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Abstract

The aim of this paper is to give an extension of the improved Sobolev embedding
theorem for single-valued functions to the case of vector-valued functions which is
involved with the three-dimensional massless Dirac operator together with the three-
or two-dimensional Weyl–Dirac (or Pauli) operator, the Cauchy–Riemann operator and
also the four-dimensional Euclidian Dirac operator.
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1 Introduction and Results

The improved Sobolev embedding theorem is the following inequality: For 1 ≤ p <
q <∞, there exists a positive constant C only depending on p and q (and n) such that

∥ψ∥q ≤ C∥∇ψ∥p/qp ∥ψ∥1−(p/q)

B
p/(p−q)
∞,∞

(1.1)

for every C-valued function ψ on Rn which satisfies ∇ψ ∈ Lp(Rn) and belongs to the

Banach space B
p/(p−q)
∞,∞ (Rn), where ∇ = (∂1, . . . , ∂n), ∂j = ∂/∂xj , i = 1, 2, . . . , n. Here

with a < 0, Ba
∞,∞(Rn) stands for the homogeneous Besov space of indices (a,∞,∞)

with norm
∥ψ∥Ba

∞,∞ := sup
t>0

t−a/2∥et∆ψ∥∞ (1.2)

(e.g. [T, Sect.2.5.2, pp.190–192]). Here et∆ stands for the heat semigroup acting on
the C-valued functions ψ on Rn, where ∆ is the Laplacian in Rn, and ∥et∆ψ∥∞ :=
supx |(et∆ψ)(x)|. This was shown by Cohen et al. [CDPX] (cf. Cohen et al. [CMO])
and Ledoux [Le]. In fact, (1.1) is a very general inequality which covers not only
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the classical Sobolev inequalities ∥ψ∥q ≤ C∥∇ψ∥p with 1
q = 1

p − 1
n , 1 ≤ p < n, for

every function ψ vanishing at infinity in a certain mild sense, but also the Gagliardo–
Nirenberg inequalities

∥ψ∥q ≤ C∥∇ψ∥p/qp ∥ψ∥1−(p/q)
r ,

1

q
=

1

p
− r

qn
. (1.3)

In all the inequalities the functions ψ are supposed to be single-valued functions.
In this work we will show an inequality like (1.1) for the case where the ψ are vector-
valued functions. Of course, inequality (1.1) holds also if one replaces single-valued
functions ψ by vector-valued functions f , understanding their semi-norm ∥∇f∥p on
the right-hand side of (1.1) in the sense of (1.11) as below. But what we want to have
is an inequality in the situation where the semi-norm concerned with the first-order
derivatives is related to the massless Dirac operator

α · p = α1 p1+α2 p2+α3 p3 = α · (−i∇) = −i(α1∂1 + α2∂2 + α3∂3), (1.4)

therefore, acting on C4-valued functions f(x) = t(f1(x), f2(x), f3(x), f4(x)) defined in
special 3-dimensional space R3, though not in general Rn. In (1.4), α := (α1, α2, α3)
is the triple of the 4 × 4 Dirac matrices which satisfy the anti-commutation relation
ααk + αkαj = 2δjkI4 j, k = 1, 2, 3, where I4 is the 4 × 4-identity matrix. We are
concerned mainly with what are usually called “Dirac matrices”:

αj =

(
02 σj
σj 02

)
(j = 1, 2, 3) (1.5)

with the 2× 2 zero matrix 02 and the triple of 2× 2 Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.6)

In the beginning let us confirm the notations to be used about norms for vectors
and functions. First of all, the absolute value of a number c := a+ ib ∈ C is denoted,
as usual, by |c| :=

√
a2 + b2. Next, we shall use the standard notations of the ℓp and

ℓ∞ norm for an m-vector a = t(a1, a2, . . . , am) ∈ Cm :

|a|ℓp := (

m∑
k=1

|ak|p)1/p = (|a1|p + |a2|p + · · ·+ |am|p)1/p, 1 ≤ p <∞,

|a|ℓ∞ := ∨mk=1|ak| = |a1| ∨ |a2| ∨ · · · ∨ |am|, (1.7)

where b1 ∨ b2 ∨ · · · ∨ bm denotes max{b1, b2, . . . , bm}. The Lp and L∞ norms for a
Cm-valued function f(x) = t(f1(x), f2(x), . . . , fm(x)) are given, respectively, by

∥f∥p =
(∫

|f(x)|pℓpdx
)1/p

, 1 ≤ p <∞, (1.8)

In [IS] we considered the case m = 4 and introduced the semi-norm

∥(α · p)f∥p =
(∫

|(α · p)f(x)|pℓpdx
)1/p

, 1 ≤ p <∞,

|(α · p)f(x)|pℓp = |
3∑
j=1

αj pj f(x)|
p
ℓp =

4∑
k=1

|(
3∑
j=1

αj pj f)k(x)|p =
4∑

k=1

|(
3∑
j=1

αj∂jf)k(x)|p .

(1.9)
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for f(x) = t(f1(x), f2(x), f3(x), f4(x)) defined on R3. The Banach spaces obtained
as completion in the norm ∥f∥α·p,1,p := (∥f∥pp + ∥(α · p)f∥pp)1/p of the linear space
C∞
0 (R3;C4) and the linear space {f ∈ C∞(R3;C4) ; f, (α·p)f ∈ Lp(R3;C4), j = 1, 2, 3}

were denoted in [IS] by H1,p
0 (R3) and H1,p(R3), respectively. However, in the present

paper we denote them by H1,p
α·p,0(R3;C4) and H1,p

α·p(R3;C4), respectively.
Note that

∥(α · p)f∥p ≤ 31−(1/p)∥∇f∥p , (1.10)

where

∥∇f∥p ≡
(∫

|∇f(x)|pℓpdx
)1/p

, |∇f(x)|pℓp :=

3∑
j=1

|∂jf(x)|pℓp =

3∑
j=1

4∑
k=1

|∂jfk(x)|p .

(1.11)
A proof of (1.10) only uses that ∥

∑m
j=1 ψj∥p ≤ m1−(1/p)(

∑m
j=1 ∥ψj∥

p
p)1/p for single-

valued functions ψj , j = 1, 2, . . . ,m, an inequality following from Hölder’s inequality.
As is the case for the Sobolev spaces of single-valued functions, so does coinci-

dence hold for our Dirac–Sobolev spaces of vector-valued functions: H1,p
α·p,0(R3;C4) =

H1,p
α·p(R3;C4) = W 1,p

α·p(R3;C4), where the last space is the Banach space of all f ∈
Lp(R3;C4) such that (α · p)f belongs to Lp(R3;C4). It is shown in [IS] that, for
1 < p <∞, H1,p

α·p,0(R3;C4) coincides with H1,p
0 (R3;C4), the completion of C∞

0 (R3;C4)

in the norm ∥f∥1,p := (∥f∥pp+∥∇f∥pp)1/p, while for p = 1 the latter is a proper subspace
of the former.

With a < 0, let Ba
∞,∞(Rn;C4) be the homogeneous Besov space for C4-valued

functions f(x) on Rn of indices (a,∞,∞) with norm

∥f∥Ba
∞,∞ := sup

t>0
t−a/2∥Ptf∥∞. (1.12)

Here Pt := et∆I4 = et∆I4 (I4 : 4 × 4-identity matrix) stands for the heat semigroup
acting on the C4-valued functions f on Rn, where ∆ is the Laplacian in Rn, et∆
being the heat semigroup acting on the C-valued functions on Rn, and ∥Ptf∥∞ :=
supx |Ptf(x)|ℓ∞ = supx ∨4

k=1|et∆fk(x)|.
With the notations above concerning vector-valued functions, it is easy to see the

following trivial version of (1.1) for C4-valued functions f holding : For 1 ≤ p < q <∞,
there exists a positive constant C such that

∥f∥q ≤ C∥∇f∥p/qp ∥f∥1−(p/q)

B
p/(p−q)
∞,∞

(1.13)

for every C4-valued function f ∈ Ba
∞,∞(Rn;C4) which satisfies ∥∇f∥p < ∞, there-

fore, in particular, for every f in the Sobolev space H1,p
0 (Rn;Cn) = H(Rn;C4) =

W 1,p(Rn;Cn) as well as in Ba
∞,∞(Rn;Cn).

Then the first attempt to get a version of (1.1) for vector-valued functions in our
sense was done in the paper [BES] where the authors showed, replacing the Lq norm of
f on its left-hand side by the weak Lq norm of f , the following inequality, which they
called Dirac–Sobolev inequality : For 1 ≤ p < q < ∞, there exists a constant C > 0
such that

∥f∥q,∞ ≤ C∥(α · p)f∥p/qp ∥f∥1−(p/q)

Bp/(p−q)
∞,∞

(1.14)
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for every f ∈ B
p/(p−q)
∞,∞ (R3;C4) which satisfies (α · p)f ∈ Lp(R3;C4), therefore, in

particular, for every ∈ H1,p
α·p,0(R3;C4)∩Bp/(p−q)

∞,∞ (R3;C4). As a result, this f belongs to
the weak Lq space with the weak Lq norm defined by

∥f∥q,∞ :=
[
sup
u>0

uq
∣∣{|f |ℓ∞ ≥ u}

∣∣]1/q, (1.15)

where
∣∣{|f |ℓ∞ ≥ u}

∣∣ =
∫
χ{|f |ℓ∞≥u}(x) dx is the measure of the set {|f |ℓ∞ ≥ u} on

which u ≤ |f(x)|ℓ∞ := ∨4
k=1|fk(x)|, dx being the Lebesgue measure on R3, and χE(x)

stands for the characteristic function of a subset E of R3.
Now one may ask oneself whether or not, for any 1 ≤ p < q <∞, inequality (1.14)

can hold valid, if replacing the weak Lq norm of f on the left-hand side by its strong
Lq one as in the vector-valued version (1.13) of the original (1.1) but eqipping on the
right-hand side with either the first-order-derivative semi-norm ∥(α ·p)f∥p as in (1.14)
or some other one related to the massless Dirac operator α · p . In particular, we ask
whether or not there exists a positive constant C such that

∥f∥q ≤ C∥(α · p)f∥p/qp ∥f∥1−(p/q)

B
p/(p−q)
∞,∞

(1.16)

for every f ∈ B
p/(p−q)
∞,∞ (R3;C4) which satisfies (α · p)f ∈ Lp(R3;C4). However, this

replacement does not work so well; indeed (1.16) cannot hold for p = 1, although it
holds for 1 < p < q < ∞. A counterexample for this is essentially found in Balinsky–
Evans–Umeda [BEU], which we will refer to in Section 2 below. This suggest us that
in order to get an inequality like (1.16) with the strong Lq norm of f kept on the
left-hand side, we have to replace the semi-norm ∥(α · p)f∥p on the right-hand side
by a somewhat stronger one. This leads us to introduce a third semi-norm Mα·p;p(f)
concerned with Lp-norm of the first-order derivatives of functions f = t(f1, f2, f3, f4) in
the space C∞

0 (R3;C4). Noting that the massless Dirac operator (1.4) can be rewritten,
based on the representations (1.5) of the Dirac matrices αj , j = 1, 2, 3, as

α · p =


0 0 p3 p1−i p2
0 0 p1+i p2 −p3
p3 p1−ip2 0 0

p1+ip2 − p3 0 0

 , (1.17)

decompose it into the sum of its two parts:

α · p = (α · p)P13 + (α · p)P24

=


0 0 p3 0
0 0 p1+i p2 0
p3 0 0 0

p1+i p2 0 0 0

+


0 0 0 p1−i p2
0 0 0 −p3
0 p1−ip2 0 0
0 − p3 0 0

 ,(1.18)

where P13 := diag(1, 0, 1, 0) and P24 := diag(0, 1, 0, 1) are two projection matrices
acting on the space C4 of four-vectors, which satisfies that P13 + P24 = I4, and define

Mα·p;p(f) :=
[
∥(α · p)P13f∥pp + ∥(α · p)P24f∥pp

]1/p
. (1.19)

At first sight, this introduction of the semi-norm Mα·p;p(f) here may appear to be
artificial but we shall see soon that the semi-norm turns out to be rather intrinsic.
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Let us see how this semi-normMα·p;p(f) in (1.19) is related to the other semi-norms,
∥(α · p)f∥p and ∥∇f∥p. We have from (1.17)

(α · p)f =


p3 f3 + (p1−i p2)f4
(p1+i p2)f3 − p3 f4
p3 f1 + (p1−i p2)f2
(p1+i p2)f1 − p3 f2

 ,

so that, recalling the definition (1.9) of the ℓp norm, we have

|(α · p)f |pℓp = | p3 f3 + (p1−i p2)f4|p + |(p1+ip2)f3 − p3 f4|p

+| p3 f1 + (p1−i p2)f2|p + |(p1+i p2)f1 − p3 f2|p

= |(p1+i p2)f1 − p3 f2|p + |(p1−i p2)f2 + p3 f1|p

+|(p1+ip2)f3 − p3 f4|p + |(p1−i p2)f4 + p3 f3|p,

where we have rearranged the four terms, when passing through the second equality.
Hence

