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Abstract 

The accumulation behaviors and solid phase partitioning patterns of stable cesium, 

which have been recognized as an indicator of the long-term movement of radioactive cesium 

(137Cs or 134Cs) in ecosystems, were studied in typical and natural soils of Japanese origin, 

namely, red clay, leaf-mold and andosol soils. The retention and migration of soil-phase 

cesium have been explained relative to various factors, such as soil organic matter contents, 

competitive cation concentrations and the adsorption ratio of Cs to the solid phase. Cesium 

was adsorbed nearly quantitatively in the leaf-mold type soil, and the rate of Cs absorption 

increased as the particle size decreased in the red clay and andosol soils. The distributions of 

Cs within the soil solid phases were defined using the selective sequential extraction scheme 

and were used to explain its relative incorporation in the soil fractions. Solid phase 

fractionation indicated that nearly half of the total cesium concentrations in the soils were in 

the ‘residual’ fraction (representing the metal that was incorporated within the crystalline 

lattice of the soil and was difficult to extract). These findings are expected to provide 

information regarding suitable conditions for remediation, immobilization or the recovery of 

cesium from contaminated soils with excess cesium concentrations. 
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1.0 Introduction 

Waste disposal operations or accidental releases due to nuclear-technology-related 

activities have resulted in the release of large amounts of radionuclides into the environment. 

The accidental release of radionuclides has been a topic of interest for years, beginning with 

the catastrophic nuclear accident that occurred on 26 April 1986 at the Chernobyl Nuclear 

Power Plant [1, 2]. The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident that 

resulted from an earthquake and subsequent tsunami on March 11, 2011 is the most recent 

example of such a catastrophe. Following the FDNPP accident, a large number (~500) of 

studies were published that covered the various aspects of the accident. Sorting these 

published articles by topic in the ISI-listed journals indicated that the studies mainly focused 

on radioactivity monitoring in places with foods. This trend becomes obvious when 

considering the importance of estimating the effects of fallout on human health. 

Approximately 80% of the FDNPP-generated fallout in the contamination zone affected 

agriculture, including forests [3]. However, very few publications have discussed the effects 

of fallout on agriculture, including soil contamination due to the extended radionuclide 

emissions [4-7].  

 Among the radioactive materials, the dispersion of radiocesium at elevated 

concentrations evokes concern due to its extended solubility characteristics as an alkaline 

metal ion, its comparatively longer half-life, and its easy incorporation into living beings [8-

10]. The most notable radiocesium isotope is 137Cs, which has a half-life of 30.2 years [11], is 

abundant in nuclear wastes and in radioactive fallout and can contaminate large areas of 

agricultural land [12-15]. The FDNPP accident resulted in an estimated atmospheric release 

of 1.3 × 1016 Bq of 137Cs over four weeks (March 12 and April 6, 2011) [16]. Approximately 

10–20% of the emitted radiocesium was deposited over the terrestrial soils in northeastern 

Japan [15, 17]. The accumulated radiocesium in soils is a threat because plants can take up Cs 

[18]. Thus, it is important to understand the accumulation and dissemination patterns of 

radiocesium in the soil to assess the potential health risks of Cs contamination or its impacts 

on food production after over-exposure occurs. Moreover, radiocesium (particularly 137Cs) is 

3 
 

http://dx.doi.org/10.1016/j.microc.2014.09.006


Microchemical Journal, 118: 158–165, 2015 
The original publication is available at: http://dx.doi.org/10.1016/j.microc.2014.09.006 

 
extremely useful for quantifying soil erosion and deposition risks in forested and agricultural 

areas where knowledge regarding diffusion processes is important [19, 20].  

The fate of radiocesium in the environment and its subsequent migration in soils 

depends on its physico-chemical form and commonly follows the behavior of its stable form 

[9, 21, 22]. For example, previous research indicated that the soil-to-plant transfer factor 

of 137Cs follows a pattern that is similar to stable Cs [22-26]. In addition, analogous 

distributions of 137Cs have been observed in different rice components relative to stable 133Cs 

species [27, 28].  

The objective of this study is to investigate the cesium distribution in the operationally 

defined physico-chemical and particle size fractions of soils to understand the temporal 

variations of cesium after being released at an uncharacteristic rate.  

