∈
[a, b − ε j ] and M > 0 such that

ε j → 0, μ j := μ0(θ, π, c j , c j + ε j ) ≤ M for all j.

Let ϕ j ∈ W 2,1(c j , c j + ε j ) be an eigenfunction corresponding to μ j and satisfy
‖ϕ j‖W 1,∞(c j ,c j+ε j )

= 1. Then we have ϕ j (c j + ε j ) = 0 and Fj [ϕ j ] := F[ϕ j ] +
μ jϕ j = 0 in (c j , c j + ε j ). Moreover, Fj satisfies (F1)–(F3) with β j (x) := β(x) and
γ j (x) := (γ (x) + μ j )+ in place of β and γ .
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If θ = π , we may find some τ j ∈ (c j , c j + ε j ) so that ϕ′
j (τ j ) = 0. If θ = π/2,

we also have ϕ′
j (c j ) = 0. Therefore, when θ = π or θ = π/2, one has |ϕ′

j (z j )| =
0 = 0 · |ϕ j (z j )| for some z j ∈ [c j , c j + ε j ]. On the other hand, if θ �= π/2, π , then
the condition, B−(ϕ j , c j ) ∈ l(θ), says that the point (ξ, η) = (−ϕ′

j (c j ), ϕ j (c j )) lies
on the line, η = sξ , with the slope s ∈ R \ {0}, which yields |ϕ′

j (c j )| ≤ |ϕ j (c j )|/|s|.
Thus in general, we have |ϕ′

j (z j )| ≤ σ |ϕ j (z j )| for some σ ≥ 0 and z j ∈ [c j , c j +ε j ]
where σ is independent of j .

Now, setting

C j := exp
(
‖λ−1(β j + γ j ) + 1‖L1(c j ,c j+d j )

)
,

we see that {C j } is bounded due to the definition of γ j and μ j ≤ M . Thus for
sufficiently large j , we obtain C j (1+σ)ε j < 1 and Lemma 23 gives a contradiction:

1 = ‖ϕ j‖W 1,∞(c j ,c j+ε j )
≤ C jλ

−1

1 − C j (1 + σ)ε j
· 0 = 0.

Hence, (48) holds. ��
We now give a proof of Theorem 2 (2) in the case n ≥ 1, which in turn completes

the proof of Theorem 2.

Proof of Theorem 2 (2) in the general case We have already shown that claim (2) of
Theorem 2 holds in the case where n = 0.

We prove the claim by induction on n, and we assume that the claim holds up to
n = k, with k ∈ N0. Here we understand that this induction assumption is valid
not only on the interval [a, b], but also on any subintervals [a, c] and [c, b], with
c ∈ (a, b). Hence, for any admissible (k + 1, θ−, θ+), where k ∈ N0, and any
c ∈ (a, b), we have a kth order eigenpair (μc, ϕc) of (4) in (a, c) and a zeroth order
eigenpair (νc, ψc) of (4) in (c, b) such that B−(ϕc, a) ∈ l(θ−), ϕc(c) = ψc(c) = 0
and B+(ψc, b) ∈ l(θ+).More precisely, (μc, ϕc) [resp. (νc, ψc)] is a kth (resp. zeroth)
order eigenpair of (4) in (a, c) [resp. in (c, b)] and B(ϕc, a, c) ∈ L(θ−, τ+) [resp.
B(ψc, c, b] ∈ L(τ−, θ+)), where

(τ+, τ−) =
{

(π, 2π) if k + i(θ−) is even,

(2π, π) otherwise,

so that (k, θ−, τ+) and (0, τ−, θ+) are admissible.
By Lemma 26, the functions c �→ μc and c �→ νc are continuous on (a, b] and

[a, b), respectively, and moreover, by Lemma 28, we have limc→a+0(μc − νc) = ∞
and limc→b−0(μc − νc) = −∞. It follows by the intermediate value theorem that
there exists c1 ∈ (a, b) such that μc1 = νc1 . Since (k + 1, θ−, θ+) is admissible, we
have ϕ′

c1(c1)ψ
′
c1(c1) > 0. We choose a constant ρ > 0 so that ϕ′

c1(c1) = ρψ ′
c1(c1). It

is obvious that if we define the function χ on [a, b] by
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χ(x) =
{

ϕc1(x) for x ∈ [a, c1],
ρψc1(x) for x ∈ [c1, b],

then χ ∈ W 2,q(a, b) and (μc1, χ) is a (k + 1)st order eigenpair of (4)–(5). This
completes the proof. ��
Proof of Corollary 3 If n is an even integer, then triplets (n, θ−

1 , θ+
1 ) and (n, θ−

2 , θ+
2 )

are admissible. Otherwise, (n, θ−
1 , θ+

2 ) and (n, θ−
2 , θ+

1 ) are admissible.
Assume temporarily that n is even. By Theorem 2, there are nth order eigenpairs

(μ±, ϕ±) ∈ R × W 2,q(a, b) of (4)–(5), with (θ−, θ+) replaced by (θ−
1 , θ+

1 ) and
(θ−

2 , θ+
2 ), respectively. Let {x±

i }n+1
i=0 ⊂ [a, b] be the increasing sequences such that

x±
0 = a, x±

n+1 = b and ϕ±(x±
i ) = 0 for all i ∈ {1, . . . , n}. We may assume by

multiplying ϕ± by positive constants if necessary that ‖ϕ±‖L∞(a,b) = 1. With this
choice of ϕ± and {x±

i }n+1
i=0 , the condition (1) is satisfied. Let (μ, ϕ) ∈ R×W 2,q(a, b)

be an nth order eigenpair of (4) and (10) normalized so that ‖ϕ‖L∞(a,b) = 1. For
some δ > 0, we have either ϕ > 0 in (a, a + δ) or ϕ < 0 in (a, a + δ), and, if
ϕ > 0 in (a, a + δ) [resp. ϕ < 0 in (a, a + δ)], then (μ, ϕ) is an nth order eigenpair
of (4)–(5), with (θ−, θ+) replaced by (θ−

1 , θ+
1 ) [resp. (θ−

2 , θ+
2 )]. Theorem 2 ensures

that if (μ, ϕ) is an nth order eigenpair of (4)–(5), with (θ−, θ+) replaced by (θ−
1 , θ+

1 )

[resp. (θ−
2 , θ+

2 )], then we have (μ, ϕ) = (μ+, ϕ+) [resp. (μ, ϕ) = (μ−, ϕ−)]. This
shows that the condition (2) is satisfied.

The case where n is odd can be treated similarly to the above, and we skip the
details. ��

5.4 Characterizations of eigenvalues

We present here a proof of Theorem 5.
Regarding the symmetry (S1), we remark that for (μ, u) ∈ R × W 2,1(a, b), the

equality

(F[u] + μu)u = (−F[−(−u)] + μ(−u))(−u) in (a, b),

holds and that the inequality (16) [resp. (17)] holds for (μ, u) ∈ R × W 2,1(a, b),
then (μ,−u) satisfies (16) [resp. (17)], with the function F(m, p, r, x) replaced by
−F(−m,−p,−r, x). Thus, the symmetry (S1) is valid for both (16) and (17). The
symmetry (S2), as well, is obviously valid for both (16) and (17).

Proof of Theorem 5 Let ϕ ∈ W 2,1(a, b) be an eigenfunction corresponding to
μn(θ, a, b) and set μ = μn(θ, a, b).

We prove first the inequality, μ ≥ sup E−(n, θ). To do this, we suppose to the
contrary that μ < sup E−(n, θ). We may choose an nth order solution (ν, ψ) ∈
R × W 2,1(a, b) of (16) and (5) such that μ < ν.

Let {x j }nj=1 and {y j }nj=1 be the increasing sequences of zeroes in (a, b) of ϕ and
ψ , respectively. We set x0 = y0 = a and xn+1 = yn+1 = b. As in the proof of
Theorem 4, let k be the smallest j ∈ {1, . . . , n + 1} such that x j ≤ y j and note

123



Eigenvalue problem for fully nonlinear second-order elliptic… 485

that (xk−1, xk) ⊂ (yk−1, yk) and ϕψ > 0 in (xk−1, xk). In view of the symmetry
stated prior to this proof, we need only to treat the case where ϕ > 0 and ψ > 0 in
(xk−1, xk).

From (16), since μ < ν, we get

F[ψ] + μψ < F[ψ] + νψ ≤ 0 = F[ϕ] + μϕ in (xk−1, xk).

Now, by Theorem 16, we see that ϕ ≤ 0 in (xk−1, xk), which is a contradiction.
Here we have used the fact that B(ψ, xk−1, xk) ∈ L(θψ) for some θψ = (θ−

ψ , θ+
ψ ) ∈

(0, π ]2, which is a easy consequence of Proposition 13, the inequality ψ > 0 in
(xk−1, xk) and the above inequality. Thus we obtain μ ≥ sup E−(n, θ).

Next, we note that (μ, ϕ) satisfies (16) with equality, which shows that μ ∈
E−(n, θ) and μ ≤ max E−(n, θ). Hence, we concludes that μ = max E−(n, θ).

Let α = (m, τ ) ∈ N0×(0, 2π ]2 be admissible and satisfy α ≤ (n, θ). By Theorem
4, we have μm(τ, a, b) ≤ μ and, as observed above, μm(τ, a, b) = max E−(m, τ ).
Thus, we obtain

max Ẽ−(n, θ) = max
α≤(n,θ)

max E−(α) = max E−(n, θ) = μ.

We prove next the inequality μ ≤ inf E+(n, θ−, θ+). We suppose to the contrary
that μ > inf E+(n, θ). Wemay choose an nth order solution (ν, ψ) ∈ R×W 2,1(a, b)
of (17) and (5) such that μ > ν.

Let {x j }nj=1 and {y j }nj=1 be the increasing sequences of zeroes in (a, b) of ϕ and
ψ , respectively. We set x0 = y0 = a and xn+1 = yn+1 = b. Let k be the smallest
j ∈ {1, . . . , n+ 1} such that y j ≤ x j and note that (yk−1, yk) ⊂ (xk−1, xk). We have
ϕψ > 0 in (yk−1, yk). In view of the symmetry (S1), we need only to treat the case
where ϕ > 0 and ψ > 0 in (yk−1, yk). From (17), we have

F[ϕ] + νϕ < F[ϕ] + μϕ = 0 ≤ F[ψ] + μψ in (yk−1, yk).

Hence, by Theorem 16, we get ψ ≤ 0 in (yk−1, yk), which is a contradiction. This
proves that μ ≤ inf E+(n, θ).