∥(α · p)f∥pp = ∥(∂1 + i∂2)f1 − ∂3f2∥pp + ∥(∂1 − i∂2)f2 + ∂3f1∥pp
+∥(∂1 + i∂2)f3 − ∂3f4∥pp + ∥(∂1 − i∂2)f4 + ∂3f3∥pp . (1.20)

Then one can calculate the right-hand side of (1.19) to get

Mα·p;p(f)
p =

[(
∥∂3f3∥pp + ∥(∂1 + i∂2)f3∥pp

)
+

(
∥∂3f1∥pp + ∥(∂1 + i∂2)f1∥pp

)]
+
[(
∥(∂1 − i∂2)f4∥pp + ∥∂3f3∥pp

)]
+

[(
∥(∂1 − i∂2)f2∥pp + ∥∂3f2∥pp

)]
=

(
∥(∂1 + i∂2)f1∥pp + ∥∂3f1∥pp

)
+

(
∥(∂1 − i∂2)f2∥pp + ∥∂3f2∥pp

)
+
(
∥(∂1 + i∂2)f3∥pp + ∥∂3f3∥pp

)
+

(
∥(∂1 − i∂2)f4∥pp + ∥∂3f4∥pp

)
. (1.21)

We can compare (1.20) and (1.21) and recall (1.10) to show with aid of Hölder’s
inequality that for 1 ≤ p <∞,

2−(1−(1/p))∥(α · p)f∥p ≤Mα·p;p(f) ≤ 21−(1/p)∥∇f∥p , (1.22)

so that the semi-norm Mα·p;p(f) is an intermediate one in strength lying between the
other two first-order-derivative semi-norms ∥(α ·p)f∥p and ∥∇f∥p. We shall denote by

H1,p
Mα·p,0

(R3;C4) the Banach space obtained as completion in the norm ∥f∥Mα·p,1,p :=

(∥f∥pp +Mα·p;p(f)
p)1/p of the space C∞

0 (R3;C4). ¿From (1.22) we see the following
inclusion relation among the three Banach spaces:

H1,p
0 (R3;C4) ⊆ H1,p

Mα·p,0
(R3;C4) ⊆ H1,p

(α·p),0(R
3;C4). (1.23)

Now we are going to see a significant character of the semi-norm Mα·p;p(f) intro-
duced in (1.19), by considering the other decompositions of the Dirac opearator α · p
in (1.17) than the one (1.18). In fact, there are a few other decompositions:

M
(1)
α

α · p = (α · p)P14 + (α · p)P23

≡


0 0 0 p1−i p2
0 0 0 −p3
p3 0 0 0

p1+i p2 0 0 0

+


0 0 p3 0
0 0 p1+ip2 0
0 p1−i p2 0 0
0 −p3 0 0

 , (1.24)
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where P14 := diag(1, 0, 0, 1) and P23 := diag(0, 1, 1, 0) are two projection matrices
acting on the space C4 of four-vectors, so that P14 + P23 = I4. Note that both the
operators (α · p)P14 and (α · p)P23 on the right are selfadjoint, i.e. ((α · p)P14)

∗ =
(α · p)P14, ((α · p)P23)

∗ = (α · p)P23.

M
(2)
α

α · p =

(
02 σ1 p1+σ2 p2
σ3 p3 02

)
+

(
02 σ3 p3

σ1 p1+σ2 p2 02

)

≡


0 0 0 p1−ip2
0 0 p1+ip2 0
p3 0 0 0
0 − p3 0 0

+


0 0 p3 0
0 0 0 − p3
0 p1−ip2 0 0

p1+ip2 0 0 0


=: (α · p)1 + (α · p)2, (1.25)

where note that (α · p)2 is the adjoint of (α · p)1 as operators, say, in L2(R3;C4), i.e.
(α · p)2 = (α · p)1∗.

M
(3)
α

α · p =

(
0 σ1 p1+σ2 p2

σ1 p1+σ2 p2 0

)
+

(
0 σ3 p3

σ3 p3 0

)

≡


0 0 0 p1−ip2
0 0 p1+i p2 0
0 p1−i p2 0 0

p1+i p2 0 0 0

+


0 0 p3 0
0 0 0 − p3
p3 0 0
0 −p3 0


=: (α · p)3 + (α · p)4 , (1.26)

where note that both the operators (α · p)3 and (α · p)4 on the right are selfadjoint.

Then we can see in the following proposition that the semi-norm Mα·p;p(f) of f ∈
C∞
0 (R3;C4) defined by (1.19), though with the rather artificial decomposition (1.18)

dependent on the pair (P13, P24) of projection matrices, turns out to be meaningful
enough to have some universal character.

Proposition 1.0 The semi-norm Mα·p;p(f) in (1.19) coincides with the ones to be
defined with the decompositions (1.24), (1.25) and (1.26):

M
(1)
α·p;p(f) := [∥(α · p)P14f∥pp + ∥(α · p)P23f∥p]1/p; (1.27a)

M
(2)
α·p;p(f) := [∥(α · p)1f∥pp + ∥(α · p)2f∥p]1/p = [∥(α · p)1f∥pp + ∥(α · p)1∗f∥p]1/p;

(1.27b)

M
(3)
α·p;p(f) := [∥(α · p)3f∥pp + ∥(α · p)4f∥p]1/p. (1.27c)

More generally, in fact, every decomposition of α ·p into its two parts, α ·p = (α ·p)5+
(α · p)6, such that each row of both the matrices (α · p)5 and (α · p)6 contains only one
nonzero entry, defines the semi-norm Mα·p;p(f) which has the expression (1.21).

Proof. In fact, direct calculation of the right-hand sides of (1.27a), (1.27b) and
(1.27c) in view of (1.24), (1.25) and (1.26) yields nothing but a rearrangement of the
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last member of the expression (1.21) of Mα·p;p(f). The assertion for the more general
case is evident.

We note that (1.27a) says that our semi-norm Mα·p;p(f), which is defined in (1.19)
by using the pair (P13, P24) of projection matrices can be defined by using another pair
(P14, P23). However, among all three possible pairs of projection matrices, (P13, P24),
(P14, P23), (P12, P34), whose sum becomes the identity matrix I4, the decomposition
α · p = (α · p)P12 + (α · p)P34 to be defined with the remaining last pair consisting of
P12 = diag(1, 1, 0, 0) and P34 = diag(0, 0, 1, 1), is not fit for our semi-norm Mα·p;p(f),
since this decomposition does not satisfy the condition for the more general case in
Proposition 1.0. In Section 6, we shall come back to this decomposition to discuss the
issue.

The main result of this work is the following theorem.

Theorem 1.1. (with 3-dimensional massless Dirac operator) (i) For 1 ≤ p < q <
∞, a C4-valued function f = t(f1, f2, f3, f4) belongs to Lq(R3;C4), if f belongs to

B
p/(p−q)
∞,∞ (R3;C4) and satisfies Mα·p;p(f) <∞, and further, there exists a positive con-

stant C such that
∥f∥q ≤ CMα·p;p(f)

p/q∥f∥1−(p/q)

B
p/(p−q)
∞,∞

. (1.28)

Therefore this holds, in particular, for every f ∈ H1,p
Mα·p,0

(R3;C4) ∩Bp/(p−q)
∞,∞ (R3;C4).

(ii) For ∞ > p > 1, the three semi-norms ∥(α · p)f∥p, Mα·p;p(f) and ∥∇f∥p are
equivalent, so that the corresponding three Banach spaces in (1.23) coincide with one
another:

H1,p
0 (R3;C4) = H1,p

Mα·p,0
(R3;C4) = H1,p

(α·p),0(R
3;C4). (1.29)

Therefore assertion (i) turns out: For 1 < p < q < ∞, there exists a positive constant
C such that

∥f∥q ≤ C∥(α · p)f∥p/qp ∥f∥1−(p/q)

B
p/(p−q)
∞,∞

, (1.30)

for every f ∈ B
p/(p−q)
∞,∞ (R3;C4) whose semi-norm ∥(α · p)f∥p, Mα·p;p(f) or ∥∇f∥p is

finite. Therefore this holds, in particular, for every f in the above space (1.29) which

belongs to B
p/(p−q)
∞,∞ (R3;C4). (1.30) is equivalent to the vector-valued version (1.13) of

(1.1) with n = 3.

Similarly we can also show the following five results in related different situations.
First, replacing the Dirac operator α ·p in Theorem 1.1 by the 3-dimensional Weyl–

Dirac (or Pauli) operator

σ · p := σ1 p1+σ2 p2+σ3 p3 =

(
p3 p1−ip2

p1+i p2 −p3

)
(1.31)

acting on C2-valued C∞ function h := t(h1, h2) on R3, where the σj , j = 1, 2, 3, are
the Pauli matrices in (1.6), we have exactly the same result. For h := t(h1, h2) whose
four first-order derivatives (∂1 + i∂2)h1, ∂3h1, (∂1 − i∂2)h2 and ∂3h2 are p-th power
integrable in R3, consider the semi-norm

Mσ·p;p(h) :=
[
∥(σ · p)P1h∥pp + ∥(σ · p)P2h∥pp

]1/p
=

[
∥(∂1 + i∂2)h1∥pp + ∥∂3h1∥pp + ∥(∂1 − i∂2)h2∥pp + ∥∂3h2∥pp

]1/p
, (1.32)
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decomposing σ · p into the sum of its two parts:

σ · p = (σ · p)P1 + (σ · p)P2 =

(
p3 0

p1+i p2 0

)
+

(
0 p1−i p2
0 − p3

)
.

Here P1 =

(
1 0
0 0

)
and P2 =

(
0 0
0 1

)
are two projection matrices acting on the

C2 of two-vectors and note that P1 + P2 = I2 (: 2 × 2-identity matrix). By the same
argument as before around Proposition 1.0 for α ·p, it is also seen that this semi-norm
Mσ·p;p(h) defined by (1.32) with the decomposition (1.31) of σ · p coincides with the
one to be defined with another decomposition:

σ · p =

(
0 p1−ip2

p1+ip2 0

)
+

(
p3 0
0 −p3

)
=: (σ · p)1 + (σ · p)2,

i.e. Mσ·p;p(h) =
[
∥(σ · p)1h∥pp + ∥(σ · p)2h∥pp

]1/p
.

The Banach spaces obtained as completions of C∞
0 (R3;C2) by the norms ∥h∥Mσ·p,1,p :=

(∥h∥pp+Mσ·p;p(h)
p)1/p and ∥h∥σ·p,1,p := (∥h∥pp+∥(σ·p)h∥pp)1/p are denoted byH1,p

Mσ·p,0
(R3;C2),

H1,p
(σ·p),0(R

3;C2), respectively.

Corollary 1.2. (with 3-dimensional Weyl–Dirac operator) (i) For 1 ≤ p < q < ∞, a

C2-valued functions h = t(h1, h2) belongs to L
q(R3;C2), if h belongs to B

p/(p−q)
∞,∞ (R3;C2)

and satisfies Mσ·p;p(h) <∞, and further, there exists a positive constant C such that

∥h∥q ≤ CMσ·p;p(h)
p/q∥h∥1−(p/q)

B
p/(p−q)
∞,∞

. (1.33)

Therefore this holds, in particular, for h ∈ H1,p
Mσ·p,0

(R3;C2) ∩Bp/(p−q)
∞,∞ (R3;C2).

(ii) For ∞ > p > 1, the three semi-norms ∥(σ · p)h∥p, Mσ·p;p(h) and ∥∇h∥p are
equivalent, so that the corresponding three Banach spaces coincide with one another:

H1,p
0 (R3;C2) = H1,p

Mσ·p,0
(R3;C2) = H1,p

σ·p,0(R
3;C2). (1.34)

Therefore assertion (i) turns out: For 1 < p < q < ∞, there exists a positive constant
C such that

∥h∥q ≤ C∥(σ · p)h∥p/qp ∥h∥1−(p/q)

B
p/(p−q)
∞,∞

, (1.35)

for every h ∈ B
p/(p−q)
∞,∞ (R3;C2) whose semi-norm ∥(σ · p)h∥p, Mσ·p;p(h) or ∥∇h∥p is

finite. Therefore this holds, in particular, for every f in the space (1.34) which belongs

to B
p/(p−q)
∞,∞ (R3;C2). (1.35) is equivalent to the vector-valued version (1.13) of (1.1)

with n = 3.

Second, for C-valued C∞ functions ψ whose two first-order derivatives (∂1 − i∂2)ψ
and ∂3ψ are p-th power integrable in R3, consider the semi-norm

M(∂1−i∂2)∨∂3;p(ψ) :=
[
∥(∂1 − i∂2)ψ∥pp + ∥∂3ψ∥pp

]1/p
. (1.36)

The Banach space obtained as completion of C∞
0 (R3) by the norm ∥ψ∥M(∂1−i∂2)∨∂3

,1,p :=

(∥ψ∥pp +M((∂1−i∂2)∨∂3);p(ψ)
p)1/p is denoted by H1,p

M(∂1−i∂2)∨∂3
,0(R

3).
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Corollary 1.3. (i) For 1 ≤ p < q <∞, a function ψ belongs to Lq(R3), if ψ belongs to

B
p/(p−q)
∞,∞ (R3) and satisfies M(∂1−i∂2)∨∂3;p(ψ) < ∞, and further, there exists a positive

constant C such that

∥ψ∥q ≤ CM(∂1−i∂2)∨∂3;p(ψ)
p/q∥ψ∥1−(p/q)

B
p/(p−q)
∞,∞

. (1.37)

Therefore, in particular, for every ψ ∈ H1,p
M(∂1−i∂2)∨∂3

,0(R
3) ∩Bp/(p−q)

∞,∞ (R3).