2.0 Experimental  

2.1 Instruments 

The atomic absorption spectroscopy (AAS) technique was used to determine the stable 

cesium concentration in solution. An AAnalyst 600 (PerkinElmer, Waltham, MA) was used 

that was equipped with a transverse heated graphite atomizer with an integrated, pyrolytic 

graphite coated platform and a longitudinal Zeeman-effect background corrector. The light 

source was an electrodeless discharge lamp (EDL) that was powered by an EDL System II 

that was operated at 18 mA. The wavelength was set at the 852.1 nm resonance line and the 

monochromator spectral bandpass was set at 0.7 nm. In addition, a baseline offset correction 

time at 2.0 s was used with a read delay of 0.0 s. Argon was used as the purge gas at a flow of 

250 mL min−1. The temperature sequence was 110 (drying), 130 (drying), 750 (ashing) and 

1900 ºC (atomization), which were performed for 30, 30, 20 and 4 s, respectively. The 

loading volume was 20 μL, with 20 μL of the sample and matrix-modifier (1% H2SO4). 

Calibration was conducted thereby using three standard solutions that contained 0.01, 0.05 

and 0.1 mg L–1 cesium.  

Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to 

detect the co-existing trace metals (e.g., Al, Ca, Fe, K, Mg, Mn and Na) in solution. For this 
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analysis, an iCAP 6300 instrument from Thermo Fisher Scientific (Waltham, MA) was used 

that included an EMT duo quartz torch, a glass spray chamber and a concentric glass 

nebulizer. A radio frequency power of 1.15 kW was used at the torch, the plasma, auxiliary 

and nebulizer gas flows were maintained at 12, 1 and 0.5 L min–1, respectively, and an 

integration time of 30 s was used. 

The microwave-assisted reaction was used to digest the soil samples. For this analysis, 

a Multiwave 3000 instrument from Anton Paar GmbH (Graz, Austria) was used that was 

equipped with an 8-position rotor and hydraulic pressurized sensing system for all vessels. 

The vessels (XF100) supported a controlled pressure of 6 MPa, a maximum operating 

pressure of 12 MPa and a maximum temperature of 240 °C.  

A KDF S-8 muffle furnace from Kenis Scientific (Osaka, Japan), a Digiprep Jr block 

heater from SCP Science (Quebec, Canada) and a DX 600 oven from Yamato Scientific 

(Tokyo, Japan) were used for heating or drying.  

Ultrapure water with a resistivity > 18.2 MΩ·cm was prepared using the Arium Pro UV 

water purification system from Sartorius Stedim Biotech GmbH (Göttingen, Germany). The 

pH measurements were performed using a Navi F-52 pH meter from Horiba Instruments 

(Kyoto, Japan). 

Each instrumental measurement or treatment procedure was performed in three 

replicates and the resulting averaged value is reported. 

2.2 Materials 

2.2.1 Soil samples 

The soil samples represented three soil types that are common in most regions of Japan 

(including the Fukushima), red clay, leaf-mold and andosol soils. A large amount 

(approximately 5 kg) of each soil type was collected from representative locations in 

Kanazawa, which is located on the Sea of Japan and is bordered by the Japanese Alps. The 

soil samples were dried for 24 h at 60 °C before separating into size fractions of 2000–212 

µm (coarse sand; SF-1), 212–63 µm (fine sand; SF-2), and < 63µm (silt and clay; SF-3) with 

the use of grading sieves based on the ISO 14688-1 classification of soils [29].  
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2.2.2 Chemicals and laboratory wares 

Analytical grade commercial products were used throughout the study. Cesium nitrate 

salt and the standard cesium solution (as CsCl) were obtained from Kanto Chemical (Tokyo, 

Japan) and were used to prepare the working standards. In addition, the HF, HNO3, H2SO4, 

HCl and NaOH were obtained from Kanto Chemical (Tokyo, Japan) and were used for the 

decomposition experiments or as mentioned below. Magnesium chloride from Merck KGaA 

(Darmstadt, Germany), acetic acid from Tama Chemicals (Kanagawa, Japan), hydroxylamine 

chloride from Wako Pure Chemical (Osaka, Japan), and hydrogen peroxide from Kanto 

Chemical (Tokyo, Japan) were used during the extraction experiments. The HCl and NaOH 

solutions (1 mol L–1) were used to adjust the solution pH. Working solutions were prepared 

from the stock solutions by diluting with ultrapure water on a weight basis. 