Note that (μ, ϕ) satisfies (17), which ensures that μ ∈ E+(n, θ), and proves
that μ = min E+(n, θ). Using Theorem 4, we easily deduce that min Ẽ+(n, θ) =
min E+(n, θ) and conclude that μ = min Ẽ+(n, θ) = min E+(n, θ). ��

5.5 Inhomogeneous equations

We treat now (18) and prove Theorem 6.
We start by noting that for (μ, u) ∈ R × W 2,1(a, b),

−(F[u] + μu + sgn(u) f ) = −F[−(−u)] + μ(−u) − sgn(−(−u)) f

= −F[−(−u)] + μ(−u) + sgn(−u) f in (a, b),
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and therefore that if (μ, u) satisfies F[u]+μu+sgn(u) f = 0 in (a, b), then (μ, v) :=
(μ,−u) satisfies−F[−v]+μv+sgn(v) f = 0 in (a, b). Hence, (18) has the symmetry
(S1). Also, it is obvious that (18) has the symmetry (S2).

Proof of Theorem 6 (3) We argue by contradiction and suppose that there were an nth
order solution (μ, u) ∈ R × W 2,1(a, b) of (18). Note that u satisfies

(F[u] + μu)u = − sgn(u)u f ≤ 0 in (a, b).

It follows from Theorem 5 that μn(θ, a, b) ≥ μ, which implies, together with our
assumption on μ, that μ = μn(θ, a, b).

Let ϕ be an nth order eigenfunction corresponding to μn(θ, a, b). Let {xi }n+1
i=0 and

{yi }n+1
i=0 be the increasing sequences of points in [a, b] such that x0 = y0 = a,

xn+1 = yn+1 = b, and the xi and yi , with 1 ≤ i ≤ n, are zeroes of u and ϕ in (a, b),
respectively.

We show that u and ϕ have the same zeroes, that is, xi = yi for all i ∈ {1, . . . , n}.
To see this, we assume for the moment that n ≥ 1 and, to the contrary, suppose that
xi �= yi for some i ∈ {1, . . . , n}. Set j = min{i ∈ {1, . . . , n} : xi �= yi } and k = j
if x j > y j . If y j > x j , then we set k = min{i ∈ { j + 1, . . . , n + 1} : yi ≤ xi }.
(Notice that j < n + 1 and xn+1 = yn+1). Observe that (yk−1, yk) ⊂ (xk−1, xk) and
the inclusion is strict, that is, (xk−1, xk) �= (yk−1, yk).

In view of (S1), we may assume that u > 0 and ϕ > 0 in (yk−1, yk). We set
ρ = sup(yk−1,yk ) ϕ/u. Since F[u] + μu ≤ 0 in (yk−1, yk), using Proposition 13,
we get (u′(x), u(x)) �= (0, 0) for all x ∈ [yk−1, yk], from which we deduce that
0 < ρ < ∞. Noting that F[ρu]+μρu ≤ 0 = F[ϕ]+μϕ in (xk−1, xk) and applying
the strong maximum principle, Lemma 14, we see that ϕ ≡ ρu in [yk−1, yk], which
implies that u(yk−1) = u(yk) = 0. This is a contradiction since u > 0 in (xk−1, xk)
and either yk−1 or yk belongs to (xk−1, xk). Thus we conclude that xi = yi for all
i ∈ {1, . . . , n}.

We set c = a and d = b if n = 0 and, otherwise, we choose k ∈ {1, . . . , n + 1} so
that f �≡ 0 in (xk−1, xk), and set c = xk−1 andd = xk .Wemayassume that ϕ > 0 and
u > 0 in (xk−1, xk). We note that F[u]+μu ≤ 0 and F[u]+μu �≡ 0 in (c, d) and
by Proposition 13 that B(ϕ, c, d), B(u, c, d) ∈ L(θ̃) where θ̃ = (θ̃−, θ̃+), θ̃− = θ−
if c = a, θ̃− = π otherwise and θ̃+ = θ+ if d = b, θ̃+ = π otherwise. Thus
Theorem 16 gives ϕ ≤ 0 in (c, d), a contradiction, which shows that there is no nth
order solution of (18). ��

Let a ≤ c < d ≤ b and (μ, u) ∈ W 2,1(c, d) be a solution of (18), with a and b
replaced by c and d, respectively. We may extend the domain of definition of u so that
u belongs to W 2,1(a, b) and satisfies F[u] + μu + f = 0 in (a, c) ∪ (d, b). Based
on the observation above, as in the case of (4), we agree henceforth that the original
u ∈ W 2,1(c, d) is identified with the extended u ∈ W 2,1(a, b).

Lemma 29 Let { fk}k∈N ⊂ L1(a, b), f ∈ L1(a, b), {(ck, dk)}k∈N ⊂ [a, b]2, (c, d)

∈ [a, b]2, {θk}k∈N ⊂ (0, 2π ]2, θ ∈ (0, 2π ]2, {μk}k∈N ⊂ R, and μ ∈ R. Assume
that fk ≥ 0 in (a, b) and ck < dk for all k ∈ N, c < d,
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lim
k→∞(ck, dk, θk, μk) = (c, d, θ, μ) in R

5,

and

lim
k→∞ fk = f in L1(a, b).

Set θ = (θ−, θ+) and θk = (θ−
k , θ+

k ) for k ∈ N and assume that i(θ−
k ) = i(θ+

k ) =
i(θ−) = i(θ+) for all k ∈ N. For each k ∈ N let {vk}k∈N ⊂ W 2,1(a, b), and assume
that for any k ∈ N, the function vk is a zeroth order solution of

F[vk] + μkvk + sgn(vk) fk = 0 in (ck, dk) and B(vk, ck, dk) ∈ L(θk).

Moreover, assume that f �≡ 0 in (c, d). Then we have μ < μ0(θ, c, d) if and only if

sup
k∈N

‖vk‖W 1,∞(ck ,dk ) < ∞. (49)

Furthermore, ifμ < μ0(θ, c, d), then the sequence {vk} has a convergent subsequence
in W 2,1(a, b) whose limit v ∈ W 2,1(a, b) is a zeroth order solution of

F[v] + μv + sgn(v) f = 0 in (c, d) and B(v, c, d) = L(θ). (50)

Proof By (S1), we may assume that θ, θk ∈ (0, π ]2, so that vk > 0 in (ck, dk) for
all k ∈ N.

We first assume that (49) holds, and show that μ < μ0(θ, c, d). By Lemma 24,
{vk} has a convergent subsequence {vk j } j∈N inW 2,1(a, b)whose limit v ∈ W 2,1(a, b)
satisfies

F[v] + μv + f = 0 in (a, b) and v ≥ 0 in [c, d].

Since f �≡ 0 and F[v]+μv+ f = 0 in [c, d],we see thatv �≡ 0 on [c, d]. By the strong
maximumprinciple, Proposition 13,we see that v > 0 in (c, d), (v(c), v′(c)) �= (0, 0)
and (v(d), v′(d)) �= (0, 0). Since {vk j } j∈N converges to v also in C1([a, b]), we get
B(v, c, d) = L(θ). Thus v is a zeroth order solution of (50). Theorem 6 (3), with the
interval (a, b) replaced by (c, d), assures that μ < μ0(θ, c, d).

Next we assume that μ < μ0(θ, c, d). We argue by contradiction, and suppose to
the contrary that supk∈N ‖vk‖W 1,∞(ck ,dk ) = ∞. We may then assume by passing to a
subsequence if necessary that limk→∞ ‖vk‖W 1,∞(ck ,dk ) = ∞. We set

ṽk = ‖vk‖−1
W 1,∞(ck ,dk )

vk and f̃k = ‖vk‖−1
W 1,∞(ck ,dk )

fk on [a, b] for k ∈ N,

and observe that ṽk satisfy

F[ṽk]+μk ṽk+ f̃k =0 in (a, b), ṽk > 0 in (ck, dk) and B(ṽk, ck, dk) = L(θk).
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Note that limk→∞ f̃k = 0 in L1(a, b). By Lemma 24, {ṽk} has a convergent
subsequence {ṽk j } j∈N in W 2,1(a, b) whose limit w ∈ W 2,1(a, b) satisfies F[w] +
μw = 0 in (a, b), w ≥ 0 in [c, d] and ‖w‖W 1,∞(c,d) = 1. Since B(w, c, d) ∈
L(θ), μ < μ0(θ, c, d) and F[ϕ0] + μϕ0 < 0 = F[w] + μw in (c, d), where ϕ0 is
a (positive) eigenfunction corresponding to μ0(θ, c, d), by the maximum principle,
Theorem 16, we deduce that w ≤ 0 in (c, d), which implies that w ≡ 0 on [a, b].
This is a contradiction, which completes the proof. ��
Remark 30 We note that, in the proof above of the fact that μ < μ0(θ, a, b) implies
(49), the condition f �≡ 0 is not needed.

Proof of Theorem 6 (2) and (1) for n = 0 In view of (S1), we may assume that θ ∈
(0, π ]2. Let ϕ ∈ W 2,1(a, b) be an eigenfunction corresponding to μ0(θ, a, b).

The uniqueness of a zeroth order solution of (18) is a consequence of the comparison
principle, Proposition 18, with ψ replaced by ϕ.

We prove the existence of a zeroth order solution of (18). We treat first the case
where

θ ∈ (0, π)2, f ∈ C([a, b]) and min[a,b] f > 0. (51)

Since ϕ > 0 on [a, b], we may choose positive constants p0 < p1 so that

(μ0(θ, a, b) − μ)p0ϕ ≤ f ≤ (μ0(θ, a, b) − μ)p1ϕ on [a, b].

Set ϕ0 = p0ϕ and ϕ1 = p1ϕ on [a, b] and note that F[ϕ0] + μϕ0 + f ≥ 0 ≥
F[ϕ1] + μϕ1 + f in (a, b). Also, set r0 = ϕ0(a)/ sin θ− and r1 = ϕ1(a)/ sin θ−.
Since sin θ− > 0, we have r0 > 0 and r1 > 0.

For each α > 0 let vα ∈ W 2,1(a, b) be the unique solution of the initial value
problem

F[vα] + μvα + f = 0 in (a, b) and (−v′
α(a), vα(a)) = α(cos θ−, sin θ−).

We remark that if vα ≥ 0 in [a, b], then F[vα] + μvα = − f ≤ 0 in (a, b) and
Proposition 13 yield vα > 0 in (a, b) and max{vα(b),−v′

α(b)} > 0. Hence, we may
find a θα ∈ (0, π ] so that B+(v, b) ∈ l(θα).