(ii) For ∞ > p > 1, the two semi-norms M(∂1−i∂2)∨∂3;p(ψ) and ∥∇f∥p are equivalent,
so that the corresponding two Banach spaces coincide with each other:

H1,p
0 (R3;C2) = H1,p

M(∂1−i∂2)∨∂3
,0(R

3;C2). (1.38)

Therefore assertion (i) turns out: For 1 < p < q < ∞, there exists a positive constant
C such that

∥ψ∥q ≤ CM(∂1−i∂2)∨∂3;p(ψ)
p/q∥ψ∥1−(p/q)

B
p/(p−q)
∞,∞

, (1.39)

for every f ∈ B
p/(p−q)
∞,∞ (R3) whose semi-norm M(∂1−i∂2)∨∂3;p(ψ) or ∥∇f∥p is finite.

Therefore this holds, in particular, for every f in the space (1.38) which belongs to

B
p/(p−q)
∞,∞ (R3). (1.39) is equivalent to the vector-valued version (1.13) of (1.1) with

n = 2.

Third, we shall consider the two-dimensional Weyl–Dirac (or Pauli) operators made
from two of the three Pauli matrices (1.6). There are the following three:

(σ · p)(a)f := (σ1 p1+σ2 p2)f =

(
0 p1−ip2

p1+ip2 0

)(
f1
f2

)
, (1.40a)

(σ · p)(b)f := (σ3 p1+σ1 p2)f =

(
p1 p2
p2 − p1

)(
f1
f2

)
, (1.40b)

(σ · p)(c)f := (σ3 p1+σ2 p2)f =

(
p1 −ip2
i p − p1

)(
f1
f2

)
, (1.40c)

for f := t(f1, f2). As we shall see later in Lemma 5.1, these three operators (σ·p)(a), (σ·
p)(b), (σ · p)(a) are unitarily equivalent, so that the three semi-norms ∥(σ · p)(a)f∥p,
∥(σ · p)(b)f∥p, ∥(σ · p)(c)f∥p are equivalent. Therefore we write any of these three
operators as (σ · p)(2) so as to distinguish it from the three-dimensional Weyl–Dirac
(or Pauli) operator σ · p in (1.31), and any of these semi-norms as ∥(σ · p)(2)f∥p to
consider the norm ∥f∥(σ·p)(2),1,p := (∥f∥pp + ∥(σ · p)(2)f∥pp)1/p. What can be shown

just in the same way as in [IS] is that the Banach space H1,p

(σ·p)(2),0(R
2;C2) obtained as

completion of C∞
0 (R2;C2) in this norm coincides for 1 < p <∞ with the Sobolev spaces

H1,p
0 (R2;C2) = H1,p(R2;C2), but is for p = 1 strictly larger. Differing from Corollary

1.2 for 3-dimensional case, the following theorem for 2-dimensional case gives a true
extension of inequality (1.1) for single-valued functions to the case for vector-valued
functions.

Theorem 1.4. (with 2-dimensional Weyl–Dirac (or Pauli) operator) For 1 ≤ p < q <
∞ there exists a positive constant C such that

∥f∥q ≤ C∥(σ · p)(2)f∥p/qp ∥f∥1−(p/q)

B
p/(p−q)
∞,∞

(1.41)
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for every f ∈ B
p/(p−q)
∞,∞ (R2;C2) which satisfies ∥(σ ·p)(2)f∥p <∞. Therefore this holds,

in particular, for every f ∈ H1,p

(σ·p)(2),0(R
2;C2) ∩Bp/(p−q)

∞,∞ (R2;C2).

Forth, from Corollary 1.3 or Theorem 1.4 we can get the following inequality in-
volved with the Cauchy–Riemman operator 1

2(∂1 + i∂2) in R2.

Corollary 1.5. (with Cauchy–Riemann operator) For 1 ≤ p < q < ∞, there exists a
positive constant C such that

∥ψ∥q ≤ C∥(∂1 + i∂2)ψ∥p/qp ∥ψ∥1−(p/q)

B
p/(p−q)
∞,∞

(1.42)

for every ψ ∈ B
p/(p−q)
∞,∞ (R2) which satisfies ∥(∂1 + i∂2)ψ∥p <∞.

Finally, we are going to consider the four-dimensional Euclidian Dirac operator

β · p =
4∑

k=1

βk · pk = −i
4∑

k=1

βk∂k, (1.43)

with p = (p1, p2, p3, p4), pk = −i∂k, k = 1, 2, 3, 4, which acts on C4-valued functions
f(x) = t(f1(x), f2(x), f3(x), f4(x)) defined in 4-dimensional Euclidian space-time R4.
Here we are using the symbol β for a quadruple β := (β1, β2, β3, β4) of the Dirac
matrices which are 4× 4 Hermitian matrices satisfying the anti-commutation relation
βjβk + βkβj = δjkI4, j, k = 1, 2, 3, 4. As the first three of it, we take here, with the
same triple of Pauli matrices as in (1.6),

βj := αj =

(
02 σj
σj 02

)
(j = 1, 2, 3), (1.44)

and, as the fourth β4, we adopt

β4 := α5 =

(
02 −iI2
iI2 02

)
, (1.45)

but not the usual α4 given by

α4 =

(
I2 02
02 −I2

)
.

The α4 is often written as “β”, but of course, different from our β on the left-hand side
of (1.41) above (e.g. [BeSa, p.48]). For this, see e.g. [W] where α5 is given as in (1.45)
and read in [ItZ, p.693] as α5 := iγ5γ0 = α1α2α3α4 (see also [G]). Note that as the
five αk, k = 1, 2, 3, 4, 5, are mutually anti-commuting, Hermitian matrices satisfying
αjαk+αkαj = 2δjkI4, j, k = 1, 2, 3, 4, so are the four βk, k = 1, 2, 3, 4. (Here δjk is the
usual Kronecker delta, one when the indices are the same, othewise one.) Therefore
β · p =

∑4
k=1 βk · pk is a selfadjoint operator in L2(R4;C4) as well as

∑4
k=1 αk pk.

Then similarly to the 3-dimensional case before (see around (1.18)), we consider
the semi-norm Mβ·p;p(f) as well as the semi-norm ∥(β · p)f∥ concerning the first-order
derivatives of functions of functions f = t(f1, f2, f3, f4) in the space C∞

0 (R4;C4). To
define Mβ·p;p(f), note first that the 4-dimensional Euclidian Dirac operator (1.43) can
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be rewritten, based on the representation (1.44) together with (1.45) for the matrices
βk, k = 1, 2, 3, 4, as

β · p =


0 0 p3−ip4 p1−i p2
0 0 p1+ip2 −(p3+i p4)

p3+i p4 p1−i p2 0 0
p1+i p2 −(p3−ip4) 0 0

 . (1.46)

Then decompose it into the sum of its two parts:

β · p = (β · p)P13 + (β · p)P24

=


0 0 p3−i p4 0
0 0 p1+i p2 0

p3+ip4 0 0 0
p1+ip2 0 0 0

+


0 0 0 p1−i p2
0 0 0 −(p3+i p4)
0 p1−i p2 0 0
0 −(p3−ip4) 0 0

 ,

(1.47)

where P13 := diag(1, 0, 1, 0) and P24 := diag(0, 1, 0, 1) are the same two projection
matrices acting on the space C4 of four-vectors as before, and define

Mβ·p;p(f) :=
[
∥(β · p)P13f∥pp + ∥(β · p)P24f∥pp

]1/p
. (1.48)

Let us see how this semi-normMβ·p;p(f) in (1.48) is related to the other semi-norms
∥(β ·p)f∥p and ∥∇f∥p. However, we should note here that the latter ∥∇f∥p differs from
(1.11), since in the present case we have the 4-dimensional gradient ∇ = (∂1, ∂2, ∂2, ∂2),
so that |∇f(x)|pℓp :=

∑4
j=1 |∂jf(x)|

p
ℓp =

∑4
j=1

∑4
k=1 |∂jfk(x)|p.

Then

(β · p)f =


(p3−ip4)f3 + (p1−i p2)f4
(p1+ip2)f3 − (p3+i p4)f4
(p3+i p4)f1 + p1−i p2)f2
(p1+ip2)f1 − (p3−i p4)f2

 ,

so that, recalling the definition of the ℓp norm in (1.9), we have

|(β · p)f |pℓp = |(p3−ip4)f3 + (p1−i p2)f4|p + |(p1+i p2)f3 − (p3+i p4)f4|p

+|(p3+i p4)f1 + (p1−ip2)f2|p + |(p1+ip2)f1 − (p3−i p4)f2|p

= |(p1+ip2)f1 − (p3−i p4)f2|p + |(p1−i p2)f2 + (p3+i p4)f1|p

+|(p1+i p2)f3 − (p3+ip4)f4|p + |(p1−ip2)f4 + (p3−i p4)f3|p,

where we have rearranged the four terms, when passing through the second equality.
Hence

∥(β · p)f∥pp = ∥(∂1 + i∂2)f1 − (∂3 − i∂4)f2∥pp + ∥(∂1 − i∂2)f2 + (∂3 + i∂4)f1∥pp
+∥(∂1 + i∂2)f3 − (∂3 + i∂4)f4∥pp + ∥(∂1 − i∂2)f4 + (∂3 − i∂4)f3∥pp.

(1.49)

Then one can calculate the right-hand side of (1.48) to get

Mβ·p;p(f)
p

= ∥(β · p)P13f∥pp + ∥(β · p)P24f∥pp
=

(
∥(∂1 + i∂2)f1∥pp + ∥(∂3 + i∂4)f1∥pp

)
+

(
∥(∂1 − i∂2)f2∥pp + ∥(∂3 − i∂4)f2∥pp

)
+
(
∥(∂1 + i∂2)f3∥pp + ∥(∂3 − i∂4)f3∥pp

)
+

(
∥(∂1 − i∂2)f4∥pp + ∥(∂3 + i∂4)f4∥pp

)
.

(1.50)
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Similarly to the 3-dimensional case before (see (1.22), (1.23)), for the semi-norms
(1.49) and (1.48)/(1.50) we have with 1 ≤ p <∞,

2−(1−(1/p))∥(β · p)f∥p ≤Mβ·p;p(f) ≤ 21−(1/p)∥∇f∥p . (1.51)

The Banach space H1,p
(β·p),0(R

4;C4) /H1,p
Mβ·p,0

(R4;C4) is defined as completion of the

space C∞
0 (R4;C4) in the norm ∥f∥(β·p),1,p := (∥f∥pp + ∥(β · p)f∥pp)1/p /∥f∥Mβ·p,1,p :=

(∥f∥pp +Mβ·p;p(f)
p)1/p. ¿From (1.51) we see the following inclusion relation :

H1,p
0 (R4;C4) ⊆ H1,p

Mβ·p,0
(R4;C4) ⊆ H1,p

(β·p),0(R
4;C4). (1.52)

Now we note the semi-normMβ·p;p(f) has a significant character as that ofMα·p;p(f)
in Proposition 1.0, by considering other decompositions of the Euclidian Dirac operator
β · p in (1.46), than (1.47), into the sum of its two parts:

M
(1)
β

β · p = (β · p)P14 + (β · p)P23

≡


0 0 0 p1−ip2
0 0 0 −(p3+ip4)

p3+i p4 0 0 0
p1+i p2 0 0 0

 +


0 0 p3−ip4 0
0 0 p1+ip2 0
0 p1−i p2 0 0
0 −(p3−ip4) 0 0

 ,

(1.53)

where P14 := diag(1, 0, 0, 1) and P23 := diag(0, 1, 1, 0) are the same two projection
matrices acting on the space C4 of four-vectors as before, and note that both the
operators (β · p)P14 and (β · p)P23 on the right are selfadjoint, i.e. ((β · p)P14)

∗ =
(β · p)P14, ((β · p)P23)

∗ = (β · p)P23.