Low-density polyethylene (PE) bottles from Nalge Nunc (Rochester, NY), screw-

capped PE tubes from AS ONE (Osaka, Japan), conical polypropylene centrifuge tubes 

(Biologix Research, Lenexa, KS), and micropipette tips from Nichiryo (Tokyo, Japan) were 

used throughout the study. The laboratory equipment was washed by soaking in Scat 20X-PF 

alkaline detergent from Nacalai Tesque (Kyoto, Japan) overnight and then overnight in 4 mol 

L–1 HCl before rinsing with ultrapure water after each step. 

2.3 Methods 

2.3.1 Preparation of Cs-contaminated soil samples 

The granulometric fractions of the dried soils (3 g) were spiked with 30 mL of a 

standard solution containing 5 mg L–1 cesium (as CsCl). The soil-solution mixtures were 

continuously shaken in an end-over-end shaker at 200 rpm at 25 °C for 24 h. During this step, 

the soil particles were completely and evenly exposed to the added cesium. Next, the 

suspension was centrifuged at 13000 rpm for 30 min to separate the soil solids from the 

solution using a CR20GIII high-speed refrigerated centrifuge from Hitachi (Tokyo, Japan). 

The supernatant liquid was carefully separated and analyzed for Cs to calculate the amount of 

adsorbed Cs in the soil. The residual soil solid fraction was rinsed with the ultrapure water (5 

mL × 5) and then dried in an oven at 60 °C for 3 h. The dried Cs-spiked samples were stored 
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in capped bottles and were stored in the dark at 25 °C until further experiments were 

conducted. 

2.3.2 Determination of the total organic matter content in the raw soils 

For all of the soil types, 1 g from each of the segregated fractions was dried at 110 ± 5 

°C in an oven for 1 h before subjecting the samples to a calcination treatment at 650 ± 50 °C 

for 2 h in a muffle furnace with an air atmosphere. Next, the ash was cooled and measured to 

determine the weight loss from the initial value, which indicated the total organic matter 

content. 

2.3.3 Determination of the cation contents in the raw soil 

The soil size fractions (0.25 g) were placed in pre-cleaned PTFE vessels in a microwave 

reaction system with a mixture of HNO3 (16 mol L–1, 2.5 mL), HCl (12 mol L–1, 1 mL) and 

HF (28 mol L–1, 1.5 mL). The following operating conditions were used: a maximum 

unpulsed microwave power of (Pmax) = 1400 W; a ramp time of (RT) = 5 min; a hold time of 

(HT) = 35 min at maximum power; and a vent time of (VT) = 20 min. The soil-liquid 

suspensions from the digestion procedure were filtered using cellulose membrane filters with 

a pore size of 0.45 µm from Advantec (Tokyo, Japan). Next, the filtrate was evaporated on a 

block heater assembly at 60 °C until the total volume was reduced to a few milliliters. Next, 

the concentrated solution were diluted to a volume of 50 mL using ultrapure water and were 

analyzed for their total Al, Ca, Fe, K, Mg, Mn and Na contents using ICP-OES.  

2.3.4 Mapping of the solid-phase cesium distributions in the soil 

The selective sequential extraction (SSE) scheme, which was originally proposed 

by Tessier, et al. [30], was used to map the mobility and distribution of cesium in the soil-

solid phase. The scheme was based on washing the target soil sample with a series of 

gradually aggressive extractants [30-32]. The soil cesium was divided into five different 

fractions, exchangeable, acid soluble or bound to carbonates, reducible or bound to iron and 

manganese oxides, oxidisable or bound to the organic matter, and residual. The compositions 

of the extractants that were used to delineate the distinctive operationally defined fractions 
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are shown in Table 1. Hereafter, the fractions are referred to as F1, F2, F3, F4 and F5, 

respectively. 

2.3.5 Determination of the soil cesium contents 

The pre-cleaned PTFE vessels of the microwave reaction assembly were fed with 0.25 g 

of the raw, Cs-spiked, and SSE scheme residue soils before the sequential addition of 14 mol 

L–1 HNO3 (1 mL), 12 mol L–1 HCl (1 mL) and 28 mol L–1 HF (1 mL). The acid 

decomposition was concluded using a three-step microwave-assisted reaction. The first and 

second steps were conducted consecutively under the following conditions: (a) Pmax = 500 W, 

RT = 10 min, and HT = 15 min; and (b) Pmax = 1400 W, RT = 10 min, HT = 60 min, and VT = 

15 min. In the third step, 5% H3BO3 (10 mL) was added to the soil-acid mixture under the 

following conditions: Pmax = 1400 W; RT = 0 min; HT = 15 min; and VT = 15 min. The three-

step processes ensured the complete dissolution of the soil solids. The remaining solution 

from the PTFE vessel was carefully collected, diluted to 50 mL using ultrapure water, and 

analyzed for total Cs using GF-AAS.  