Nowwe prove that vα > ϕ1 in [a, b] for all α > r1, in particular, θα is well-defined
for α ≥ r1. We argue by contradiction and suppose that for some α > r1, one has
vα(d) = ϕ1(d) and vα > ϕ1 in [a, d) due to vα(a) = α sin θ− > r1 sin θ− = ϕ1(a).
Since ϕ1 > 0 in [a, b], choose θd,vα , θd,ϕ1 ∈ (0, π) such that B+(vα, d) ∈ l(θd,vα )

and B+(ϕ1, d) ∈ l(θd,ϕ1). Moreover, it follows from vα > ϕ1 in (a, d) that v′
α(d) ≤

ϕ′
1(d), which implies θd,ϕ1 ≤ θd,vα .
On the other hand, we have

F[ϕ1] + μϕ1 ≤ − f = F[vα] + μvα in (a, d),

B(ϕ1, a, d) ∈ L(θ−, θd,ϕ1), B(vα, a, d) ∈ L(θ−, θd,vα ).

Applying Proposition 18, we get vα ≤ ϕ1 in [a, d], which is a contradiction. Thus
vα > ϕ1 in [a, b] for all α > r1.
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Next, we claim that θα < θ+ for each α > r1. In fact, if θα ≥ θ+ holds for some
α > r1, arguing as above, Proposition 18 gives us a contradiction vα ≤ ϕ1 in [a, b].
Hence, θα < θ+ for every α > r1.

We set

A = {α > 0 : θα < θ+ and vα ≥ ϕ0/2 on [a, b]} and α0 = inf A.

The argument above shows that (r1, ∞) ⊂ A and 0 ≤ α0 ≤ r1. Observe next that if
0 < α < r0/2, then vα(a) = α sin θ− < (r0/2) sin θ− = ϕ0(a)/2. Hence, we have
(0, r0/2) ∩ A = ∅ and α0 ≥ r0/2.
We now prove that

θα0 = θ+ and vα0 > 0 on [a, b].

By general ODE theory, we know that the functions α �→ min[a,b](vα − ϕ0/2) and
α �→ θα are continuous on (0, ∞) and on {α ∈ (0, ∞) : vα ≥ 0 in [a, b]},
respectively. By the definition of α0 together with the continuity mentioned above,
we have vα0 ≥ ϕ0/2 on [a, b] and θα0 ≤ θ+. Moreover, if θα0 < θ+, then, by
applying Proposition 18, we get vα0 ≥ ϕ0 on [a, b], which implies that, for some
α1 ∈ (0, α0), θα1 < θ+ and vα1 ≥ ϕ0/2 on [a, b], and hence, by the definition of
α0, α0 ≤ α1, a contradiction. Thus, we find that θα0 = θ+ and vα0 ≥ ϕ0/2 > 0 on
[a, b].
The function vα0 is a zeroth order solution of (18), and the proof of existence is

done under the additional hypotheses (51).
To remove the extra condition (51), given f ∈ L1(a, b), with f ≥ 0 in (a, b), and

θ ∈ (0, π ]2, we select sequences { fk}k∈N ⊂ C([a, b]) and {θk}k∈N ⊂ (0, π)2, so
that min[a,b] fk > 0 for all k ∈ N.

Thanks to Lemma 26, we have the convergence

lim
k→∞ μ0(θk, a, b) = μ0(θ, a, b).

Wemay therefore assume that μ < μ0(θk, a, b) for all k ∈ N. The previous argument
ensures that for each k ∈ N there is a zeroth order solution vk ∈ W 2,1(a, b) of (18),
with fk and θk in place of f and θ , respectively. We apply Lemma 29, to conclude
that there exists a zeroth order solution of (18). This completes the proof. ��

We give some definitions and observations needed for the proof of claim (1) of
Theorem 6.

Fix any admissible (n, θ) and μ ∈ (−∞, μn(θ, a, b)). Let ϕn be an eigenfunction
corresponding to μn(θ, a, b) and {xi }ni=1 be the increasing sequence of zeroes of ϕn

in (a, b). We set x0 = a and xn+1 = b. We set θ−
1 = θ− and θ+

n+1 = θ+, choose
two sequences {θ−

i }n+1
i=2 , {θ+

i }ni=1 ⊂ {π, 2π} so that B(ϕn, xi−1, xi ) ∈ L(θ−
i , θ+

i )

for all i ∈ {1, . . . , n + 1}, and set θi = (θ−
i , θ+

i ) for i ∈ {1, . . . , n + 1}. Note that
μ0(θi , xi−1, xi ) = μn(θ, a, b) for all i ∈ {1, . . . , n + 1}.

Let M > 0 and c, d ∈ [a, b] be such that c ≤ d. Fix any i ∈ {1, . . . , n + 1}.
Let ui ∈ W 2,1(c, d) be a zeroth order solution of (18), with θ, a and b replaced
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by θi , c and d, respectively, provided c < d and μ < μ0(θi , c, d). The existence
and uniqueness of ui is assured by the claims (2) and (1) for n = 0 of Theorem 6,
which have already been proved above. We define �−

M (c, d, i), �+
M (c, d, i) ∈ R,

respectively, by

�−
M (c, d, i) =

⎧
⎪⎨

⎪⎩

0 if c = d,

min{|ui (c)| + |u′
i (c)|, M} if c < d and μ < μ0(θi , c, d),

M otherwise,

and

�+
M (c, d, i) =

⎧
⎪⎨

⎪⎩

0 if c = d,

min{|ui (d)| + |u′
i (d)|, M} if c < d and μ < μ0(θi , c, d),

M otherwise.

Similarly, we write

�−(c, d, i) =
{
0 if c = d,

|ui (c)| + |u′
i (c)| if c < d and μ < μ0(θi , c, d),

and

�+(c, d, i) =
{
0 if c = d,

|ui (d)| + |u′
i (d)| if c < d and μ < μ0(θi , c, d).

In the definition above we note that for any i ∈ {2, . . . , n + 1}, if c < d and
μ < μ0(θi , c, d), then ui (c) = 0 and �−

M (c, d, i) = min{M, |u′
i (c)|} > 0, that for

any i ∈ {1, . . . , n}, if c < d and μ < μ0(θi , c, d), then ui (d) = 0 and �+
M (c, d, i) =

min{M, |u′
i (d)|} > 0. Note also that for any i ∈ {1, . . . , n + 1} and C > 0, we have

min{�−
M (c, d, i), C} = �−

min{M,C}(c, d, i) and

min{�+
M (c, d, i), C} = �+

min{M,C}(c, d, i).

Lemma 31 Let M > 0, μ ∈ R and {θi }n+1
i=1 be as above. Let f ∈ C([a, b]) satisfy

f > 0 on [a, b]. For any i ∈ {1, . . . , n + 1} the functions (c, d) �→ �±
M (c, d, i) are

continuous on the set {(x, y) ∈ [a, b]2 : x ≤ y}.

Proof Set Δ = {(x, y) ∈ [a, b]2 : x ≤ y}. Fix any convergent sequence
{(ck, dk)}k∈N of points in Δ. Set (c, d) = limk→∞(ck, dk). We need to prove that

lim
k→∞ �±

M (ck, dk, i) = �±
M (c, d, i). (52)
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In the proof which follows, for each k ∈ N, ui,k ∈ W 2,1(ck, dk) denotes the unique
zeroth order solution of (18), with θ, a and b replaced by θi , ck and dk , respectively,
provided a ≤ ck < dk ≤ b and μ < μ0(θi , ck, dk).

We consider first the case when c = d. By definition, we have �±
M (c, d, i) = 0.

To prove (52), we suppose to the contrary that either

lim sup
k→∞

�−
M (ck, dk, i) > 0 or lim sup

k→∞
�+

M (ck, dk, i) > 0. (53)

We may choose a subsequence {(ck j , dk j )} j∈N of {(ck, dk)} so that

lim
j→∞ �−

M (ck j , dk j , i) = lim sup
k→∞

�−
M (ck, dk, i) and

lim
j→∞ �+

M (ck j , dk j , i) = lim sup
k→∞

�+
M (ck, dk, i).

Obviously, we may assume by passing again to a subsequence if necessary that
ck j < dk j and dk j − ck j < b − a for all j ∈ N. By Lemma 28, we
have lim j→∞ μ0(θi , ck j , dk j ) = ∞. Hence, we may moreover assume that μ <

μ0(θi , ck j , dk j ) for all j ∈ N. Noting by our choice of θi that either ui,k j (ck j ) = 0 or
ui,k j (dk j ) = 0 for all j ∈ N and that dk j − ck j → 0, we apply Lemma 23, to obtain

lim
j→∞ ‖ui,k j ‖W 1,∞(ck j ,dk j )

= 0,

which readily yields lim j→∞ �−
M (ck j , dk j , i) = lim j→∞ �+

M (ck j , dk j , i) = 0. This
contradicts (53), which proves (52).

What remains is the case where c < d. We may assume by replacing {(ck, dk)}
by {(ck+K , dk+K )}k∈N, with K ∈ N sufficiently large if necessary, that ck < dk for
all k ∈ N.

Now we consider the case where μ < μ0(θi , c, d). In view of the continuity of the
eigenvalues, Lemma 26, we may now assume that μ < μ0(θi , ck, dk) for all k ∈ N.
We denote by ui the zeroth order solution of (18), with θ, a and b, replaced by θi , c
and d, respectively. By Lemma 29, we deduce that limk→∞ ui,k = ui in C1([a, b]),
which, in particular, ensures that (52) holds.

Next we consider the case where c < d and μ ≥ μ0(θi , c, d). Note that
�−

M (c, d, i) = �+
M (c, d, i) = M . If μ > μ0(θi , c, d), then, by the continuity of the

eigenvalues, we have μ > μ0(θi , ck, dk) and hence �−
M (ck, dk, i) = �+

M (ck, dk, i) =
M for sufficiently large k ∈ N, and (52) follows. We may therefore assume that
μ = μ0(θi , c, d). To prove (52), we argue by contradiction, and suppose that

lim inf
k→∞ �−

M (ck, dk, i) < M or lim inf
k→∞ �+

M (ck, dk, i) < M. (54)

This, in particular, implies that μ < μ0(θi , ck, dk) for sufficiently large k ∈ N. We
may select a subsequence {(ck j , dk j )} j∈N of {(ck, dk)} so that μ < μ0(θi , ck j , dk j )
for all j ∈ N,
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lim
j→∞ �−

M (ck j , dk j , i) = lim inf
k→∞ �−

M (ck, dk, i)

and

lim
j→∞ �+

M (ck j , dk j , i) = lim inf
k→∞ �+

M (ck, dk, i).

Since lim j→∞ μ0(θi , ck j , dk j ) = μ, by applying Lemma 29 together with Lemma
24, we see that sup j∈Nmin[a,b](|ui,k j | + |u′

i,k j
|) = ∞, which yields

lim
j→∞ �−

M (ck j , dk j , i) = lim inf
j→∞ �+

M (ck j , dk j , i) = M.