M
(2)
β

β · p =

(
02 σ1 p1+σ2 p2

σ3 p3+iI2 p4 02

)
+

(
02 σ3 p3−iI2 p4

σ1 p1+σ2 p2 02

)

≡


0 0 0 p1−i p2
0 0 p1+i p2 0

p3−ip4 0 0 0
0 −(p3−i p4) 0 0



+


0 0 p3−i p4 0
0 0 0 −(p3+i p4)
0 p1−ip2 0 0

p1+ip2 0 0 0


=: (β · p)1 + (β · p)2, (1.54)

where note that (β · p)2 is the adjoint of (β · p)1 as operators, say, in L2(R3;C4), i.e.
(β · p)2 = (β · p)1∗.
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M
(3)
β

β · p =

(
0 σ1 p1+σ2 p2

σ1 p1+σ2 p2 0

)
+

(
0 σ3 p3−iI2 p4

σ3 p3+iI2 p4 0

)

≡


0 0 0 p1−i p2
0 0 p1+i p2 0
0 p1−ip2 0 0

p1+ip2 0 0 0



+


0 0 p3−i p4 0
0 0 0 −(p3+i p4)

p3+ip4 0 0
0 −(p3−i p4) 0


=: (β · p)3 + (β · p)4 , (1.55)

where note that both the operators (β · p)3 and (β · p)4 on the right are selfadjoint.

Then we can confirm, in the same way as in Proposition 1.0 for Mα·p;p(f) with
α · p, that the semi-norm Mα·p;p(f) of f defined by (1.48) with the rather artificial
decomposition (1.47) turns out to be equal to the ones to be defined with the other
decompositions (1.53), (1.54) and (1.55), taking account of the expression (1.50) for
Mβ·p;p(f):

M
(1)
β·p;p(f) := [∥(α · p)P14f∥pp + ∥(α · p)P23f∥p]1/p; (1.56a)

M
(2)
β·p;p(f) := [∥(β · p)1f∥pp + ∥(α · p)2f∥p]1/p = [∥(β · p)1f∥pp + ∥(β · p)1∗f∥p]1/p;

(1.56b)

M
(3)
β·p;p(f) := [∥(β · p)3f∥pp + ∥(β · p)4f∥p]1/p. (1.56c)

Further, more generally, every decomposition of β · p into its two parts, β · p = (β ·
p)5+(β ·p)6, such that each row of both the matrices (β ·p)5 and (β ·p)6 contains only
one nonzero entry, defines the semi-norm Mβ·p;p(f) which has the expression (1.50).
However, as mentioned for the operator α · p after Proposition 1.0, the decomposition
β · p = (β · p)P12 + (β · p)P34 is not fit for the semi-norm Mβ·p;p(f), to which we will
come back in Section 6 to discuss the issue.

Theorem 1.6. (with 4-dimensional Euclidian Dirac operator). (i) For 1 ≤ p < q <
∞, a C4-valued function f = t(f1, f2, f3, f4) belongs to Lq(R4;C4), if f belongs to

B
p/(p−q)
∞,∞ (R4;C4) and satisfies Mβ·p;p(f) <∞, and further, there exists a positive con-

stant C such that
∥f∥q ≤ CMβ·p;p(f)

p/q∥f∥1−(p/q)

B
p/(p−q)
∞,∞

. (1.57)

Therefore this holds, in particular, for every f ∈ H1,p
Mβ·p,0

(R4;C4) ∩Bp/(p−q)
∞,∞ (R4;C4).

(ii) For ∞ > p > 1, the three semi-norms ∥(β · p)f∥p, Mβ·p;p(f) and ∥∇f∥p are
equivalent, so that the corresponding three Banach spaces (1.52) coincide with one
another:

H1,p
0 (R4;C4) = H1,p

Mβ·p;p,0
(R4;C4) = H1,p

(β·p),0(R
4;C4). (1.58)
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Therefore assertion (i) turns out: For 1 < p < q < ∞, there exists a positive constant
C such that

∥f∥q ≤ C∥(β · p)f∥p/qp ∥f∥1−(p/q)

B
p/(p−q)
∞,∞

, (1.59)

for every f ∈ B
p/(p−q)
∞,∞ (R4;C4) whose semi-norm ∥(β · p)f∥p, Mβ·p;p(f) or ∥∇f∥p is

finite. Therefore this holds, in particular, for every f in the above space (1.58) which

belongs to B
p/(p−q)
∞,∞ (R4;C4). (1.59) is equivalent to the vector-valued version (1.13) of

(1.1) with n = 4.

We note here that the 4-dimensional Euclidian Dirac operator
∑4

k=1 βk pk in (1.47)
turns, if β4 p4 = −iβ4∂4 is removed from it, the 3-dimensional massless Dirac operator∑3

j=1 αj pj in (1.17), which reduces Theorem 1.6 to Theorem 1.1.
Finally, as is the case for Sobolev spaces of single-valued functions, it is seen for the

two spaces of vector-valued functions which we introduced in (1.23) and (1.52) that
each of them coincides with the following two spaces:

H1,p
Mα·p;p,0

(R3;C4) = H1,p
Mα·p;p

(R3;C4)

= {f ∈ Lp(R3;C4) ; (α · p)P13f, (α · p)P24f ∈ Lp(R3;C4)}
= {f ∈ Lp(R3;C4) ; (α · p)1f, (α · p)2f ∈ Lp(R3;C4)} ;

H1,p
Mβ·p;p,0

(R4;C4) = H1,p
Mβ·p;p(f)

(R4;C4)

= {f ∈ Lp(R4;C4) ; (β · p)P13f, (β · p)P24f ∈ Lp(R4;C4)}
= {f ∈ Lp(R4;C4) ; (β · p)1f, (β · p)2f ∈ Lp(R4;C4)}.

In each of these two formulas, the second space is the Banach space obtained as com-
pletion with respect to the norm ∥f∥Mα·p,1,p [resp. ∥f∥Mβ·p,1,p] of the linear space of
all f ∈ C∞(R3;C4) ∩ Lp(R3;C4) [resp. C∞(R4;C4) ∩ Lp(R4;C4)]. In the third and
fourth spaces the first-order derivatives are taken in the distribution sense.

The proof of the improved Sobolev inequality (1.1) for single-valued functions in
[CDPX] and [CMO] was based on wavelet analysis, while Ledoux [Le] made a different
approach by a direct semigroup argument. We do our proof, modifying the method
used by Ledoux so as to be able to apply to vector-valued functions.

The plan of this paper is as follows. Section 2 collects remarks to the results,
stated in Section 1, for vector-valued functions to compare them with the improved
Sobolev inequality (1.1) and the Dirac–Sobolev inequality (1.14) obtained in [BES].
Section 3 gives examples where the simple-minded, vector-valued version (1.16) con-
nected not only with the three-dimensional massless Dirac operator but also with the
four-dimensional Euclidian Dirac operator fails to hold for p = 1. In Section 4, we give
proof of Theorem 1.1, and in Section 5, proofs of all the other five Corollaries 1.2, 1.3,
Theorem 1.4, Corollary 1.5, Theorem 1.6. In Section 6 we make concluding comments
on the first-order-derivative semi-norm connected with the Dirac operators which we
have introduced in Section 1. It is defined at first with a rather artificial decomposi-
tion of the Dirac operator into two parts, but later turns out to be meaningful enough
to have universal character. The final Section 7 briefly summarizes all our results to
exhibit their significance and difference from the case of single-valued functions.
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2 Remarks

1o. Theorem 1.1 (i) (ii): We compare our inequality (1.28) with (1.16)/(1.30), the
trivial version (1.13) and the first vector-valued one (1.14) of inequality (1.1) shown in
[BES].

To do so, first we collect the results of equivalence and non-equivalence among
the three first-order-detrivative semi-norms ∥∇f∥p in (1.11), ∥(α · p)f∥p in (1.9) and
Mα·p;p(f) in (1.18), which are under relation (1.22). When 1 < p <∞, these three are
all equivalent, which we shall see in the proof of Theorem 1.1 (ii) in Section 3 below,
but different when p = 1. In this case p = 1, we showed non-equivalence between
∥∇f∥1 and ∥(α · p)f∥1 in [IS, Theorem 1.3 (iii)]. Non-equivalence between ∥(α · p)f∥1
and Mα·p;1(f) can be seen in view of their respective explicit expressions (1.20) and
(1.21), and that between ∥∇f∥1 and Mα·p;1(f) in view of their respective definition
(1.11) and explicit expression (1.21), both from the fact that (2.2) below cannot hold.
In particular, the two inclusions in (1.23) are strict.

Next we going to observe the difference and coincidence among inequalities (1.28),
(1.16)/(1.30), (1.13) and (1.14). For 1 < p <∞, the first three, i.e. (1.28), (1.16)/(1.30)
and (1.13), are equivalent, and strictly sharper than and hence an improvement of the
last one, (1.14). The former is because of equivalence of the three first-order-derivative
semi-norms concerned as just seen above, and the latter because the Lq norm ∥f∥q
on the left of (1.28) is stronger than the weak Lq norm ∥f∥q,∞ on the left of (1.14).
For p = 1, (1.16)/(1.28) does not hold in general, and (1.28) is sharper than (1.13),
because the semi-norm Mα·p;1(f) on the right of (1.28) is weaker than the semi-norm
∥∇f∥1 on the right of (1.13). In the case p = 1, however, two inequalities (1.28) and
(1.14) cannot be compared so as to say which of them is sharper, because Mα·p;1(f)
on the right of (1.28) is not weaker than ∥(α ·p)f∥1 on the right of (1.14), though ∥f∥q
on the left of (1.28) is stronger than ∥f∥q,∞ on the left of (1.14). As a result, (1.28)
for p = 1 is a new inequality for vector-valued version of (1.1).

2o. Corollary 1.2 (i) (ii): The same remark as 1o above applies to the case for the
3-dimensional Weyl–Dirac (or Pauli) operator σ ·p in place of the Dirac operator α ·p.

3o. Corollary 1.3 (i) (ii): For p = 1, the semi-norm M(∂−i∂2)∨∂3);1(ψ) in (1.36) is
bounded by the semi-norm ∥∇ψ∥1, i.e.

M(∂−i∂2)∨∂3;1(ψ) ≤ ∥∇ψ∥1, (2.1)

but not reversely (See [St, pp.59–60, III, Propositions 3, 4, and p.48, 6.1] and [IS,
Lemma 4.3]). Therefore the Banach space H1,p

M(∂−i∂2)∨∂3
,0(R

3;C2) obtained as comple-

tion of C∞
0 (R3) with respect to the norm ∥ψ∥M(∂−i∂2)∨∂3

,1,p := ∥ψ∥1 +M(∂−i∂2)∨∂3;p(ψ)

is strictly larger than the space H1,1
0 (R3). Therefore for p = 1, Corollary 1.3 (i) gives

a slightly more general result than (1.1) of Ledoux [Le] though only in the case n = 3.
However, for 1 < p <∞, it is nothing but his result though our result only concerns the
case n = 3, since the semi-normM(∂−i∂2)∨∂3;p(ψ) is equivalent to the semi-norm ∥∇ψ∥p.
In this sense, therefore our inequality (1.37) for C-valued functions ψ is more general,
though only for n = 3. Here it should be noted that it holds that for 1 < p <∞,

∥∂1ψ∥p + ∥∂2ψ∥p ≤ Cp∥(∂1 − i∂2)ψ∥p, (2.2)
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for all ψ ∈ C∞
0 (R2) with a positive constant Cp, but cannot for p = 1 (cf. [St, pp.59–60,

III, Propositions 3, 4, and p.48, 6.1] and [IS, Lemma 4.3]). Therefore (2.2) implies that
for 1 < p <∞,

∥∇ψ∥p ≡ (

3∑
j=1

∥∂jψ∥pp)1/p ≤ (Cp/(p−1)
p + 1)(p−1)/p[∥(∂1 − i∂2)ψ∥pp + ∥∂3ψ∥pp]1/p

≡ (Cp/(p−1)
p + 1)(p−1)/pM(∂1−i∂2)∨∂3;p(ψ), (2.3)

so that the two semi-norms M(∂1−i∂2)∨∂3;p(ψ) and ∥∇ψ∥p are equivalent.

4o. Corollary 1.5: By analogous discussion made in Remark 30 to Corollary 1.3, (1.42)
is also more general than (1.1) with n = 2 for p = 1, but equivalent to it for ∞ > p > 1.

5o. Theorem 1.6 and again Theorem 1.1: It can be seen that these two theorems hold
also for some different representations of the 3-dimensional massless Dirac operator
and 4-dimensional Euclidian Dirac operator than (1.17) and (1.46).