3.0 Results and discussion 

3.1 Effects of soil type and soil particle size on the Cs assimilation in the soils 

The natural concentrations (mg kg–1) of stable cesium (133Cs) in the leaf-mold, andosol 

and red clay soil types were 27.9 ± 3.2, 23.0 ± 1.4, and 6.5 ± 1.3, respectively (Figure 1). 

These values corresponded to the estimated cesium concentrations in natural soils of between 

0 to 26 mg kg–1 [8]. The natural cesium concentrations in the red clay soil occurred in the 

finer particle size fraction (i.e., silt and clay; SF-3). In contrast, for the leaf-mold and andosol 

soil types, the distribution was uniform with 7 to 11 mg kg–1 of cesium in all of the soil size 

fractions, including the coarse sand (SF-1) and fine sand (SF-2) fractions. The 133Cs 

distribution patterns and the size fractions of the red clay soils agree with previous findings 

regarding radiocesium, which indicated that the 137Cs contents in the soil samples were 

associated with the finer size fractions and exhibited greater activities in the finer size 

fractions than in the bulk samples [9, 33, 34]. The adsorbed cesium concentrations (mg kg–1) 

were 103 ± 2.5, 116 ± 3.9 and 121 ± 5.4 in the leaf-mold, andosol and red clay soils, 
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respectively, when atypically exposure occurred from an external source. In addition, the 

adsorption data indicated the possibility of higher cesium retention rates in the red clay soil 

under sudden extreme exposures relative to the other soil types. However, irrespective of the 

soil type, the total cesium content within the soil particle size fractions was more or less even 

and was in the range of 40 to 48 mg kg–1 (Figure 1). This pseudo-uniformity in the cesium 

distribution in the soil particle size fractions can be attributed to the shorter time-lag between 

the exposure period and concentration measurements [35]. The particle size can contribute to 

several effects when 137Cs is used to estimate soil erosion rates. Furthermore, the particle size 

effects can be accounted for by using conversion models. However, these effects were not 

evident in other studies. If no apparent enrichment is detected in soils that were exposed to 

high activities, a particle size correction may not be needed for the conversion models 

[20, 36-39].  

3.2 Effects of soil organic matter contents on Cs assimilation in soils 

The adsorption of cesium in soils decreases as the amount of soil organic matter 

increases, which implies that cesium is more available to biological systems in soils with high 

organic matter contents [40, 41]. This hypothesis is somewhat supported from the lowest 

adsorption ratio of cesium in the leaf-mold soil. The leaf-mold soil type is defined by humus 

or compost that consists of decomposed leaves and other organic materials. A gradual 

increase in the soil organic matter content was observed among the coarse sand (SF-1), fine 

sand (SF-2), and silt and clay (SF-3) size fractions (Figure 2a). However, the relationship 

between the soil cesium content (mg kg–1) and the organic matter (%) is rather discrete 

(Figure 2b).  

3.3 Effects of coexisting cation concentrations on Cs assimilation in soils 

The interactions of metal cations with mineral surfaces in and near hazardous chemicals 

and radioactive waste sites often control the mobility of alkali metals and their radioisotopes 

[42, 43]. The Al, Ca, Fe, K, Mg, Mn and Na concentrations in raw soils have been measured 

in different soil size fractions (Figure 3). In each soil type, a greater K+ concentration was 

observed in the coarse sand fraction, while the Ca2+ and Mg2+ contents were higher in the fine 
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sand fractions. The Na+ ion contents were comparatively lower in the different Japanese soil 

types, and the distribution patterns in the different size fractions were similar to those of K+.  

The sorption of cations in soil depends on ion-exchange processes, while the selectivity 

and fixation of the cations depend on the respective hydration energies. Cations with low 

hydration energies, such as K+, are fixed in the interlayers of the soil particles and are 

attributed to interlayer dehydration and layer collapse. In contrast, cations with high 

hydration energies (e.g., Ca2+, and Mg2+) create expanded interlayers and are not fixed [44-

46]. Furthermore, the Cs+ cation has a low hydration energy, and the selection of Cs+ over 

Ca2+ and Na+ ions have been reported in soils [45-47]. The differences in the Ca2+, Mg2+ and 

Na+ ion fixation patterns relative to K+ within the soil interlayers indicate that K+ may 

negatively influence Cs+ retention patterns in the soils.  