This contradicts (54), which proves (52). The proof is complete. ��
Proof of Theorem 6 (1) The claim (1) for n = 0 has already been proved.

We assume for the moment that f ∈ C([a, b]) with f > 0 in [a, b], and prove the
existence of an nth order solution of (18).

Set

Δn =
{
y = (y1, . . . , yn) ∈ R

n : yi > 0 for all i ∈ {1, . . . , n},
n∑

i=1

yi < b − a
}
.

Given y = (y1, . . . , yn) ∈ R
n , we write yn+1 = b − a −∑n

i=1 yi and note that

Δn ={y = (y1, . . . , yn) ∈ R
n : yi ≥ 0 for all i ∈ {1, . . . , n}, 0 ≤ yn+1 ≤ b − a

}
.

Fix any M > 0 and define a mapping TM : Δn → R
n by

TM (y) = (TM,1(y), . . . , TM,n(y)),

where TM,i (y) = �+
M (zi−1, zi , i)−�−

M (zi , zi+1, i + 1) for i ∈ {1, . . . , n}, z0 = a

and zi = a +∑i
j=1 y j for i ∈ {1, . . . , n + 1}.

Note by the assumption that f ∈ C([a, b]) and f > 0 in [a, b] and by Lemma 31
that Tn : Δn → R

n is a continuous mapping.
We show that TM has a zero in Δn , and for this, we consider the degree,

deg(TM , 0,Δn), of TM on �n and prove that deg(TM , 0,Δn) = 1.
Observe that ∂Δn = Γn,0 ∪ Γn,1, where Γn,0 = {y ∈ Δn : yn+1 > 0, yi =

0 for some i ∈ {1, . . . , n}} and Γn,1 = {y ∈ Δn : yn+1 = 0}.
Let y ∈ Γn,1, note that

∑n
i=1 yi = b − a > 0 and set j = max{i ∈ {1, . . . , n} :

yi �= 0}. Since y j > 0 and y j+1 = 0, we have

�+
M (z j−1, z j , j) > 0, �−

M (z j , z j+1, j + 1) = 0 and TM, j (y) > 0.

Observe moreover that for any t ∈ [0, 1],

(1 − t)TM, j (y) + t y j > 0,
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which shows, together with the continuity of TM and the compactness of Γn,1, that

min{|(1 − t)TM (y) + t y| : y ∈ Γn,1, t ∈ [0, 1]} > 0.

Hence, fixing a point p = (p1, . . . , pn) ∈ Δn , we may choose δ ∈ (0, 1) so that

(1 − t)TM (y) + t (y − δp) �= 0 for all (y, t) ∈ Γn,1 × [0, 1]. (55)

Next let y ∈ Γn,0. Set j = max{i ∈ {1, . . . , n} : yi = 0} and note that y j = 0 and
y j+1 > 0. Accordingly, we have

�+
M (z j−1, z j , j) = 0, �−

M (z j , z j+1, j + 1) > 0 and TM, j (y) < 0.

Note here that for any t ∈ [0, 1],

(1 − t)TM, j (y) + t (y j − δp j ) = (1 − t)TM, j (y) − δtp j < 0,

which shows that

(1 − t)TM (y) + t (y − δp) �= 0 for all (y, t) ∈ Γn,0 × [0, 1].

This together with (55) ensures that

(1 − t)TM (y) + t (y − δp) �= 0 for all (y, t) ∈ ∂Δn × [0, 1].

Hence, by the homotopy invariance of degree, we have deg(TM , 0,Δn)

= deg(h, 0,Δn), where h is the function on R
n defined by h(y) = y − δp. Thus,

noting that h vanishes exactly at the point δp ∈ Δn and that δp is a regular value of h,
we see that deg(h, 0,Δn) = 1 and conclude that deg(TM , 0,Δn) = 1.

The fact that deg(TM , 0,Δn) = 1 guarantees that there exists a zero yM ∈ Δn of
TM .

We intend to show that there is a constant M > 0 such that

�−
M (zM,i−1, zM,i , i) < M and

�+
M (zM,i−1, zM,i , i) < M for all i ∈ {1, . . . , n + 1}, (56)

where

zM,0 = a, zM,i = a +
i∑

j=1

yM, j for i ∈ {1, . . . , n} and zM,n+1 = b. (57)

For any M > 0, let yM = (yM,1, . . . , yM,n) ∈ Δn be a zero of TM and define
the sequence {zM,i }n+1

i=0 by (57). We select a sequence {Mk}k∈N ⊂ (0, ∞) so that
limk→∞ Mk = ∞ and limk→∞ zMk = z, where z = (z0, z1, . . . , zn, zn+1) ∈ R

n+2

satisfies a = z0 ≤ z1 ≤ · · · ≤ zn+1 = b.
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The first step is to show that if either zi−1 = zi , or zi−1 < zi and μ <

μ0(θi , zi−1, zi ) for some i ∈ {1, . . . , n + 1}, then, for sufficiently large k ∈ N,

�−
Mk

(zMk ,i−1, zMk ,i , i) < Mk and �+
Mk

(zMk ,i−1, zMk ,i , i) < Mk . (58)

To see this, assume that either zi−1 = zi , or zi−1 < zi and μ < μ0(θi , zi−1, zi ) for
some i ∈ {1, . . . , n + 1}.

Since limk→∞ Mk = ∞, by Lemma 31, we get for any M > �−(zi−1, zi , i),

lim
k→∞min{M, �−

Mk
(zMk ,i−1, zMk ,i , i)} = lim

k→∞ �−
M (zMk ,i−1, zMk ,i , i)

= �−
M (zi−1, zi , i) = �−(zi−1, zi , i),

which implies that

lim
k→∞ �−

Mk
(zMk ,i−1, zMk ,i , i) = �−(zi−1, zi , i).

Similarly, we get

lim
k→∞ �+

Mk
(zMk ,i−1, zMk ,i , i) = �+(zi−1, zi , i).

Thus, for sufficiently large k ∈ N, we have

�−
Mk

(zMk ,i−1, zMk ,i , i) < Mk and �+
Mk

(zMk ,i−1, zMk ,i , i) < Mk .

Next we show that there exists i ∈ {1, . . . , n + 1} such that either

zi−1 = zi , or zi−1 < zi and μ < μ0(θi , zi−1, zi ). (59)

Recalling the definition of {xi }n+1
i=0 , we set j = min{i ∈ {1, . . . , n + 1} : zi ≤ xi },

and note that the inclusion, (z j−1, z j ) ⊂ (x j−1, x j ), holds.
If z j−1 = z j , then we have nothing to prove. We may thus assume that z j−1 < z j .

Noting that z0 = a, zn+1 = b, ϕn(xi ) = 0 for all i ∈ {1, . . . , n}, and |ϕn| >

0 in (xi−1, xi ) for all i ∈ {1, . . . , n + 1}, the function ϕn can be regarded as a
zeroth order eigenfunction of the problem, F[ϕ] + μn(θ, a, b)ϕ = 0 in (z j−1, z j )
and B(ϕ, z j−1, z j ) ∈ L(τ ), for some τ ∈ (0, 2π ]2 satisfying the order relation,
(0, τ ) ≤ (0, θ j ). By Theorem 4, we see that μ0(τ, z j−1, z j ) ≤ μ0(θ j , z j−1, z j ). It is
obvious that μ0(τ, z j−1, z j ) = μn(θ, a, b). Hence, we have μ < μ0(τ, z j−1, z j ) ≤
μ0(θ j , z j−1, z j ).

Now we prove that (59) holds for all i ∈ {1, . . . , n + 1}. It is enough to show that
for any i, j ∈ {1, . . . , n + 1}, if |i − j | = 1 and (59) holds for this i , then (59), with
j in place of i , holds. Fix any i, j ∈ {1, . . . , n + 1} so that |i − j | = 1 and (59) holds
for i . According to (58), choosing k ∈ N sufficiently large, we have

�−
Mk

(zMk ,i−1, zMk ,i , i) < Mk and �+
Mk

(zMk ,i−1, zMk ,i , i) < Mk .
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Since TMk (yMk ) = 0, the inequalities above yield

�+
Mk

(zMk , j−1, zMk , j , j) = �−
Mk

(zMk ,i−1, zMk ,i , i) < Mk if j = i − 1,

and

�−
Mk

(zMk , j−1, zMk , j , j) = �+
Mk

(zMk ,i−1, zMk ,i , i) < Mk if j = i + 1,

which implies that (59), with j in place of i , holds.
Thus, (59) holds for all i ∈ {1, . . . , n + 1} and, consequently, (56) holds for some

M > 0.
We now fix M > 0 so that (56) holds. Since yM ∈ Δn , we have zM,i−1 <

zM,i for all i ∈ {1, . . . , n + 1}. By (56), we get μ < μ0(zM,i−1, zM,i , i) for all
i ∈ {1, . . . , n + 1}, and moreover, since TM (yM ) = 0 and �±

M (zM,i−1, zM,i , i) =
�±(zM,i−1, zM,i , i) for every i ∈ {1, . . . , n + 1},

�+(zM,i−1, zM,i , i) = �−(zM,i , zM,i+1, i + 1) for all i ∈ {1, . . . , n}. (60)

Consequently, for any i ∈ {1, . . . , n + 1}, there exists a zeroth order solution ui ∈
W 2,1(zM,i−1, zM,i ) of

F[ui ] + μui + sgn(ui ) f =0 in (zM,i−1, zM,i ) and B(ui , zM,i−1, zM,i ) ∈ L(θi ),

and moreover, thanks to (60)

u′
i (zM,i ) = u′

i+1(zM,i ) for all i ∈ {1, . . . , n}.

If we define u ∈ W 2,1(a, b) by setting

u(x) = ui (x) for x ∈ [zM,i−1, zM,i ] and i ∈ {1, . . . , n + 1},

then u is an nth order solution of (18).
Finally, we remove the additional assumption that f ∈ C([a, b]) and f > 0 in

[a, b], and assume just that f ≥ 0 and f �≡ 0 in (a, b). We introduce a sequence
{ fk}k∈N ⊂ C([a, b]) such that fk > 0 on [a, b] and limk→∞ fk = f in L1(a, b).
For k ∈ N let wk ∈ W 2,1(a, b) be an nth order solution of (18), with f replaced
by fk , and let {ξk,i }ni=1 be the increasing sequence of zeroes of wk . We set ξk,0 = a
and ξk,n+1 = b, and we may assume by taking a subsequence of { fk} if necessary
that limk→∞(ξk,0, . . . , ξk,n+1) = (η0, . . . , ηn+1) in Rn+2 for some (η0, . . . , ηn+1) ∈
R
n+2 such that a = η0 ≤ η1 ≤ · · · ≤ ηn+1 = b. Moreover, since either wk > 0 in

(ξk,i , ξk,i+1) for all k or else wk < 0 in (ξk,i , ξk,i+1) for all k, it is not difficult to
check that

sgn(wk) fk → f (resp. sgn(wk) fk → − f ) strongly in L1(ηi , ηi+1)
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provided wk > 0 [resp. wk < 0] in (ξk,i , ξk,i+1) and ηi+1 − ηi > 0. Therefore, we
have either

sgn(wk) fk → g =
n∑

i=0

(−1)iχ(ηi ,ηi+1) f or

sgn(wk) fk → g =
n∑

i=0

(−1)i+1χ(ηi ,ηi+1) f

strongly in L1(a, b) where χI denotes the characteristic function of I ⊂ R. Remark
that | f | = |g| in (a, b).