In fact, consider first the 4-dimensional Euclidian Dirac operators. Let β′ =
(β′1, β

′
2, β

′
3, β

′
4) be another quadruple of anti-commuting, Hermitian 4× 4-matrices sat-

isfying β′jβ
′
k+β

′
kβ

′
j = 2δjkI4, j, k = 1, 2, 3, 4. Then Theorem 1.6 holds for the Euclidian

Dirac operator β′ · p =
∑4

k=1 β
′
k pk with corresponding projections P ′

13, P
′
24. Indeed,

by the ‘fundamental theorem’ in [P, p.8] or [G, p.190], there exists a non-singular 4×4-
matrix S such that β′k = SβkS

−1 for k = 1, 2, 3, 4. So S is a similarity transformation
which maps C4 one-to-one onto C4, and in fact can be take to be a unitary matrix,
because the βk and β′k are Hermitian. Then

β · p = S−1(β′ · p)S, (β · p)P13 = S−1(β′ · p)P ′
13S, (β · p)P24 = S−1(β′ · p)P ′

24S,

where P ′
13 := SP13S

−1 and P ′
24 := SP24S

−1 are projection matrices acting on C4 such
that P ′

13 + P ′
24 = I4. It implies equivalence of the related semi-norms concerning β′ · p

and β · p in the following sense:

(∥S−1∥ℓp→ℓp)
−1∥(β · p)f∥p ≤ ∥(β′ · p)(Sf)∥p ≤ ∥S∥ℓp→ℓp∥(β · p)f∥p,

(∥S−1∥ℓp→ℓp)
−1∥(β · p)P13f∥p ≤ ∥(β′ · p)P ′

13(Sf)∥p ≤ ∥S∥ℓp→ℓp∥(β · p)P13f∥p,
(∥S−1∥ℓp→ℓp)

−1∥(β · p)P24f∥p ≤ ∥(β′ · p)P ′
24(Sf)∥p ≤ ∥S∥ℓp→ℓp∥(β · p)P24f∥p,

with 1 ≤ p <∞, where f = t(f1, f2, f3, f4), which yields equivalence of the semi-norms
Mβ′·p;p(Sf) and Mβ·p;p(f):

C−1
p Mβ·p;p(f) ≤Mβ′·p;p(Sf) ≤ CpMβ·p;p(f)

with a positive constant Cp depending on p. In particular, all this holds also for the
4-dimensional Euclidian Dirac operator

∑4
k=1 αk pj .

Though above we have dealt only the case corresponding to decomposition (1.47)
of β ·p, the same is true for the cases correstonding to the other decompositions (1.53),
(1.54) or (1.55).

Next, for Theorem 1.1, the same is valid, if one may consider, for α′ = (α′
1, α

′
2, α

′
3)

another triple of anti-commuting, Hermitian 4× 4-matrices satisfying α′
jα

′
k + α′

kα
′
j =

2δjkI4, j, k = 1, 2, 3, the Dirac operator α′ · p =
∑3

j=1 α
′
j pj together with the corre-

sponding projection matrices P ′
13, P

′
24 to introduce the related semi-norms.
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3 Counterexamples for p = 1

Inequalities of the type (1.16), i.e. (1.30) of Theorem 1.1 for the three-dimensional
massless Dirac operator α · p, (1.35) of Corollary 1.2 with 3-dimensional Weyl–Dirac
(or Pauli) operator σ · p, (1.59) of Theorem 1.6 with 4-dimensional Euclidian Dirac
operator β · p, do not in general hold for p = 1, although they do for 1 < p <∞. This
is why, for p = 1, we had to introduce the intermediate first-order-derivative semi-
norms Mα·p;p(f) in (1.19), Mσ·p;p(h) in (1.32), Mβ·p;p(f) in (1.48). Here, before going
further, we keep Theorem 1.4 in mind that nevertheless it holds for all 1 ≤ p < ∞
with the 2-dimensional Weyl–Dirac (or Pauli) operator (σ · p)(2), i.e. (1.40abc).

In this section, following the idea in the recent paper [BEU] for the 3-dimensional
Weyl–Dirac (or Pauli) operator, we construct counterexamples not only for (1.30) with
α · p but also for (1.59) with β · p, though the construction for both is only slightly
different. To the latter, as a matter of fact, we will come back in Section 6 to make
some important comments on the semi-norms concerned.

In [BEU], they observed, for the 3-dimensional Weyl–Dirac (or Pauli) operator σ ·p,
that, for 1 < p < 3 with q = 3p

3−p , the following inequality:

∥h∥q ≤ C(p)∥(σ · p)h∥p (3.1)

holds for all h ∈ C∞
0 (R3;C2) with a positive constant C(p) depending on p. This is a

consequence from the usual Sobolev inequality together with the fact that, for 1 < p <
∞, the two semi-norms ∥(σ ·p)h∥p and ∥∇h∥p are equivalent (cf. [IS] and Lemma 3.2 of
the present paper where analogous results are given for the Dirac operator α ·p instead
of Weyl–Dirac (or Pauli) σ · p ). They showed also that (3.1) is untrue when p = 1,
by using a zero mode for an appropriate Wely–Dirac (or Pauli) operator constructed
by Loss–Yau [LoY] to make a sequence {hn} ⊂ C∞

0 (R3;C2) such that {∥(σ · p)hn∥1}
is uniformly bounded for all over n, but that ∥hn∥3/2 ≥ (positive constant) · (log n)2/3,
concluding invalitity of (3.1) for p = 1. As a result, this sequence will turn out to
violate (1.35) in Corollary 1.2.

We will modify their argument so as to apply to our cases of Theorems 1.1 and
1.6 to construct an example. First we consider the case for three-dimensional massless
Dirac operator α · p and next for 4-dimensional Euclidian Dirac operator β · p.

An example for (1.30) of Theorem 1.1 with p = 1 to fail to hold.
So with x ∈ R3 and |x| = (x21 + x22 + x23)

1/2, let

e(x) :=
1

(1 + |x|2)3/2
(I4 + iα · x)


1
0
0
0



=
1

(1 + |x|2)3/2


1 0 ix3 ix1 + x2
0 1 ix1 − x2 −ix3
ix3 ix1 + x2 1 0

ix1 − x2 −ix3 0 1




1
0
0
0



=
1

(1 + |x|2)3/2


1
0
ix3

ix1 − x2

 , (3.2)
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where I4 is the 4 × 4-identity matrix. Then we can see e(x) satisfies the following
equation

(α · p)e(x) = 3

1 + |x|2
e(x), (3.3)

and inequalities:

|e(x)|ℓ∞ =
1 ∨ |ix3| ∨ |ix1 − x2|

(1 + |x|2)3/2
=

1 ∨ |x3| ∨ (x21 + x22)
1/2

(1 + |x|2)3/2

≤ (1 + x21 + x22 + x23)
1/2

(1 + |x|2)3/2
=

1

1 + |x|2
, (3.4)

|e(x)|qℓq =
1 + |ix3|q + |ix1 − x2|q

(1 + |x|2)3q/2
=

1 + (x23)
q/2 + (x21 + x22)

q/2

(1 + |x|2)3q/2

≥ (1 + |x|2)q/2

(1 + |x|2)3q/2
=

( 1

1 + |x|2
)q

(1 ≤ q ≤ 2), (3.5)

where (3.5) is due to that aq/2 + bq/2 ≥ (a+ b)q/2 for a ≥ 0, b ≥ 0 and 1 ≤ q ≤ 2.
For each positive integer n, put fn(x) = ρn(|x|)e(x), where ρn(r) is a nonnegative

cutoff function in C∞
0 (R) such that ρn(r) = 1 (r ≤ n) ; = 0 (r ≥ n + 2), and further

|ρ′n(r)| ≡ |(d/dr)ρn(r)| ≤ 1 for all r ≥ 0. Then it is evident that fn belongs to
C∞
0 (R3;C4).
We are going to see that inequality (1.16)/(1.30) does not hold with any constant

C > 0 for p = 1, q = 3
2 and hence p

q = 2
3 . Indeed, there exists no constant C such that,

for all n,

∥fn∥3/2 ≤ C∥(α · p)fn∥2/31 ∥fn∥1/3B−2
∞,∞

. (3.6)

First, we show that the sequence {(α·p)fn}∞n=1 is uniformly bounded in L1. Indeed,
since

(α · p)fn(x) = ρn(|x|)(α · p)e(x) +
(
(α · p)ρn(|x|)

)
e(x)

= ρn(|x|)
3

1 + |x|2
e(x)− iρ′n(|x|)

α · x
|x|

e(x)

=
3ρn(|x|)

(1 + |x|2)5/2


1
0
ix3

ix1 − x2

+
ρ′n(|x|)

|x|(1 + |x|2)3/2


|x|2
0

−ix3
−ix1 + x2

 ,

we can estimate the L1 norm of (α ·p)fn, noting ρ′n(|x|) = 0 for |x| ≤ n and |x| ≥ n+2
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and using polar coordinates, to get

∥(α · p)fn∥1 ≤
∫
{x∈R3; |x|≤n+2}

3(1 + |ix3|+ |ix1 − x2|)
(1 + |x|2)5/2

dx

+

∫
{x∈R3;n≤|x|≤n+2}

|x|2 + | − ix3|+ | − ix1 + x2|
|x|(1 + |x|2)3/2

dx

≤
∫
|x|≤n+2

3(
√
2|x|+ 1)

(1 + |x|2)5/2
dx+

∫
n≤|x|≤n+2

|x|2 +
√
2|x|

|x|(1 + |x|2)3/2
dx

=

∫ n+2

0

3(
√
2r + 1)4πr2dr

(1 + r2)5/2
+

∫ n+2

n

(r +
√
2)4πr2dr

(1 + r2)3/2

≤ 12π

∫ n+2

0

2

1 + r2
dr + 4π

∫ n+2

n
2dr

= 24π tan−1(n+ 2) + 16π ≤ 24π · π
2
+ 16π , (3.7)

where we have used that (r+
√
2)r2 ≤ 2(1 + r2)3/2 and (

√
2r+ 1)r2 ≤ 2(1 + r2)3/2 for

all r ≥ 0. Thus we have shown the sequence {∥(α · p)fn∥1} is uniformly bounded.
Next, we study how {fn}∞n=1 behaves in the norm of B−2

∞,∞(R3;C4) for large n. In
fact, we shall show

∥fn∥B−2
∞,∞

= O(log n). (3.8)

Here note that p
p−q = − 1

3
2
−1

= −2. Indeed, we have with (3.4)

∥fn∥B−2
∞,∞

= sup
t>0

t∥Ptfn∥∞ = sup
t>0

t sup
x

∫
1

(4πt)3/2
e−

|x−y|2
4t ρn(|y|)|e(y)|ℓ∞dy

≤ 2

(4π)3/2
sup
t>0

sup
x

∫ ( |x− y|2

4t

)1/2
e−

|x−y|2
4t

ρn(|y|)
|x− y|(1 + |y|2)

dy

≤ 2

(4π)3/2
(2e)−1/2 sup

x

∫
|y|≤n+2

1

|x− y|(1 + |y|2)
dy ,

where the last inequality is due to the fact that s1/2e−s ≤ (2e)−1/2 for all s > 0. Then
we use polar coordinates to get

∥fn∥B−2
∞,∞

≤ 1

(4π)3/2
(2
e

)1/2
sup
x

∫ n+2

0

r2

1 + r2
dr

∫ π

0

2π sin θdθ

(|x|2 + r2 − 2|x|r cos θ)1/2

=
2π

(4π)3/2
(2
e

)1/2
sup
x

∫ n+2

0

r2dr

1 + r2

[(|x|2 + r2 − 2|x|r cos θ)1/2

|x|r

]θ=π
θ=0

=
1

2(2πe)1/2
sup
x

1

|x|

∫ n+2

0

r[(|x|+ r)−
∣∣|x| − r

∣∣]
1 + r2

dr

= [ sup
|x|≥n+2

∨ sup
|x|≤n+2

]
1

2(2πe)1/2
1

|x|

∫ n+2

0

r[(|x|+ r)−
∣∣|x| − r

∣∣]
1 + r2

dr

=: Vα,1 ∨ Vα,2 .
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Then we can conclude (3.8) above, noting

2(2πe)1/2Vα,1 = sup
|x|≥n+2

1

|x|

∫ n+2

0

2r2

1 + r2
dr ≤ 2,

2(2πe)1/2Vα,2 = sup
|x|≤n+2

1

|x|

[ ∫ |x|

0

2r2

1 + r2
dr +

∫ n+2

|x|

2|x|r
1 + r2

dr
]

≤ 2 + log(1 + (n+ 2)2) = O(log n).

Thus, by (3.8) and since, as already seen above, the sequence {∥(α · p)fn∥1} is

uniformly bounded, we see the sequence {∥(α · p)fn∥2/31 ∥fn∥1/3B−2
∞,∞

} on the right-hand

side of (3.6) is of order O((log n)1/3), while, for the left-hand side, we have by (3.5)
with q = 3

2

∥fn∥3/2 ≥
(∫

|x|≤n

1

(1 + |x|2)3/2
dx

)2/3
=

(∫ n

0

4π r2

(1 + r2)3/2
dr

)2/3

≥
(∫ n

1

4π r2

(1 + r2)3/2
dr
)2/3

≥
(∫ n

1

4π

r
dr
)2/3

≥ (4π)2/3(log n)2/3. (3.9)

This means that inequality (3.6) or (1.16)/(1.30) with p = 1, q = 3
2 does not hold.