The soil Al3+ concentrations were larger than the concentrations of other ions. In 

addition, the Fe3+ concentration was moderate, and the Mn+ concentrations were insignificant 

for all of the soil types. The cations with low hydration energies were retained more strongly 

and were interstratified regularly, likely due to the oxidation of Fe ions within the soil layers 

[48]. In addition, the Al3+ or Fe3+ coatings on the soil particles resulted in higher cation 

sorption [49]. Thus, stronger Cs+ retention was expected on the red clay, leaf-mold and 

andosol soils. Furthermore, the combined Al3+ and Fe3+ concentrations were much higher 

than the K+ concentrations in each soil type and soil size fraction, which likely suppressed 

any retention or hindering impacts. 

3.4 The distribution of solid-phase Cs in soils: Similarities between 133Cs and 137Cs 

The SSE scheme uses several extracting solutions in sequence, and the varying 

reactivities and behaviors of the soil-bound metals toward the extracting solutions are 

correlated with the metal partitioning within the solid phases of the soils [50]. The 

operationally defined fractionation of 133Cs in the Cs-loaded Japanese soils and the impacts of 

the Cs distributions over 6 months are shown in Figure 4. 

The SSE treatment revealed that 90, 83.7 and 84.9% of the Cs contents in the red clay, 

leaf-mold and andosol soils, respectively, were incorporated in the non-detrital fractions 

during the earlier stages of exposure, while residual fraction contents varied from 10 to 16% 
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(Figure 4a). The cumulative Cs contents in the exchangeable (F1), acid-soluble (F2), 

reducible (F3) and oxidisable (F4) fractions represented the ‘non-detrital’ fraction with 

mobile characteristics. The Cs fraction that was incorporated within the crystalline lattice of 

the soil with persistent environmental interactions was associated with the residual fraction 

(F5) [32, 51-53]. The temporal Cs-distribution data indicated a common trend of decreasing 

Cs concentrations in the F1 fraction. However, the incorporation gradually increased in the 

F5 fraction. The negative variations of the F5 Cs content after one month of exposure were 

deliberately ignored because the period was too short to result in any convincing movement 

patterns within the soil phases. After 5 months, the Cs concentration in the F2 fraction 

increased, while the Cs concentrations in the F3 and F4 fractions decreased (Figure 4a). A 

similar temporal trend was observed for the different soil size fractions, regardless of the soil 

type (Figure 4b). The Cs concentrations in the different size fractions decreased in 

descending order in the leaf-mold and andosol soils and were greater in the B size fraction of 

the red clay soils. The data patterns from the soil size fractions indicated that the increases in 

the F2 and F5 Cs contents with time were not correlated with the decreasing Cs contents of 

the particular solid phase Cs contents (F1, F3 or F4). In addition, a mutual internal suppleness 

could be a more acceptable assumption for interpreting this behavior.   

The metal loading in the soils due to anthropogenic affects were limited to the ionic 

forms or sorbed metals. However, the metals may also exist in their particulate or low 

solubility forms [54-57], and a random distribution of particles that are rich in metals may 

appear in the soil rather than the sorbed state. Sequential extraction methods have often been 

used to evaluate the bioavailability and mobility of radionuclides in soils based on the 

distribution of the physico-chemical forms of radiocesium. The solid-phase fractionation 

patterns of 133Cs-loaded and simulated Japanese soils follow fractionation patters that are 

similar to 137Cs, with a higher rate of accumulation in the residual soil fraction [9, 58-60]. 

The 33Cs content can reach up to 94% of the total 137Cs in the soils that were exposed to 

radiocesium contamination from the FDNPP accident [61]. The effects of elapsed time 

following the contamination of soils with 137Cs were observed during our study of the 133Cs 

contaminated samples [9, 59, 62]. The lower hydration energies of the ionic cesium resulted 
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in the augmented occurrence of cesium in the interlayer or frayed edge sites of the soil 

particles [45-47]. In addition, the incorporation of radiocesium or stable cesium species in the 

most persistent fraction in the soil solid phases increased.  