We set j = min{i ∈ {1, . . . , n + 1} : ηi ≤ xi }, and as before, we have either
η j−1 = η j or μ < μ0(θ j , x j−1, x j ) ≤ μ0(θ j , η j−1, η j ). Using Lemmas 29 and
24 and Remark 30, we deduce that {wk} has a convergent subsequence {wk


}
∈N in
W 2,1(a, b) and the limit w := lim
→∞ wk


is a solution of F[w] + μw + g = 0 in
(a, b).

Fix any i ∈ {1, . . . , n + 1}, and observe that if ηi−1 = ηi , then B−(w, ηi−1) ∈
l(θ−

i ), B+(w, ηi ) ∈ l(θ+
i ) and, hence, w(ηi ) = w′(ηi ) = 0 due to the fact that

(0, θi ) is admissible. Observe by the strong maximum principle, Proposition 13, that
if ηi−1 < ηi , then w ≡ 0 on [ηi−1, ηi ], w > 0 in (ηi−1, ηi ) or w < 0 in (ηi−1, ηi ).
Moreover, in the casewhere |w| > 0 in (ηi−1, ηi ), we have |w(ηi−1)|+|w′(ηi−1)| > 0
and |w(ηi )| + |w′(ηi )| > 0. Also, we have w(ηi ) = 0 for all i ∈ {1, . . . , n}. Note
here by the continuity of w that the condition, |w| > 0 in (ηi−1, ηi ), is equivalent to
stating that either w > 0 in (ηi−1, ηi ) or w < 0 in (ηi−1, ηi ).

Since f �≡ 0 in (a, b), there exists an i ∈ {1, . . . , n} such that ηi−1 < ηi and f �≡ 0
in (ηi−1, ηi ), which implies that |w| > 0 in (ηi−1, ηi ), |w(ηi−1)| + |w′(ηi−1)| > 0
and |w(ηi )| + |w′(ηi )| > 0. Because of the C1-regularity of w, we see that if j ∈
{1, . . . , n + 1} and | j − i | = 1, then η j−1 < η j , |w(η j−1)| + |w′(η j−1)| > 0 and
|w(η j )| + |w′(η j )| > 0. This shows that for all i ∈ {1, . . . , n + 1}, we have ηi−1 <

ηi , |w| > 0 in (ηi−1, ηi ), |w(ηi−1)| + |w′(ηi−1)| > 0 and |w(ηi )| + |w′(ηi )| > 0.
Thus we conclude that g = limk→∞ sgn(wk) fk = sgn(w) f in L1(a, b) and w is an
nth order solution of (18). ��

6 Preliminary observations in the radial case

This section provides some preliminaries for the proof of main results in the radial
case.

Let a ∈ [0, R) and q ∈ [1, ∞]. We denote by Lq
r (BR\Ba) the space of all those

u ∈ Lq(BR\Ba) which are radially symmetric. We also write Lq
r (a, R) for this space

when any u ∈ Lq
r (BR\Ba) is regarded as a function on (a, R). We define the norm

on Lq
r (a, R) by

‖u‖Lq
r (a,R) :=

(∫ R

a
|u(r)|qr N−1dr

)1/q

if q < ∞,
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and ‖u‖Lq
r (a,R) := ‖u‖L∞(a,R) if q = ∞, which is obviously equivalent to the original

norm on Lq
r (BR\Ba). Moreover, we define the norm on W 2,q

r (a, R) by

‖u‖
W 2,q

r (a,R)
:= ‖u‖Lq

r (a,R) + ‖u′/r‖Lq
r (a,R) + ‖u′′‖Lq

r (a,R) if q < ∞,

and ‖u‖
W 2,q

r (a,R)
:= ‖u‖W 2,∞(a,R) if q = ∞, which is equivalent to the norm on

W 2,q
r (BR\Ba). See [25, Lemma 6.1] for this equivalence.
In this and next sections we often deal with functions u ∈ W 2,q

r (a, R), with a ∈
(0, R) and q > N/2, satisfying u′(a) = 0 and, without further comment, we use
the convention that such a function u is identified with its extension ũ ∈ W 2,q

r (0, R)

defined by ũ(r) = u(a) for r ∈ (0, a) and ũ(r) = u(r) for r ∈ [a, R].
We remark, thanks to (F2) and (F4), that for a.e. r ∈ (0, R) and all (ω,mi , pi , ui ) ∈

SN−1 × R
3 with i = 1, 2, we have

F(m1, p1, u1, r) − F(m2, p2, u2, r)

≤ P+((m1 − m2)ω ⊗ ω + r−1(p1 − p2)(IN − ω ⊗ ω))

+ β(rω)|p1 − p2| + γ (rω)|u1 − u2|.

Noting that the functions

ω �→ P±(mω ⊗ ω + r−1 p(IN − ω ⊗ ω))

are constant for all (m, p, r), we set

P±(m, p, r) = P±(mω ⊗ ω + r−1 p(IN − ω ⊗ ω))

for (m, p, r) ∈ R
2 × (0, R), and integrating the inequality above over the unit sphere

SN−1 with respect to the surfacemeasure, for a.e. r ∈ (0, R) and all (mi , pi , ui ) ∈ R
3,

with i = 1, 2, we obtain

F(m1, p1, u1, r) − F(m2, p2, u2, r)

≤ P+(m1 − m2, p1 − p2, r) + β̄(r)|p1 − p2| + γ̄ (r)|u1 − u2|.
(61)

Here β̄(r) and γ̄ (r) denote the averages of β(rω) and γ (rω), respectively, over SN−1

with respect to the surface measure, that is,

β̄(r) := α−1
N

∫

SN−1
β(rω)dS and γ̄ (r) := α−1

N

∫

SN−1
γ (rω)dS,

where dS and αN denote the (N −1)-dimensional surface measure and the area of the
sphere SN−1, respectively, and the functions β̄ and γ̄ belong to Lq

r (0, R). Indeed, the
inequalities

123



498 N. Ikoma, H. Ishii

‖β̄‖Lq
r (0,R) ≤ α

−1/q
N ‖β‖Lq (BR) and ‖γ̄ ‖Lq

r (0,R) ≤ α
−1/q
N ‖γ ‖Lq (BR)

hold. For instance, the first inequality can be checked, with use of Hölder’s inequality,
as follows:

‖β̄‖q
Lq
r (0,R)

=
∫ R

0

(
α−1
N

∫

SN−1
β(rω)dS

)q
r N−1dr

≤ α−1
N

∫ R

0

∫

SN−1
β(rω)qdSr N−1dr = α−1

N ‖β‖qLq (BR).

For any ω ∈ SN−1, we set M := IN − ω ⊗ ω and observe that M ≥ 0 and
tr M = N − 1, to deduce that P+(M) ≤ (N − 1)�. Hence, we have

P+(m, p, r) ≤ P+
1 (m) + (N − 1)�|p|/r for all (m, p, r) ∈ R

2 × (0, R), (62)

where P+
1 denotes the one-dimensional Pucci operator.

Here an important remark is that under the assumptions (F2) and (F4), the function
F satisfies (F2) and (F4) on the interval [a, R] for any a ∈ (0, R). However, because
of the factor 1/r in the last term in (62), F does not satisfy (F2) on [0, R].

In what follows we write F[u] and P+[u] for F(u′′(r), u′(r), u(r), r) and
P+(u′′(r), u′(r), r), respectively.

For later reference, we remark that if (μ, u) ∈ R × W 2,q
r (a, R) is an eigenpair of

(7) in (a, R), then both ϕ = u and ϕ = −u satisfy

P+[ϕ] + β̄|ϕ′| + γ̄ |ϕ| + μϕ ≥ 0 in (a, R). (63)

Now, we recall some facts from [25, Lemmas 7.1, 7.2, Theorems 7.5, 7.6 and 7.7].

Lemma 32 Assume that (F2) and (F5) hold. Let a ∈ [0, R), u ∈ W 2,q
r (a, R) and

f, f1, f2 ∈ Lq
r (a, R). Assume that u′(a) = 0 if a > 0. (1) If u satisfies P+[u] +

β̄|u′| + f ≥ 0 in (a, R), then there exists a constant C > 0 depending only on
λ,�, q, N and ‖β̄‖LN

r (0,R) such that

∥∥∥∥

(
u′

r

)

−

∥∥∥∥
Lq
r (a,R)

≤ C‖ f+‖Lq
r (a,R). (64)

Furthermore,

max
t∈[a, R] u(t) − u(R) ≤ C

(
R(2q−N )/(q−1) − a(2q−N )/(q−1)

)(q−1)/q ‖ f+‖Lq
r (a,R).

(2) If u(R) = 0 and u satisfies

P+[u] + β̄|u′| + f1 ≥ 0 and P−[u] − β̄|u′| − f2 ≤ 0 in (a, R),
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then there exists a constant C > 0 depending only on q, λ,�, N , R, ‖β̄‖LN
r (0,R) and

‖β̄‖Lq
r (0,R) such that

‖u‖
W 2,q

r (a,R)
≤ C(‖( f1)+‖Lq

r (a,R) + ‖( f2)+‖Lq
r (a,R)).

(3) Assume a = 0 and that u ≥ 0 in [0, R] and P−[u] − β̄|u′| − γ̄ u ≤ 0 in (0, R).
Then either u ≡ 0 in [0, R] or u > 0 in [0, R) and max{u(R),−u′(R)} > 0.

A few comments regarding the proof of the lemma above may be in order. The
inequality (64) above is proved in the first half of the proof of Theorem 7.5 in [25],
and the latter of assertion (1) follows form Lemma 7.2 in [25] applied to the function
u(r) − u(R). The inequality, max{u(R),−u′(R)} > 0, in assertion (3) follows from
Proposition 13, applied on an interval [a, R], with a ∈ (0, R).