An example for (1.59) of Theorem 1.6 with p = 1 to fail to hold.
This case is with x ∈ R4 and |x| = (x21 + x22 + x23 + x24)

1/2. We can use the same
arguments as above to construct a sequence {fn} in C∞

0 (R4;C4) such that (1.59) fails
to hold for any fixed constant C, starting, instead of (3.2), from the following function

ê(x) :=
1

(1 + |x|2)2
(I4 + iβ · x)


1
0
0
0



=
1

(1 + |x|2)2


1 0 ix3 + x4 ix1 + x2
0 1 ix1 − x2 −ix3 + x4

ix3 − x4 ix1 + x2 1 0
ix1 − x2 −ix3 − x4 0 1




1
0
0
0



=
1

(1 + |x|2)2


1
0

ix3 − x4
ix1 − x2

 . (3.10)

It can be seen that ê(x) satisfies the following equation

(β · p)ê(x) = 4

1 + |x|2
ê(x) , (3.11)

and inequalities:

|ê(x)|ℓ∞ =
1 ∨ |ix3 − x4| ∨ |ix1 − x2|

(1 + |x|2)2
≤ 1

(1 + |x|2)3/2
, (3.12)

|ê(x)|qℓq =
1 + |ix3 − x4|q + |ix1 − x2|q

(1 + |x|2)2q
=

1 + (x23 + x24)
q/2 + (x21 + x22)

q/2

(1 + |x|2)2q

≥ (1 + |x|2)q/2

(1 + |x|2)2q
=

( 1

1 + |x|2
)3q/2

(1 ≤ q ≤ 2) . (3.13)
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For each positive integer n, put fn(x) = ρn(|x|)ê(x), where ρn(r) is the same
nonnegative cutoff function in C∞

0 (R) as before such that ρn(r) = 1 (r ≤ n) ; = 0 (r ≥
n+2), and further |ρ′n(r)| ≡ |(d/dr)ρn(r)| ≤ 1 for all r ≥ 0. Then it is evident that fn
belongs to C∞

0 (R4;C4).
We are going to see that inequality (1.59), corresponding to (1.16) in the case for

β ·p, does not hold with any constant C > 0 for p = 1, q = 4
3 and hence p

q = 3
4 . Indeed,

there exists no constant C such that, for all n,

∥fn∥4/3 ≤ C∥(α · p)fn∥3/41 ∥fn∥1/4B−3
∞,∞

. (3.14)

First, we show that the sequence {(β ·p)fn}∞n=1 is uniformly bounded in L1. Indeed,
since

(β · p)fn(x) = ρn(|x|)(β · p)ê(x) +
(
(β · p)ρn(|x|)

)
ê(x)

= ρn(|x|)
4

1 + |x|2
ê(x)− iρ′n(|x|)

β · x
|x|

ê(x)

=
4ρn(|x|)

(1 + |x|2)3


1
0

ix3 − x4
ix1 − x2

+
ρ′n(|x|)

|x|(1 + |x|2)2


|x|2
0

−ix3 + x4
−ix1 + x2

 ,

we can estimate the L1 norm of (β ·p)fn, noting ρ′n(|x|) = 0 for |x| ≤ n and |x| ≥ n+2
and using polar coordinates, to get

∥(β · p)fn∥1 ≤
∫
{x∈R4; |x|≤n+2}

4(1 + |ix3 − x4|+ |ix1 − x2|)
(1 + |x|2)3

dx

+

∫
{x∈R4;n≤|x|≤n+2}

|x|2 + | − ix3 + x4|+ | − ix1 + x2|
|x|(1 + |x|2)2

dx

≤
∫
|x|≤n+2

4(1 +
√
2|x|)

(1 + |x|2)3
dx+

∫
n≤|x|≤n+2

|x|2 +
√
2|x|

|x|(1 + |x|2)2
dx

=

∫ n+2

0

4(1 +
√
2r)2π2r3dr

(1 + r2)3
+

∫ n+2

n

(r +
√
2)2π2r3dr

(1 + r2)2

≤ 8π2
∫ n+2

0

2

1 + r2
dr + 2π2

∫ n+2

n
2dr

= 16π2 tan−1(n+ 2) + 8π2 ≤ 16π2 · π
2
+ 8π2, (3.15)

where in the second inequality we have used that (r +
√
2)r3 ≤ 2(1 + r2)2 and and

(1+
√
2r)r3 ≤ 2(1+r2)2 for all r ≥ 0. Thus we have shown the sequence {∥(α ·p)fn∥1}

is uniformly bounded.
Next, we study how {fn}∞n=1 behaves in the norm of B−3

∞,∞(R4;C4) for large n. In
fact, we show

∥fn∥B−3
∞,∞

= O(log n). (3.16)
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Here we note that p
p−q = − 1

4
3
−1

= −3. Indeed, we have with (3.12)

∥fn∥B−3
∞,∞

= sup
t>0

t3/2∥Ptfn∥∞ = sup
t>0

t3/2 sup
x

∫
R4

1

(4πt)2
e−

|x−y|2
4t ρn(|y|)|ê(y)|ℓ∞dy

≤ 2

(4π)2
sup
t>0

sup
x

∫ ( |x− y|2

4t

)1/2
e−

|x−y|2
4t

ρn(|y|)
|x− y|(1 + |y|2)3/2

dy

≤ 2

(4π)2
(2e)−1/2 sup

x

∫
|y|≤n+2

1

|x− y|(1 + |y|2)3/2
dy ,

where the last inequality is due to the fact that s1/2e−s ≤ (2e)−1/2 for all s > 0. Then
we use polar coordinates and sin2θ ≤ sin θ (0 ≤ θ ≤ π) to get

∥fn∥B−3
∞,∞

≤ 2

(4π)2
(2e)−1/2 sup

x

∫ n+2

0

r3

(1 + r2)3/2
dr

∫ π

0

4π sin2 θdθ

(|x|2 + r2 − 2|x|r cos θ)1/2

≤ 2

(4π)2
(2e)−1/2 sup

x

∫ n+2

0

r3

(1 + r2)3/2
dr

∫ π

0

4π sin θdθ

(|x|2 + r2 − 2|x|r cos θ)1/2

=
4π

(4π)2
(2e)−1/2 sup

x

∫ n+2

0

r3

(1 + r2)3/2
dr
[(|x|2 + r2 − 2|x|r cos θ)1/2

|x|r

]θ=π
θ=0

=
1

4π(2e)1/2
sup
x

1

|x|

∫ n+2

0

r2((|x|+ r)−
∣∣|x| − r

∣∣)
(1 + r2)3/2

dr

= [ sup
|x|≥n+2

∨ sup
|x|≤n+2

]
1

4π(2e)1/2
1

|x|

∫ n+2

0

r2((|x|+ r)−
∣∣|x| − r

∣∣)
(1 + r2)3/2

dr

=: Vβ,1 + Vβ,2 .

Then we can conclude (3.16), noting

4π(2e)1/2Vβ,1 = sup
|x|≥n+2

1

|x|

∫ n+2

0

2r3

(1 + r2)3/2
dr ≤ 2,

4π(2e)1/2Vβ,2 = sup
|x|≤n+2

1

|x|

{∫ |x|

0

2r3

(1 + r2)3/2
dr +

∫ n+2

|x|

2|x|r2

(1 + r2)3/2
dr
}

≤ 2 + log[(n+ 2) + (1 + (n+ 2)2)1/2 = O(log n).

Thus, by (3.16) and since, as already seen above, the sequence {∥(β · p)fn∥1} is

uniformly bounded, we see the sequence {∥(β · p)fn∥3/41 ∥fn∥1/4B−3
∞,∞

} on the right-hand

side of (3.14) is of order O((log n)1/4), while, for the left-hand side, we have by (3.13)
with q = 4

3

∥fn∥4/3 ≥
(∫

|x|≤n
|ê(x)|4/3

ℓ4/3
dx

)3/4
≥

(∫
|x|≤n

( 1

1 + |x|2
)(3/2)·(4/3)

dx
)3/4

=
(∫ n

0

2π2r3dr

(1 + r2)2

)3/4
= O((log n)3/4) (3.17)

for large n. This means that inequality (3.14) or (1.59) with p = 1, q = 4
3 does not

hold.
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4 Proof of Theorem 1.1

Proof of Theorem 1.1 (i). We follow the lucid arguments used in Ledoux [Le]. The
proof is divided into three steps. In step I, we mention the weak-type inequality (1.14)
given by [BES] with the idea of [Le] to sketch its proof, for the paper to be somehow
self-contained. In step II we show the inequlity (1.28) in the special case under the
condition f ∈ Lq(R3;C4) and then the general case in step III.

I. So we begin with a sketch of proof of inequality (1.14).
To do so, assume that f satisfies Mα·p;p(f) <∞. Note that this implies with (1.22)

that ∥(α · p)f∥p < ∞. And further assume that our f satisfies ∥f∥
B

p/(p−q)
∞,∞

< ∞. We

may suppose by our convention (1.7) of notations and by homogeneity that

∥f∥
B

p/(p−q)
∞,∞

= sup
t>0

t−p/2(p−q)∥Ptf∥∞ ≤ 1. (4.1)

Therefore |Ptf |ℓ∞ ≤ tp/2(p−q) pointwise. For u > 0, put t = tu ≡ u2(p−q)/p, so that
|Ptuf |ℓ∞ ≤ u. Hence that |f |ℓ∞ ≥ 2u pointwise implies that |f − Ptuf |ℓ∞ ≥ |f |ℓ∞ −
|Ptf |∞ ≥ u pointwise. Then

uq
∣∣{|f |ℓ∞ ≥ 2u}

∣∣ ≤ uq
∣∣{|f − Ptuf |ℓ∞ ≥ u}

∣∣
≤ uq

∫ |f − Ptuf |
p
ℓ∞

up
dx = uq

∫
∨4
k=1

|fk − etu∆fk|p

up
dx

≤ uq−p
∫ 4∑

k=1

|fk − etu∆fk|pdx

= uq−p
∫

|f − Ptuf |
p
ℓpdx = uq−p∥f − Ptuf∥pp.

In [BES], it is shown that

∥f − Ptuf∥p ≤ c0tu
1/2∥(α · p)f∥p. (4.2)

with a positive constant c0 depending only on p. Then by (4.2) and since q− p+ p(p−
q)/p = 0, we have

uq
∣∣{|f |ℓ∞ ≥ 2u}

∣∣ ≤ c0u
q−ptp/2u

∫
|(α · p)f |pℓpdx = c0

∫
|(α · p)f |pℓpdx.

This yields the weak type inequality (1.14), taking account of definition of ∥f∥q,∞ in
(1.15).

II. Next we want to replace the weak Lq norm on the left-hand side of (1.14) by
the strong Lq norm. Here we note with (1.22) that (1.14) holds also with Mα·p;p(f)
in place of ∥(α · p)f∥p. We show inequality (1.28) for f which satisfies Mα·p;p(f) <∞
and (4.1), i.e. ∥f∥

B
p/(p−q)
∞,∞

≤ 1, as in step I, and the extra condition f ∈ Lq(R3;C4). In

step III below, we shall remove this latter condition.
Then what we need to show is that there exists a constant C (depending only on q

and p) such that ∫
|f |qℓqdx ≤ CMα·p;p(f)

p, (4.3)
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which amounts to our goal inequality (1.28), if only f replaced by f/∥f∥
B

p/(p−q)
∞,∞

in

(4.3).

Now, for u > 0, let t = tu = u2(p−q)/p again. Let c ≥ 5 (depending on q and p) to
be specified later.

Note the ‘layer cake’ representation [LLo, p.26, Theorem 1.13] for any nonnegative
measurable function ψ(x):

ψ(x) =

∫ ∞

0
χ{ψ>s}(x) ds. (4.4)

In particular, we have

|f(x)|qℓq =

∫ ∞

0
χ{|f |q

ℓq
>s}(x) ds =

∫ ∞

0
χ{|f |ℓq>u}(x) d(u

q),

so that by Fubini’s theorem

1

20q
∥f∥qq =

1

20q

∫
|f(x)|qℓqdx =

1

20q

∫
dx

∫ ∞

0
χ{|f |ℓq>u}(x) d(u

q)

=
1

20q

∫ ∞

0
d(uq)

∫
χ{|f |ℓq≥u}(x)dx =

∫ ∞

0

∣∣{|f |ℓq ≥ 20u}
∣∣d(uq). (4.5)

For every u > 0 and for f(x) = t(f1(x), f2(x), f3(x), f4(x)), let

fu(x) =
t(fu,1(x), fu,2(x), fu,3(x), fu,4(x)),

fu,k(x) := (fk(x)− u)+ ∧ ((c− 1)u) + (fk(x) + u)− ∨ (−(c− 1)u), k = 1, 2, 3, 4,

(4.6)

for any c > 1. Here, as in (1.7), a∨ b denotes max{a, b}, while a∧ b denotes min{a, b}.
Notice that fu also satisfies the same condition as f . Each fu,k(x) satisfies 0 ≤

|fu,k(x)| ≤ (c − 1)u. It vanishes when |fk(x)| ≤ u and is equal to (c − 1)u when
fk(x) ≥ cu, and to −(c− 1)u when fk(x) ≤ −cu.