The kinetics of cesium sorption and the apparent reversibility of the sorption processes 

are intra-related. These processes are influenced by the slow sorption kinetics, competing 

cation characteristics, or both [63, 64]. Thus, it was assumed that cesium migrates slowly to 

energetically favorable interlayer sites. Once the cesium reaches these sites, it is not easily 

released [64, 65]. Based on the above discussion and the “three-box” model that was 

proposed by Comans and Hockley [65], a schematic diagram (as illustrated in Figure 5) was 

used to summarize the temporal variations of the Cs accumulation patterns in the soils after 

uncharacteristic exposure.  

4.0 Conclusions 

The distribution of Cs in soils that were exposed to 133Cs (red clay, leaf-mold and 

andosol soils) was determined in different operationally defined physico-chemical and 

particle size fractions. A pseudo-uniformity in the Cs distribution was observed in the soil 

particle size fractions regardless of soil type. In addition, the red clay soil was more 

vulnerable to Cs during the uncharacteristic high-dose exposure. Greater soil organic matter 

contents resulted in lower Cs retention rates. Furthermore, the soil cation concentrations 

affected the rate of soil Cs uptake. The incorporation of Cs mainly occurred in the strongly 

bound fraction of the soil solid phase, and the temporal movement enhanced the content in 

the same fraction. Therefore, the long term Cs migration pattern indicated that the movement 

of the initially mobile Cs fraction relative to the irreversible soil core resulted in a Cs fraction 

that was less labile for soil-to-plant transfer.  
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Table 1: Chemical interpretation and the extraction conditions of the protocol that was used 

for fractionating the solid phase cesium from the soil 

Fraction  Chemical 
interpretation 

Extraction conditions (for 0.25 g soil) 

Extractants and other conditions Duration  Temp.  Agitation 
h °C 

F1 Exchangeable  1 M MgCl2 (pH 7; 4 mL) 1  25 ± 2 continuous 

F2 Acid soluble a 1 M NaOAc (pH 5, adjusted with acetic acid; 4 mL) 5 25 ± 2 continuous 
F3 Reducible a 0.04 M NH2OH·HCl in 25% (v/v) acetic acid (10 mL) 6 96 ± 3 occasional 
F4 Oxidisable a 0.02 M HNO3 (3 mL) + 30% H2O2 (pH 2, adjusted 

with HNO3; 2.5 mL) 
2 85 ± 3 occasional 

30% H2O2 (pH 2, adjusted with HNO3; 1.5 mL) 3  85 ± 3 intermittent 
3.2 M NH4OAc in 20% (v/v) HNO3 (2.5 mL) 0.5 85 ± 3 continuous 

F5 Residual Microwave-assisted acid decomposition b –  –  –  
a The fraction names ‘acid-soluble’, ‘reducible’ and ‘oxidisable’ were originally called ‘bound to carbonates’, ‘bound to iron 
and manganese oxides’ and ‘bound to the organic matter’ by Tessier, et al. [30]. 
b The detailed microwave-assisted acid decomposition procedure for determining the soil cesium contents is available in 
Section 2.3.5.  
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Figure 1: Cesium concentrations in the raw and cesium-spiked soils (n = 3). SF-1: Size 

fraction of 2000–212 µm (coarse sand); SF-2: Size fraction of 212–63 µm (fine sand); and 

SF-3: Size fraction of < 63µm (silt and clay). 
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Figure 2: (a) The distribution patterns of the organic matter contents in the soils. (b) The 

correlation between the cesium accumulation pattern and the organic matter contents in the 

soils (n = 3). SF-1: Size fraction of 2000–212 µm (coarse sand); SF-2: Size fraction of 212–

63 µm (fine sand); and SF-3: Size fractions of < 63µm (silt and clay). 
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Figure 3: The distribution pattern of the coexisting soil cations (n = 3). SF-1: Size fraction of 

2000–212 µm (coarse sand); SF-2: Size fraction of 212–63 µm (fine sand); SF-3: and Size 

fraction of < 63µm (silt and clay). 
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Figure 4: Comparative temporal distribution of cesium in the soil solid-phases: (a) without 

size fractionation, (b-I) size fraction of 2000–212 µm (coarse sand), (b-II) size fraction of 

212–63 µm (fine sand), and (b-III) size fraction of < 63µm (silt and clay). F1: Exchangeable, 

F2: Acid soluble, F3: Reducible, F4: Oxidisable, and F5: Residual. 
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Figure 5: A schematic model of (a) the instantaneous Cs-sorption patterns in the soils and (b) 

the temporal changes of the Cs-sorption patterns in the soils.
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