Proposition 33 Assume (F1)–(F5) hold. Let (μ, u) ∈ R × W 2,q
r (0, R) be a solution

of (7). If u �≡ 0, then u(0) �= 0.

Proof By Lemma 32 (1) and (63), if u(b) = 0 for some b ∈ (0, R], we obtain

max[0,b] |u| ≤ Cb2−N/q‖(γ̄ + |μ|)|u|‖Lq
r (0,b)

≤ Cb2−N/q‖γ̄ + |μ|‖Lq
r (0,b) max[0,b] |u|,

where C is a positive constant depending only on λ, �, q, N and ‖β̄‖LN
r (0,R). We

thus get
(1 − C1b

2−N/q)max[0,b] |u| ≤ 0, (65)

where C1 := C‖γ̄ + |μ|‖Lq
r (0,b). Note that max[0,b] |u| > 0. Indeed, if we assume

that max[0,b] |u| = 0, then u(b) = u′(b) = 0. Hence, for each c ∈ (0, R), applying
Lemma12 and invoking (27) on [c, R], we see that u(x) ≡ 0 on [c, R]which, however,
is a contradiction. From (65) we get C1b2−N/q ≥ 1. Thus, choosing c ∈ (0, R) so
that C1c2−N/q < 1, we have either u(x) > 0 for all x ∈ (0, c) or else u(x) < 0 for
all x ∈ (0, c). Lemma 32 (3) now ensures that u(0) �= 0. ��

The following maximum principle and comparison principle are valid.

Theorem 34 Assume that (F1)–(F5) hold. (1) Let θ ∈ (0, π ], and assume that there
exists a function ψ ∈ W 2,q

r (0, R) such that

{
F[ψ] ≤ 0, F[ψ] �≡ 0 and ψ > 0 in (0, R),

B+(ψ, R) ∈ l(θ).
(66)

If u ∈ W 2,q
r (0, R) satisfies

{
F[u] ≥ 0 in (0, R),

B+(u, R) ∈ l(τ ) for some τ ∈ [θ, 2π ],
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then u ≤ 0 in (0, R). (2) Let u, v ∈ W 2,q
r (0, R), θu ∈ (0, 2π ] and θv ∈ (0, π ].

Assume that F[v] ≤ F[u] in (0, R), B+(u, R) ∈ l(θu) and B+(v, R) ∈ l(θv) and
that v > 0 in (0, R), sup(0,R) u/v = 1 and θu ≥ θv . Then u ≡ v in [0, R]. (3)
Let θ ∈ (0, π ] and v,w ∈ W 2,q

r (0, R). Assume that there exists ψ ∈ W 2,q
r (0, R)

satisfying (66) and that v, w satisfy

{F[w] ≤ 0, F[w] ≤ F[v] and w > 0 in (0, R),

B+(w, R) ∈ l(θ), B+(v, R) ∈ l(τ ) for some τ ∈ [θ, 2π ].

Then v ≤ w in [0, R].
An important consequence of claim (1) of the theorem above is that ifμ < μ0

r (θ, R)

and u ∈ W 2,q
r (0, R) satisfiesF[u]+μu ≥ 0 in (0, R) and B+(u, R) ∈ l(τ ) for some

τ ∈ [θ, 2π ], then u ≤ 0 in [0, R]. Indeed, choosing ψ ∈ W 2,q
r (0, R) to be an

eigenfunction corresponding to μ0
r (θ, R), we have F[ψ] + μψ < 0 and ψ > 0 in

(0, R).

Proof We first show assertion (2). To show (2), we suppose to the contrary that u �≡ v

on [0, R], and note by assumption that u ≤ v in [0, R]. Setting w := v − u ≥ 0,
we get P−[w] − β̄|w′| − γ̄ w ≤ 0 in (0, R). Since w �≡ 0 in [0, R], Lemma 32 (3)
assures that w > 0 in [0, R) and max{w(R),−w′(R)} > 0. When w(R) > 0, it is
easily seen that sup(0,R) u/v < 1, which is a contradiction.

Whenw(R) = 0, we have two cases: either v(R) = u(R) > 0, or v(R) = u(R) =
0. If v(R) = u(R) > 0, then we have u′(R) > v′(R), which yields the inequality
θu < θv , a contradiction. If v(R) = u(R) = 0, then we get θv = π, v′(R) < 0 and
v′(R) < u′(R). Hence, by l’Hôpital’s rule, we find that

lim
r→R+0

u(r)

v(r)
= u′(R)

v′(R)
< 1,

which gives a contradiction, sup(0,R) u/v < 1. Thus, w ≡ 0 in [0, R] and assertion
(2) holds.

Next, we prove assertion (1). To show (1), we note first thatP−[ψ]−β̄|ψ ′|− γ̄ ψ ≤
F[ψ] ≤ 0 in (0, R) and by Lemma 32 (3) that ψ(0) > 0. Suppose to the contrary
that max[0,R] u > 0, set ρ = sup[0,R) u/ψ and observe that ρ ∈ (0, ∞) . Noting
F[ρψ] = ρF[ψ] ≤ 0 ≤ F[u], assertion (2) gives ρψ ≡ u in [0, R]. Therefore, we
infer F[ψ] ≡ 0, however, this is a contradiction. Thus assertion (1) is valid.

In order to prove (3), we argue by contradiction and suppose max[0,R](v −
w) > 0. As in the proof of assertion (1), we obtain ψ(0) > 0, w(0) > 0 and
max{w(R),−w′(R)} > 0. Observe as in the proof of Proposition 18 that ifw(R) = 0,
then w′(R) < 0 and v(R) ≤ 0. We set ρ := sup(0,R) v/w and argue as in the proof
of Proposition 18, with Lemma 32 (3) as the strong maximum principle, to find that
ρ ∈ (1, ∞), ρw ≡ v on [0, R] and F[w] = 0 in (0, R). Moreover, using assertion
(1) above, we obtain w ≤ 0, a contradiction. The proof is complete. ��

Let 0 < a < R and consider the eigenvalue problem for (7) in (a, R) with
boundary condition u′(a) = 0 and B+(u, R) ∈ l(θ+). The Neumann condition
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u′(a) = 0 may be stated in terms of a unilateral boundary condition as B(u, a, R) ∈
L(θ−, θ+), where θ− ∈ {π/2, 3π/2}.

In what follows we use the notation μn
r (θ, a, R) to denote the nth order eigenvalue

of (7) with the boundary condition,

B(u, a, R) ∈ L(θ). (67)

Lemma 35 Assume that (F1)–(F5) hold. Let c ∈ (0, R) and (n, θ) = (n, θ−, θ+) ∈
N0 × {π/2, 3π/2} × (0, 2π ]. If (n, θ) is admissible, then supa∈(0, c) |μn

r (θ, a, R)| <

∞.

Proof In view of (S1), it is enough to treat the case where θ+ ∈ (0, π ]. For each
a ∈ (0, c) let ϕa ∈ W 2,1(a, R) be an nth order eigenfunction of (7) and (67).

Note that (n+2, θ) is admissible and set ν0 = μn+2
r (θ, c, R). We fix any a ∈ (0, c)

and show that μn
r (θ, a, R) ≤ ν0. Select θ−

a,c ∈ (0, 2π ] so that B−(ϕa, c) ∈ l(θ−
a,c),

that is, θ−
a,c = Θ(−ϕ′

a(c), ϕa(c)), and set θa,c = (θ−
a,c, θ

+), and observe that the pair
of μn

r (θ, a, R) and ϕa is an eigenpair of (7) and (67), with the interval (a, R) and the
angles θ replaced by (c, R) and θa,c, respectively. Let na,c ∈ N0 be the number of
zeroes of ϕa in (c, R), and note that na,c ≤ n andμ

na,c
r (θa,c, c, R) = μn

r (θ, a, R). We
also remark that (na,c, θa,c) ≤ (n+2, θ) holds from the remark stated after (11)–(15).
Thus, by Theorem 4, we get μ

na,c
r (θa,c, c, R) ≤ ν0 and hence μn

r (θ, a, R) ≤ ν0.
Next we give a lower bound of μn

r (θ, a, R), with a ∈ (0, c). Set θ0 = (π/2, θ+),
and note that (0, θ0) is admissible and by Theorem 4 that μ0

r (θ0, a, R) ≤ μn
r (θ, a, R).

We need to find a lower bound, independent of a, of the μ0
r (θ0, a, R), with a ∈ (0, c).

For each a ∈ (0, c) let ψa ∈ W 2,1(a, R) be a principal eigenfunction of (7)
and (67), with the angles θ replaced by θ0. Clearly, ψa > 0 in (a, R) and the
eigenvalue corresponding to ψa is μ0

r (θ0, a, R). For each r ∈ (a, R) we choose
τ(r) ∈ (0, π) so that B−(ψa, r) ∈ l(τ (r)). That is, we fix τ(r) ∈ (0, π) by setting
τ(r) = Θ(−ψ ′

a(r), ψa(r)). Note that the pair ofμ0
r (θ0, a, R) andψa is an eigenpair of

(7) and (67), with the interval (a, R) and angles θ replaced by (r, R) and (τ (r), θ+),
respectively, for all r ∈ (a, R).

Let χ ∈ W 2,1(c, R) be a principal eigenfunction of (7) and (67), with the interval
(a, R) and angles θ = (θ−, θ+) replaced by (c, R) and (π/4, θ+), respectively. Note
that χ > 0 on [c, R). Set ν1 = μ0

r (π/4, θ+, c, R) and σ(r) = Θ(−χ ′(r), χ(r)) for
r ∈ [c, R), note that B−(χ, r) ∈ l(σ (r)) for all r ∈ [c, R) and (ν1, χ) is a principal
eigenpair of (7) and (67), with the interval (a, R) and angles θ replaced by (r, R) and
(σ (r), θ+), respectively, for any r ∈ [c, R).

Since r �→ σ(r) is continuous on [c, R), we may select d ∈ (c, R) so that σ(r) ≤
π/3 for all r ∈ [c, d]. Noting that

P+[ψa] + β̄|ψ ′
a | + (γ̄ + μa)+ψa ≥ 0 in (a, R),

we find by Lemma 32 (1) that there exists a constant C > 0, depending only on
λ, �, q, N , c, d and ‖β̄‖Lq

r (0,d) such that
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∥∥∥∥

(
ψ ′
a

r

)

−

∥∥∥∥
Lq
r (c,d)

≤ C‖(γ̄ + μa)+‖Lq
r (c,d) max[c,d] ψa, (68)

max[c,d] ψa ≤ ψa(d) + C‖(γ̄ + μa)+‖Lq
r (c,d) max[c,d] ψa . (69)

We set

δ(m) = C‖(γ̄ + m)+‖Lq
r (c,d) for m ∈ R,

and observe that m �→ δ(m) is nondecreasing on R and limm→−∞ δ(m) = 0. We
choose m0 ∈ R so that

δ(m0) < 1 and cos−1

(
δ(m0)

(1 − δ(m0))‖1/r‖Lq
r (c,d)

)
> π/3.