We see that, since on the set {|fk| ≥ 5u}, we have |fu,k| ≥ 4u for each fixed k, and
that on the set {|f |ℓ∞ ≥ 5u}, we have |fu|ℓ∞ ≥ 4u. We have

|fu,k| ≤ |fu,k − etu∆fu,k|+ etu∆|fu,k − fk|+ |etu∆fk|, k = 1, 2, 3, 4. (4.7)

By noting the notation (1.7) of the ℓp/ℓ∞ norm of a four-vector we have∫ ∞

0

∣∣{|f |ℓq ≥ 20u}
∣∣d(uq) ≤

∫ ∞

0

∣∣{|f |ℓ∞ ≥ 5u}
∣∣d(uq)

≤
∫ ∞

0

∣∣{|fu|∞ ≥ 4u}
∣∣d(uq) = ∫ ∞

0

∣∣{∨4
k=1|fu,k| ≥ 4u}

∣∣d(uq)
≤

∫ ∞

0

∣∣{∨4
k=1|fu,k − etu∆fu,k| ≥ u}

∣∣d(uq)
+

∫ ∞

0

∣∣{∨4
k=1e

tu∆|fu,k − fk| ≥ 2u}
∣∣d(uq)

=: J1 + J2, (4.8)

where we have used the fact that |Ptu(f)|ℓ∞ ≤ u, which holds by our choice of f in
(4.1).
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We shall estimate the last member J1 + J2 of (4.8). First, to treat the second term
J2, we confirm that

|fu,k − fk| = |fu,k − fk|χ{|fk|≤cu} + |fu,k − fk|χ{|fk|>cu} ≤ u+ |fk|χ{|fk|>cu}. (4.9)

This is checked with (4.6) as follows. Indeed, we see (4.6) imply that

fu,k(x)− fk(x) =

{
(−u) ∧ (−fk(x) + (c− 1)u), if fk(x) ≥ u ,

u ∨ (−fk(x)− (c− 1)u), if fk(x) ≤ −u .
This further implies on the one hand that

fu,k(x)− fk(x) =

{
−u, if u ≤ fk(x) ≤ cu ,
u, if − u ≥ fk(x) ≥ −cu ,

so that |fu,k(x)− fk(x)| = u, if u ≤ |fk(x)| ≤ cu, and on the other hand that

fu,k(x)− fk(x) =

{
−fk(x) + (c− 1)u ≥ −fk(x), if fk(x) ≥ cu ,
−fk(x)− (c− 1)u ≤ −fk(x), if fk(x) ≤ −cu ,

so that |fu,k(x)− fk(x)| ≤ |fk(x)|, if |fk(x)| ≥ cu. This yields (4.9).

Then, since etu∆ is positivity-preserving, it follows that

J2 =

∫ ∞

0

∣∣{∨4
k=1e

tu∆|fu,k − fk| ≥ 2u}
∣∣d(uq)

≤
∫ ∞

0

∣∣{∨4
k=1e

tu∆|fk|χ{|fk|>cu} ≥ u}
∣∣d(uq)

≤
∫ ∞

0

(∫
∨4
k=1

etu∆|fk|χ{|fk|>cu}

u
dx

)
d(uq)

=

∫ ∞

0

1

u

(∫
∨4
k=1|fk|χ{|fk|>cu}dx

)
d(uq) ≤

∫ ∞

0

1

u

(∫
|f(x)|ℓ∞χ{|f |ℓ∞>cu}dx

)
d(uq)

≤ q

q − 1

∫
|f |ℓq

(∫ ∞

0
χ{|f |ℓq>cu}d(u

q−1)
)
dx =

q

q − 1

1

cq−1
∥f∥qq. (4.10)

Here the last fourth equality is due to that∫
etu∆|fk|χ{|fk|>cu}dx =

∫ (∫
(etu∆(x− y)|fk(y)|χ{|fk(y)|>cu}dy

)
dx

=

∫
|fk(y)|χ{|fk(y)|>cu}dy,

because the heat kernel etu∆(x − y) satisfies
∫
etu∆(x)dx = 1 for tu > 0, and the last

second inequality is due to that ∨4
k=1|fk(x)| ≤ |f(x)|ℓ∞ ≤ |f(x)|ℓq by (1.7).

Next, as for the first term J1 of the last member of (4.8), we have by (4.2)∣∣{∨4
k=1|fu,k − etu∆fu,k| ≥ u}

∣∣ ≤
∫

∨4
k=1

|fu,k − etu∆fu,k|p

up
dx

≤ u−p
∫ 4∑

k=1

|fu,k − etu∆fu,k|pdx

= u−p
∫

|fu − Ptu(fu)|
p
ℓpdx

≤ c0u
−ptu

p/2

∫
|(α · p)fu|pℓpdx = c0u

−q∥(α · p)fu∥pp

≤ C0u
−qMα·p;p(fu)

p ,
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with C0 := 21−(1/p)c0, where the last inequality is due to (1.22), so that

J1 ≤ C0

∫ ∞

0
d(uq)u−qMα·p;p(fu)

p . (4.11)

For (4.11), we want to show the following lemma.

Lemma 4.1. Let f = t(f1, f2, f3, f4) satisfy Mα·p;p(f) < ∞ and ∥f∥
B

p/(p−q)
∞,∞

≤ 1. Let

fu = t(fu,1, fu,2, fu,3, fu,4) as in (4.6). Then∫ ∞

0
d(uq)u−qMα·p;p(fu)

p = q(log c)Mα·p;p(f)
p. (4.12)

Proof. For fu in (4.6) instead of f , we have by (1.21)

Mα·p;p(fu)
p

=

∫ (
|(∂1 + i∂2)fu,1|p + |∂3fu,1|p

)
dx+

∫ (
|(∂1 − i∂2)fu,2|p + |∂3fu,2|p

)
dx

+

∫ (
|(∂1 + i∂2)fu,3|p + |∂3fu,3|p

)
dx+

∫ (
|(∂1 − i∂2)fu,4|p + |∂3fu,4|p

)
dx

=: F1(u) + F2(u) + F3(u) + F4(u). (4.13)

Therefore∫ ∞

0
d(uq)u−qMα·p;p(fu)

p =

4∑
k=1

∫ ∞

0
d(uq)u−q[F1(u) + F2(u) + F3(u) + F4(u)].

We compute the integral of the first term on the right-hand side concerning F1(u).
Before that, we note that

F1(u) =

∫
u≤|f1(x)|≤cu

(|(∂1 + i∂2)fu,1|p + |∂3fu,1|p)dx

=

∫
u≤|f1(x)|≤cu

(|(∂1 + i∂2)f1|p + |∂3f1|p)dx , (4.14)

as the x-integration in the third member of (4.14) may be done only on the set {x; u ≤
|f1(x)| ≤ cu} because fu,1(x) = 0 when |f1(x)| ≤ u, and fu,1(x) is constant (with
|fu,1(x)| = (c − 1)u) when |f1(x)| ≥ cu. Further, the last equality in (4.14) is due to
the fact that ∂jfu,1(x) = ∂jf1(x), j = 1, 2, 3, on the set {x; u ≤ |f1(x)| ≤ cu}.

Thus, through (4.14) we have∫ ∞

0
d(uq)u−qF1(u) =

∫ ∞

0
d(uq)u−q

∫
u≤|f1(x)|≤cu

(|(∂1 + i∂2)f1|p + |∂3f1|p)dx

= q

∫
dx(|(∂1 + i∂2)f1|p + |∂3f1|p)

∫ |f1(x)|

|f1(x)|
c

du

u

= q(log c)

∫
(|(∂1 + i∂2)f1|p + |∂3f1|p)dx. (4.15)
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In the same way for F2(u), F3(u), F4(u) in (4.13), we can get∫ ∞

0
d(uq)u−qF2(u) = q(log c)

∫
(|(∂1 − i∂2)f2|p + |∂3f2|p)dx,∫ ∞

0
d(uq)u−qF3(u) = q(log c)

∫
(|(∂1 + i∂2)f3|p + |∂3f3|p])dx,∫ ∞

0
d(uq)u−qF4(u) = q(log c)

∫
(|(∂1 − i∂2)f4|p + |∂3f4|p)dx.

So we obtain∫ ∞

0
d(uq)u−qMα·p;p(fu)

p = q(log c)
[
∥(α · p)P13f∥pp + ∥(α · p)P24f∥pp

]
= q(log c)Mα·p;p(f)

p,

establishing (4.12) of the lemma.

Then, noting (4.5)/(4.8) to put together (4.10) and (4.11) with Lemma 4.1, we get

1

20q
∥f∥qq ≤ C0q(log c)Mα·p;p(f)

p +
q

q − 1

1

cq−1
∥f∥qq . (4.16)

Thus, since ∥f∥q is finite by assumption, taking c sufficiently large in (4.16) and putting

C = C0q(log c)
1

20q
− q

q−1
1

cq−1
, we have shown the desired inequality (4.3) in step II. In the whole

arguments in Step II we need the condition f ∈ Lq(R3;C4), i.e. that ∥f∥q < ∞, only
here in (4.16) so that we can obtain inequality (4.3) from (4.16).

III. Finally we show that if Mα·p;p(f) < ∞ and ∥f∥Bp/(p−q)(R3;C4) ≤ 1, then f ∈
Lq(R3;C4), and that ∥f∥q ≤ CMα·p;p(f) with a constant C independent of f .

We already know by the weak type inequality (1.14) that ∥f∥q,∞ <∞. Therefore,
in view of the second member of (4.8), we may consider, for every 0 < ε < 1,

Nε(f) :=

∫ u=1/ε

u=ε

∣∣{|f |ℓ∞ ≥ 5u}
∣∣d(uq) <∞. (4.17)

Note that
1

20q
∥f∥qq ≤ lim

ε→0
Nε(f). (4.18)

By modifying the arguments in (4.8)–(4.10) and (4.16), we obtain

Nε(f) ≤ C0q(log c)Mα·p;p(f)
p +

∫ u=1/ε

u=ε

1

u

(∫
|f(x)|ℓ∞ χ{|f |ℓ∞>cu}(x) dx

)
d(uq)

=: I1 + I2. (4.19)

The layer cake representation (4.4) leads the second term I2 on the right-hand side to

I2 =

∫
dx

∫ u= 1
ε

u=ε

1

u
d(uq)

∫
χ{|f |ℓ∞>s}(x)χ{|f |ℓ∞>cu}(x)ds

=

∫
dx

∫ u= 1
ε

u=ε

1

u
d(uq)

[ ∫ cu

0
χ{|f |ℓ∞>cu}(x)ds+

∫ ∞

cu
χ{|f |ℓ∞>s}(x)ds

]
= c

∫
dx

∫ u= 1
ε

u=ε
χ{|f |ℓ∞>cu}(x)d(u

q) +

∫
dx

∫ u= 1
ε

u=ε
quq−2du

∫ ∞

cu
χ{|f |ℓ∞>s}(x)ds.
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Then by integration by parts we have

I2 = c

∫
dx

∫ u= 1
ε

u=ε
χ{|f |ℓ∞>cu}(x)d(u

q)

+

∫
dx

[ q

q − 1
uq−1

∫ ∞

cu
χ{|f |ℓ∞>s}(x)ds

]u= 1
ε

u=ε

+

∫
dx

∫ 1
ε

ε

q

q − 1
uq−1cχ{|f |ℓ∞>cu}(x)du

= c

∫
dx

∫ u= 1
ε

u=ε
χ{|f |ℓ∞>cu}(x)d(u

q) +
c

q − 1

∫
dx

∫ u= 1
ε

u=ε
χ{|f |ℓ∞>cu}(x)d(u

q)

+
q

q − 1

[ 1

εq−1

∫ ∞

c 1
ε

χ{|f |ℓ∞>s}(x)ds− εq−1

∫ ∞

cε
χ{|f |ℓ∞>s}(x)ds

]
≤ cq

q − 1

∫
dx

∫ u= 1
ε

u=ε
χ{|f |ℓ∞≥cu}(x)d(u

q) +
cq

q − 1

1

εq−1

∫
dx

∫ ∞

1
ε

χ{|f |ℓ∞≥cu}(x)du

=
cq

q − 1

∫ 1
ε

ε

∣∣{|f |ℓ∞ ≥ cu}
∣∣d(uq) + cq

q − 1

1

εq−1

∫ ∞

1
ε

∣∣{|f |ℓ∞ ≥ cu}
∣∣du

=: I21 + I22, (4.20)

where the last equality is due to Fubini’s theorem, so that I2 ≤ I21 + I22. Changing,
in I21 and I22, the variable cu = 5s and writing u for s again, we see by (4.17) and by
the definition (1.15) of weak Lq norm,

I21 =
cq

q − 1

∫ 1
ε

ε

∣∣{|f |ℓ∞ ≥ cu}
∣∣d(uq) = cq

q − 1

(5
c

)q ∫ u= c
5

1
ε

u= c
5
ε

∣∣{|f |ℓ∞ ≥ 5u}
∣∣d(uq)

=
q

q − 1

5q

cq−1

(∫ u= 1
ε

u=ε
+

∫ u= c
5

1
ε

u= 1
ε

−
∫ u= c

5
ε

u=ε

)∣∣{|f |ℓ∞ ≥ 5u}
∣∣d(uq)