Recall that the function cos−1 : [−1, 1] → [0, π ] is nonincreasing and continuous
and cos−1(0) = π/2.

We write μa = μ0
r (θ0, a, R), for notational simplicity, and now show that μa ≥

min{ν1, m0} for all a ∈ (0, c]. To do this, we fix any a ∈ (0, c]. If μa ≥ m0, there is
nothing to show, and hence, in what follows, we assumeμa < m0 and prove ν1 ≤ μa .

From (68), (69) and the monotonicity of δ, we get

min[c, d] (ψ
′
a)− ≤ δ(m0)‖1/r‖−1

Lq
r (c,d)

max[c,d] ψa and (1 − δ(m0))max[c,d] ψa ≤ ψa(d).

(70)
If min[c,d] ψa < (1 − δ(m0))max[c,d] ψa , then there exists ra ∈ [c, d) such that

ψa(ra) < (1 − δ(m0))max[c,d] ψa ≤ ψa(d),

which implies in view of the mean value theorem that ψ ′
a(sa) > 0 for some

sa ∈ (ra, d). Note that τ(sa) > π/2 > π/3 ≥ σ(sa). Theorem 4 assures that
μ0
r (τ (sa), θ+, sa, R) ≥ μ0

r (σ (sa), θ+, sa, R). That is, we have μa ≥ ν1 .
Otherwise, we have min[c,d] ψa ≥ (1 − δ(m0))max[c,d] ψa . Combining this with

the first inequality of (70) yields

(ψ ′
a)−(ta) ≤ δ(m0)

1 − δ(m0)
‖1/r‖−1

Lq
r (c,d)

ψa(ta)

for some ta ∈ [c, d]. Hence,

τ(ta) = Θ(−ψ ′
a(ta), ψa(ta)) ≥ cos−1

⎛

⎝
δ(m0)

1−δ(m0)
‖1/r‖−1

Lq
r (c,d)

ψa(ta)
√

ψ ′
a(ta)

2 + ψa(ta)2

⎞

⎠

≥ cos−1
(

δ(m0)

1 − δ(m0)
‖1/r‖−1

Lq
r (c,d)

)
> π/3 ≥ σ(ta).
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Therefore, byTheorem4,wefind thatν1=μ0
r (σ (ta), θ+, ta, R)≤μ0

r (τ (ta), θ+, ta, R)

= μa . Thus, we have μa ≥ min{m0, ν1} for all a ∈ (0, c]. Furthermore, recall-
ing that μ0

r (θ, a, R) ≤ μn
r (θ, a, R) ≤ ν0, we conclude that supa∈(0,c) |μn

r (θ, a, R)|
< ∞. ��

We consider the boundary value problem

F[u] + μu + sgn(u) f = 0 in (a, R),

u′(a) = 0 if a > 0, and B+(u, R) ∈ l(θ)
(71)

where μ ∈ R, f ∈ Lq
r (0, R), and θ ∈ (0, 2π ]. The Neumann boundary condition at

a ∈ (0, R) is rephrased as B−(u, a) ∈ l(π/2) ∪ l(3π/2).

Lemma 36 Assume (F1)–(F5) hold. Let {μ j } j∈N ⊂ R, μ ∈ R, {a j } ⊂ (0, R), θ ∈
(0, 2π ], n ∈ N0, {u j } j∈N ⊂ W 2,q

r (0, R), u ∈ W 2,q
r (0, R), and f ∈ Lq

r (0, R).
Assume that, for every j ∈ N, u j is an nth order solution of (71), with a and μ

replaced by a j and μ j , respectively, that, as j → ∞, u j ⇀ u weakly (weakly star

when q = ∞) in W 2,q
r (0, R), μ j → μ and a j → 0, and that u �≡ 0 on [0, R]. Then

u is an nth order solution of (71), with a = 0.

Proof Due to the Sobolev embedding theorem, the sequence {u j } converges to u in
C([0, R]) as well as in C1

loc((0, R]).
For j ∈ N, let {r j,i }n+1

i=0 ⊂ (0, R] be the increasing sequence such that r j,0 =
a j , r j,n+1 = R and u j (r j,i ) = 0 for all i ∈ {1, . . . , n}. We may choose an
increasing sequence { jk}k∈N of natural numbers so that as k → ∞, the sequence
{(r jk ,0, r jk ,1, . . . , r jk ,n+1)} converges to a point (r0, r1, . . . , rn+1) ∈ R

n+2. It is clear
that r0 = 0 ≤ r1 ≤ · · · ≤ rn+1 = R and u(ri ) = 0 for all i ∈ {1, . . . , n}.

Observe that for any i ∈ {1, . . . , n + 1}, if ri−1 < ri , then either

lim
k→∞ sgn(u jk (r)) = 1 for all r ∈ (ri−1, ri ), or

lim
k→∞ sgn(u jk (r)) = −1 for all r ∈ (ri−1, ri ).

Hence, according to the Lebesgue convergence theorem, the sequence {sgn(u jk ) f }
converges, as k → ∞, to a function g in Lq

r (0, R) such that |g| = f in (0, R).
Furthermore, for any i ∈ {2, . . . , n + 1}, if 0 < ri−1 < ri , then we have either

u ≥ 0 and g = f on [ri−1, ri ], or

u ≤ 0 and g = − f on [ri−1, ri ]. (72)

By Lemma 24, for each a ∈ (0, R), we have F[u] + μu + g = 0 in (a, R), which
readily yields

F[u] + μu + g = 0 in (0, R). (73)

Because of the convergence of {u j } to u in C1
loc((0, R]), we deduce that, for i ∈

{2, . . . , n + 1},
if 0 < ri−1 = ri , then (u(ri ), u

′(ri )) = (0, 0). (74)

123



504 N. Ikoma, H. Ishii

Indeed, for i ∈ {2, . . . , n}, by the mean value theorem, we have 0 = (u j (r j,i ) −
u j (r j,i−1))/(r j,i − r j,i−1) = u′

j (z j,i ) for some z j,i ∈ (r j,i−1, r j,i ), and, by putting
j = jk and sending k → ∞, we obtain u′(ri ) = 0. Similarly, by the boundary
condition at r = R, if ri = R for i ≤ n, then we have (u(ri ), u′(ri )) = (0, 0).

By the strong maximum principle, we infer that for i ∈ {2, . . . , n + 1},

if 0 < ri−1 < ri and u �≡ 0 in (ri−1, ri ), then |u| > 0 in (ri−1, ri ),

(u(ri−1), u
′(ri−1)) �= (0, 0) and (u(ri ), u

′(ri )) �= (0, 0). (75)

As noted before, the condition, |u| > 0 in (ri−1, ri ), is equivalent to stating that either
u > 0 in (ri−1, ri ) or u < 0 in (ri−1, ri ).

To examine that (75) holds, we may assume in view of (S1) and (72) that u ≥ 0
and g = f in (ri−1, ri ), where 0 < ri−1 < ri . Noting by (73) that F[u] + μu ≤ 0 in
(ri−1, ri ) and applying Proposition 13 to the functions 0 and u, we obtain u > 0 in
(ri−1, ri ), u′(ri−1) > 0 and u′(ri ) < 0, from which we conclude that (75) holds.

Similarly, by using Lemma 32 (3), the strong maximum principle in the radial case
and the fact u(r j ) = 0 for 1 ≤ j ≤ n, we deduce that for i ∈ {1, . . . , n + 1},

if 0 = ri−1 < ri and u �≡ 0 in (ri−1, ri ), then i = 1, |u| > 0 in [0, ri )
and (u(ri ), u

′(ri )) �= (0, 0). (76)

We note that

if (u(R), u′(R)) �= (0, 0), then B+(u, R) ∈ l(θ). (77)

This is an immediate consequence of the fact that (u(R), u′(R)) = lim j→∞(u j

(R), u′
j (R)) ∈ l(θ).

Now, we intend to prove that for any i ∈ {1, . . . , n + 1}, either of the following
two conditions holds:

i = 1, ri−1 = 0 < ri , |u| > 0 in [ri−1, ri ) and

(u(ri ), u
′(ri )) �= (0, 0), (78)

or

i > 1, 0 < ri−1 < ri , |u| > 0 in (ri−1, ri ),
(u(ri−1), u′(ri−1)) �= (0, 0) and (u(ri ), u′(ri )) �= (0, 0).

(79)

To see this, we set

I = {i ∈ {1, . . . , n + 1} : either (78) or (79) holds},

and show first that I �= ∅.
By assumption, we have u �≡ 0 in (0, R). Hence, there exists an i ∈ {1, . . . , n+1}

such that ri−1 < ri and u �≡ 0 in (ri−1, ri ). It follows from (75) and (76) that i ∈ I .
Thus, I �= ∅.
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Next, to show that I = {1, . . . , n + 1}, we suppose to the contrary that I �=
{1, . . . , n+1}. Wemay then find i ∈ I and j ∈ {1, . . . , n+1}\ I such that |i− j | = 1.
Consider the case when j = i − 1. Since i ∈ I and i = j + 1 > 1, we have
r j = ri−1 > 0 and (u(r j ), u′(r j )) �= (0, 0). Hence, we have r j−1 < r j by (74)
and u �≡ 0 on [r j−1, r j ]. It follows now from (75) and (76) that j ∈ I , which is a
contradiction.

We consider next the case when j = i + 1. Since i ∈ I , we have (u(ri ), u′(ri )) �=
(0, 0), which implies together with (74) that ri = r j−1 < r j . It follows from (75) that
j ∈ I , which is a contradiction.
We have thus proved that I = {1, . . . , n + 1}. It is now clear that u has exactly n

zeroes in (0, R) and u(0) > 0. This property of u and (72) ensure that g = sgn(u) f
in (0, R). Moreover, we see from (77) that B+(u, R) ∈ l(θ). Thus, u is an nth order
solution of (71), with a = 0. ��

7 Proofs of the main results in the radial case

Proof of Theorem 9 For i = 1, 2, let (μi , ϕi ) ∈ R × W 2,q
r (0, R) be an nth order

eigenpairs of (7)–(8), with θ replaced by θi . Note by Proposition 33 that ϕi (0) �= 0
for i = 1, 2.

We argue by contradiction and thus suppose that μ1 > μ2.
Let {x j }n1+1

j=0 , {y j }n2+1
j=0 be the increasing sequences of points in [0, R] such that

x0 = y0 = 0, xn1+1 = yn2+1 = R, and the x j , with 0 < j < n1 + 1, and the y j ,
with 0 < j < n2 + 1, are zeroes of the functions ϕ1 and ϕ2 , respectively.

We assume first that n1 = n2, i(θ1) = i(θ2) and θ1 ≤ θ2. We note that
ϕ1(0)ϕ2(0) > 0, that xn1+1 = yn1+1 = R, set m = min{ j ∈ {1, . . . , n1 + 1} :
y j ≤ x j } and observe that xm−1 ≤ ym−1 < ym ≤ xm and ϕ1(r)ϕ2(r) > 0 for all
r ∈ (ym−1, ym).

We consider next the case when n2 = n1 + 1, i(θ1) = i(θ2) and θ1 ≤ θ2. We note
that ϕ1(0)ϕ2(0) < 0 and yn1+2 = R = xn1+1, set m = min{ j ∈ {2, . . . , n1 + 2} :
y j ≤ x j−1} and observe that xm−2 < ym−1 < ym ≤ xm−1 and ϕ1ϕ2 > 0 in
(ym−1, ym).

Consider now the casewhen n2 = n1+1 and i(θ1) �= i(θ2). Note thatϕ1(0)ϕ2(0) >

0, set m = min{ j ∈ {1, . . . , n1 + 1} : y j ≤ x j } and observe that xm−1 ≤ ym−1 <

ym ≤ xm, ym < yn2+1 = R and ϕ1ϕ2 > 0 in (ym−1, ym).
What remains is the case where n2 ≥ n1 + 2. If ϕ1(0)ϕ2(0) > 0, then set m =

min{ j ∈ {1, . . . , n1 + 1} : y j ≤ x j } and observe that xm−1 ≤ ym−1 < ym ≤
xm, ym < R and ϕ1ϕ2 > 0 in (ym−1, ym). If ϕ1(0)ϕ2(0) < 0, then set m = min{ j ∈
{2, . . . , n1+2} : y j ≤ x j−1} and observe that xm−2 ≤ ym−1 < ym ≤ xm−1, ym < R
and ϕ1ϕ2 > 0 in (ym−1, ym).

Thus there exists a nonempty subinterval [c, d] ⊂ [0, R] having the properties:
(1) ϕ1ϕ2 > 0 in (c, d), (2) if c �= 0, then ϕ2(c) = 0 (3) if d �= R, then ϕ2(R) = 0
and (4) if d = R, then i(θ1) = i(θ2) and θ1 ≤ θ2.

By the symmetry (S1) we may assume that ϕ1 > 0 and ϕ2 > 0 in (c, d). Since
μ2 < μ1, we get F[ϕ1] + μ2ϕ1 < 0 in (c, d).
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We use the maximum principle, Theorem 34 (1) if c = 0 and Theorem 16 if c > 0,
to obtain ϕ2 ≤ 0 on [c, d], which is a contradiction. Thus, we see that the inequality,
μ1 ≤ μ2, holds. ��
Comment on the proof of Theorem 7 (1) We do not give the proof of claim (1) of The-
orem 7 since it is similar to that of Theorem 2 (1). Indeed, the uniqueness of nth order
(radial) eigenvalue of (7) and (8) is a consequence of Theorem 9. Regarding unique-
ness of nth order (normalized and radial) eigenfunctions, using the strong maximum
principle, Theorem 32 (2) and Lemma 14, one may easily adapt the proof of Theorem
2 (1). We leave it to the reader to check the details. ��
Comment on the proof of Theorem 10 We do not give the proof of Theorem 10 since
it is similar to that of Theorem 5, and we leave it to the interested reader to check the
details. ��
Proof of Theorem 7 (2) Let (n, θ) ∈ N0 × (0, 2π ]. We select θ− ∈ {π/2, 3π/2}
so that (n, θ−, θ) is admissible, and fix a sequence {a j } j∈N ⊂ (0, R/2) so that

lim j→∞ a j = 0. For each j ∈ N, setμ j = μn
r (θ

−, θ, a j , R) and let ϕ j ∈ W 2,q
r (0, R)

be the eigenfunction corresponding to μn
r (θ

−, θ, a j , R), with ‖ϕ j‖L∞(0,R) = 1.
Thanks to Lemma 35, we see that the sequence {μ j } j∈N is bounded. By taking a

subsequence of {a j } if needed, we may assume that {μ j } j∈N is convergent, and we
set μ := lim j→∞ μ j .

Noting that ±(ϕ j (r) − ϕ j (R)) satisfy

P+[u] + β̄(r)|u′| + f j (r) ≥ 0 in (a j , R)

where f j (r) := (γ̄ (r)+|μ j |)|ϕ j (r)|, applying Lemma 32 (2) to r �→ ϕ j (r)−ϕ j (R),

we deduce that {ϕ j } j∈N is bounded inW 2,q
r (0, R), and wemay assume by passing to a

subsequence if necessary that it is convergent weakly inW 2,q
r (0, R) to a function ϕ ∈

W 2,q
r (0, R), which implies that {ϕ j } converges to ϕ inC([0, R]) and ‖ϕ‖L∞(0,R) = 1.
Now, we apply Lemma 36, with f ≡ 0, to see that (μ, ϕ) is an nth order eigenpair

of (7) and (8). ��
Outline of proof of Corollary 8 The existence of nth order eigenpairs (μ±, ϕ±) of (7)
and (19) satisfying condition (1) can be shown by applying Theorem 7 to (7)–(8), with
θ1 or θ2 in place of θ . Given an nth order eigenpair (μ, ϕ) of (7) and (19), with
‖ϕ‖L∞(0,R) = 1, it is clear that if ϕ(0) > 0, then (μ, ϕ) = (μ+, ϕ+) and otherwise,
(μ, ϕ) = (μ−, ϕ−). ��
Outline of proof of Theorem 11 The proof of claims (2) and (3) is similar to that of
the corresponding claims of Theorem 6 thanks to Theorem 34.

For claim (1), recalling the proof ofTheorem7,wemay select a sequence {a j } j∈N ⊂
(0, R/2) so that a j → 0 andμn

r (θ
−, θ, a j , R) → μn

r (θ, R), where θ− ∈ {π/2, 3π/2}
is chosen so that (n, θ−, θ) is admissible. Since μ < μn

r (θ, R), we may assume
μ < μn

r (θ
−, θ, a j , R) for all j ∈ N. Thus by Theorem 6, there exists an nth order

solution u j ∈ W 2,q
r (0, R) of

F[u j ] + μu j + sgn(u j ) f = 0 in (a j , R), B(u j , a j , R) ∈ L(θ−, θ).
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Since both ±u j satisfy

P+[u] + β̄|u′| + (γ̄ + |μ|)|u| + f ≥ 0 in (a j , R),

once we show that {u j } is bounded in L∞(0, R), thanks to Lemmas 32 and 36, the
existence of nth order solution of (26) follows.

We show that {u j } j∈N is bounded in L∞(0, R). To the contrary, we suppose
‖u j‖L∞(0,R) → ∞ and set v j (r) := u j (r)/‖u j‖L∞(0,R). Then v j satisfies

‖v j‖L∞(0,R) = 1, F[v j ] + μv j + sgn(u j ) f

‖u j‖L∞(0,R)

= 0 in (a j , R).

Arguing as above, usingLemmas 32 and36 and the fact that sgn(u j ) f/‖u j‖L∞(0,R) →
0 strongly in Lq

r (0, R), we may find an nth order eigenpair (μ, v) ∈ R×W 2,q
r (0, R).

However, since μ < μn
r (θ, R), this is a contradiction. Thus {u j } is bounded in

L∞(0, R) and the proof is complete. ��

8 Examples

8.1 Non-uniqueness for (18)

We present examples of (18) that have many first order solutions.
Let Ω be the interval (0, 3) and consider the boundary value problem

F[u] + μu + sgn(u) f = 0 in (0, 3) and B(u, 0, 3) ∈ L(π/2, 3π/2) (80)

where μ is a constant, the function F is given by F(m, p, u, x) = m, f :=
χ(0,1) + χ(2,3) and χ(c,d) denotes the characteristic function of the interval (c, d).
The boundary condition in (80) is of the Neumann type.

For t ∈ [1/2, 3/2] we define the function ut : [0, 3] → R by

ut (x) =

⎧
⎪⎨

⎪⎩

t − 1
2 x

2 for x ∈ [0, 1],
t − 1

2 − x + 1 for x ∈ [1, 2],
t − 2 + 1

2 (x − 3)2 for x ∈ [2, 3] (Fig. 5).

Fig. 5 The graph of the
function u1
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It is easily seen that ut ∈ W 2,∞(0, 3) and ut is a first order solution of (80)
for μ = 0. By Theorem 6, we see that 0 < μ1(π/2, 3π/2, 0, 3). Thus, the family
{ut : t ∈ [1/2, 3/2]} tells us that the uniqueness of the first order solutions of (80)
does not hold.

8.2 Non-uniqueness for (26)

We treat the radial case and show that a simple modification of the previous example
yields an example of (26) that has many first order solutions.

Let R = 5, define the functions F and f by

F(M, p, u, x) := tr M − χ1,5(x)
N − 1

|x |
〈
x

|x | , p
〉
+ π2

4
χ4,5(x)u

and f := χ1,2 + χ3,4 where χi, j denotes the characteristic function of the annulus
{x ∈ R

N : i ≤ |x | ≤ j}, and consider the boundary value problem for u ∈
W 2,q

r (0, R):

F(D2u, Du, u, x) + μu + sgn(u) f = 0 in BR and B+(u, R) ∈ l(2π), (81)

where q > N/2 and μ are constants. Here the boundary condition is of the Dirichlet
type. This problem can be rewritten as

F(u′′, u′, u, r) + μu + sgn(u)g = 0 in (0, 5) and B+(u, 5) ∈ l(2π),

where F and g are the functions given by

F(m, p, u, r) := m + N − 1

r
χ(0,1)(r)p + π2

4
χ(4,5)(r)u and g := χ(1,2) + χ(3,4).

For t ∈ [1/2, 3/2], we define the function vt : [0, 5] → R by

vt (r) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t for r ∈ [0, 1],
t − 1

2 (r − 1)2 for r ∈ [1, 2],
t − 1

2 − r + 2 for r ∈ [2, 3],
t − 2 + 1

2 (r − 4)2 for r ∈ [3, 4],
(2 − t) sin(π(r − 5)/2) for r ∈ [4, 5] (Fig. 6).

It is easily checked that this function vt belongs to W 2,∞
r (0, 5) and satisfies (81)

with μ = 0. Hence, the uniqueness for first order solutions of (81) does not hold in
general.
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Fig. 6 The graph of the function v1
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