≤ q

q − 1

5q

cq−1

{
Nε(f) +

∫ u= c
5

1
ε

u= 1
ε

(5u)−q(5u)q
∣∣{|f |ℓ∞ ≥ 5u}

∣∣d(uq)}
≤ q

q − 1

5q

cq−1

{
Nε(f) + ∥f∥qq,∞

∫ u= c
5

1
ε

u= 1
ε

(5u)−qd(uq)
}

=
q

q − 1

5q

cq−1

{
Nε(f) + ∥f∥qq,∞

q

5q

[
log u

] c
5

1
ε

1
ε

}
=

q

q − 1

5q

cq−1
Nε(f) +

q

q − 1

log c
5

cq−1
∥f∥qq,∞. (4.21)

For I22 we have

I22 =
cq

q − 1

1

εq−1

∫ ∞

1
ε

(cu)−q
[
(cu)q

∣∣{|f |ℓ∞ ≥ cu}
∣∣]du

≤ cq

q − 1

1

εq−1
∥f∥qq,∞

∫ ∞

1
ε

(cu)−qdu =
q

(q − 1)2
1

cq−1
∥f∥qq,∞. (4.22)

Then

I2 ≤ I21 + I22 ≤
q

q − 1

5q

cq−1
Nε(f) +

q

q − 1

1

cq−1
∥f∥qq,∞

( 1

q − 1
+ log

c

5

)
.
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Therefore from (4.19)

Nε(f) ≤ I1 + I2

≤ C0q(log c)Mα·p;p(f)
p +

q

q − 1

5q

cq−1
Nε(f)

+
q

q − 1

1

cq−1
∥f∥qq,∞

( 1

q − 1
+ log

c

5

)
≤ q

q − 1

5q

cq−1
Nε(f) +

[
C0q(log c) +

q

q − 1

1

cq−1

( 1

q − 1
+ log

c

5

)]
Mα·p;p(f)

p,

where the last inequality is due to the fact that by (1.14) and (1.22) ∥f∥q,∞ ≤ ∥(α ·
p)f∥p ≤ Mα·p;p(f). Then take c large (if necessary, larger than the c chosen once
already at the end of step II) such that 1− q

q−1
5q

cq−1 <
1
2 , and we have with (4.18)

∥f∥qq ≤ 2 · 20q
[
C0q(log c) +

q

q − 1

1

cq−1

( 1

q − 1
+ log

c

5

)]
Mα·p;p(f)

p. (4.23)

Thus, taking C := 21/q20
[
C0q(log c) +

q
q−1

1
cq−1

(
1
q−1 + log c

5

)]1/q
and noting homo-

geneity, we have shown the desired inequality (1.28), ending the proof of Theorem 1.1
(i).

Proof of Theorem 1.1 (ii). In case p > 1, in our previous paper [IS] we have
shown that H1,p

α·p,0(R3;C4) = H1,p
0 (R3;C4), so that the norms ∥f∥Mα·p,1,p := (∥f∥pp +

Mα·p;p(f)
p)1/p and ∥f∥α·p,1,p := (∥f∥pp + ∥(α · p)f∥pp)1/p are equivalent to the norm

∥f∥1,p := (∥f∥pp + ∥∇f∥pp)1/p. But this may not be sufficient to derive (1.30).
To show the assertion, we need show that for p > 1 the two semi-norms ∥(α · p)f∥p

and ∥∇f∥p are equivalent. However, noting the two inequalities (1.22), we have only
to show the following lemma.

Lemma 4.2. For 1 < p <∞, there exists a positive constant C such that

∥∇f∥p ≤ C∥(α · p)f∥p (4.24)

for every f ∈ C∞
0 (R3;C4).

Proof. We give two proofs.
(i) (A first proof with functional analysis) In the proof of [IS, Proposition 3.1], we

had already seen this fact of the lemma. Here let us briefly sketch the argument.
Let f = t(f1, f2, f3, f4) ∈ C∞

0 (R3;C4) so that (α · p)f ∈ Lp(R3;C4), and

g = t(g1, g2, g3, g4) := (α · p)f = −i[α1∂1f + α2∂2f + α3∂3f ],

belongs to Lp(R3;C4).
Since −∆f = (α ·p)2f = (α ·p)g, we have ∆(∂jf) = i[α1∂1+α2∂2+α3∂3]∂jg, (j =

1, 2, 3), where the derivatives are taken in distribution sense. Then we can show for
each j = 1, 2, 3, k = 1, 2, 3, 4, that there exist constants Cj,kl, k, l = 1, 2, 3, 4, such that

|⟨∂jfk,∆ϕ⟩| ≤
[
(Cj,k1∥g1∥p + Cj,k2∥g2∥p + Cj,k3∥g3∥p + Cj,k4∥g4∥p

]
∥∆ϕ∥p′

≤ C(

4∑
l=1

∥gl∥pp)1/p∥∆ϕ∥p′ = C∥g∥p∥ψ∥p′
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for all ϕ ∈ C∞
0 (R3) with C := (

∑4
l=1Cj,kl

p′)1/p
′
, where the last second inequality is

due to Hölder’s inequality with 1
p + 1

p′ = 1. Hence |⟨∂jfk, ψ⟩| ≤ C∥g∥p∥ψ∥p′ for all

ψ ∈ Lp
′
(R3), since for p > 1 the space ∆(C∞

0 (R3)) is dense in Lp
′
(R3), so that ∂jfk

belongs to Lp(R3) for j = 1, 2, 3, k = 1, 2, 3, 4, and

∥∂jfk∥p ≤ C∥g∥p = C∥(α · p)f∥p.

This proves the desired inequality (4.24).
(ii) (A second proof with pseudodifferential calculus)
To show the assertion, we have only to show that for j = 1, 2, 3, −i∂j/(α · p) is a

bounded operator on Lp(R3;C2). To see it, since (α · p)2 = −∆, we note that

−i∂j
α · p

=
−i∂j
−∆

(α · p) = −i∂j
(−∆)1/2

3∑
k=1

−iαk∂k
(−∆)1/2

= −
3∑

k=1

αk ·RjRk,

where Rk = −i∂k
(−∆)1/2

, k = 1, 2, 3, is the Riesz transform which is a pseudo-differntial

operator having symbol iξk/|ξ|, and if 1 < p < ∞, we have ∥Rkg∥p ≤ C∥g∥p with
a constant C > 0, e.g. by the Calderon–Zygmund theorem [e.g. S, 4.2, Theorem 3,
p.29] or by Fefferman’s theorem [Fe, Theorem, a, p.414]. Therefore we obtain for each
j = 1, 2, 3,

∥[−i∂j/(α · p)]f∥p ≤ 3C2∥f∥p.

This proves (4.24), again showing the lemma.

Thus we have proved Theorem 1.1 (ii), completing the proof of Theorem 1.1.

5 Proof of Corollaries 1.2, 1.3, Theorem 1.4 ,

Corollary 1.5 and Theorem 1.6

Proof of Corollary 1.2. Let h := t(h1, h2) be a C2-valued function and put f =
t(f1, f2, f3, f4) with f1 = h1, f2 = h2, f3 = f4 = 0. Then (1.33) is nothing but (1.28).
This proves Corollary 1.2 (i). (ii) can be seen as in the proof of Theorem 1.1 (ii).

Proof of Corollary 1.3. Let ψ be a C-valued function and put f = t(f1, f2, f3, f4)
with f2 = ψ, f1 = f3 = f4 = 0. Then (1.37) is nothing but (1.28). This proves
Corollary 1.3 (i). (ii) can be seen as in the proof of Theorem 1.1 (ii).

Proof of Theorem 1.4. The proof is divided into two parts (a) and (b). First in (a),
we show (1.41) for the operator (σ · p)(a) in (1.40a), and then in (b) for the other two
(σ · p)(b), (σ · p)(c) in (1.40bc).

(a) The case for (σ · p)(a) in (1.40a): First we are going to show (4.16) with α · p
replaced by (σ · p)(a) in (1.40a), and then the proof proceeds to use almost the same
arguments as in steps I, II, III of the proof of Theorem 1.1 (i). In step II we shall
not need introduce some other semi-norm like M(α·p)(a);p(f) than ∥(α · p)(a)f∥p, and
have only to go with the semi-norm ∥(σ · p)(a)f∥p for C2-valued functions f(x) =
t(f1(x), f2(x)) on R2.
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I. In the same way as before, we can show an inequality corresponding to (1.14), i.e.

that there exists a constant C such that ∥f∥q,∞ ≤ C∥(σ ·p)(a)f∥p/qp ∥f∥1−(p/q)

B
p/(p−q)
∞,∞

for every

f = t(f1, f2) which satisfies (σ · p)(a)f ∈ Lp(R2;C2) and belongs to B
p/(p−q)
∞,∞ (R2;C2).

II. This step contains a slight improvement in its own. We want to replace the
weak Lq norm by the strong Lq norm. Under the same hypothesis as in step I above
but with ∥f∥

B
p/(p−q)
∞,∞

≤ 1, we are going to show the following inequality:∫
|f |qℓqdx ≤ C∥(σ · p)(a)f∥pp (5.1)

with a constant C independent f , a sharper inequality than the previous (4.3), assum-
ing the extra condition f ∈ Lq(R2;C2), which will turn out to be unnecessary in step
III below.

To this end, we can proceed as in II of the proof of Theorem 1.1 (i), Section 4, to
obtain an anlogous version of (4.8) :

1

20q
∥f∥qq =

∫ ∞

0
|{|f |ℓq ≥ 20u}|d(uq)

≤
∫ ∞

0
|{∨2

k=1|fu,k − etu∆fu,k| ≥ u}|d(uq)

+

∫ ∞

0
|{∨2

k=1{etu∆|fu,k − fk| ≥ 2u}|d(uq)

=: J ′
1 + J ′

2,

where ∆ is the Laplacian in R2, f(x) := t(f1(x), f2(x)) ∈ Lq(R2; C2) with ∥f∥
B

p/(p−q)
∞,∞

≤
1 and fu(x) :=

t(fu,1(x), fu,2(x)) is given by (4.6) with the subscription moving over
{1, 2}, not {1, 2, 3, 4}. By the same arguments used before to get (4.10) and (4.11),
respectively, we have J ′

2 ≤
q
q−1

1
cq−1 ∥f∥qq and

J ′
1 ≤ C0

∫ ∞

0
d(uq)u−q∥(σ · p)(a)fu∥pp

= C0

∫ ∞

0
d(uq)u−q

[
∥(∂1 + i∂2)fu,1∥pp + ∥(∂1 − i∂2)fu,2∥pp

]
.

Noting that∫ ∞

0
d(uq)u−q∥(∂1 + i∂2)fu,1∥pp =

∫
d(uq)u−q

∫
u≤|f1(x)|≤cu

|(∂1 + i∂2)fu,1(x)|pdx

=

∫ ∞

0
d(uq)u−q

∫
u≤|f1(x)|≤cu

|(∂1 + i∂2)f1(x)|pdx

= q(log c)

∫
|(∂1 + i∂2)f1(x)|pdx

= q(log c)∥(∂1 + i∂2)f1∥pp ,

and in the same way∫ ∞

0
d(uq)u−q∥(∂1 − i∂2)fu,2∥pp = q(log c)∥(∂1 − i∂2)f2∥pp ,
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we have J ′
1 ≤ C0 q (log c) ∥(σ · p)(a)f∥pp . Thus

1

20q
∥f∥qq ≤ J ′

1 + J ′
2 ≤ C0 q (log c)∥(σ · p)(a)f∥pp +

q

q − 1

1

cq−1
∥f∥qq ,

whence we get the desired inequality (4.1), taking C = C0q(log c)
1

20q
− q

q−1
1

cq−1
for c sufficiently

large.

III. Finally we remove the condition that f ∈ Lq(R2;C2) assumed in step II. In
fact, we show that if ∥(σ · p)(a)f∥ <∞ and ∥f∥

B
p/(p−q)
∞,∞

≤ 1, then f ∈ Lq(R2;C2).

The proof proceeds in the same way as in III of the proof of Theorem 1.1 (i), Section
4. Indeed, with the corresponding Nε(f) as in (4.17) and (4.18), we can show, instead
of (4.19),

Nε(f) ≤ C0 q (log c)∥(σ · p)(a)f∥pp +
∫ u=1/ε

u=ε

1

u

(∫
|f(x)|ℓ∞ χ{|f |ℓ∞>cu}(x) dx

)
d(uq) .

Estimating, in the same way as before, the two terms on the right-hand side, we can
obtain the desired inequality ∥f∥qq ≤ C∥(σ ·p(a))f∥pp. This shows (1.41) in Theorem 1.4
for (σ · p)(a) in (1.40a).

(b) The other cases for (σ · p)(b) and (σ · p)(c) in (1.40bc): Each of these two cases
is reduced to the case (a) for (σ · p)(a) by a linear transformation. The idea is based
on the following lemma.

Lemma 5.1. The three 2-dimensional Weyl–Dirac (or Pauli) operators (σ · p)(a), (σ ·
p)(b), (σ · p)(c) in (1.40abc) are unitarily equivalent. In fact, there exist unitary 2× 2-
matrices N , N ′ such that for f = t(f1, f2) and h = t(h1, h2) := Nf , h = t(h1, h2) :=
N ′f ,

(σ · p)(a)h = (σ · p)(a)Nf = N(σ · p)(b)f, with h = t(h1, h2) = Nf , (5.2)

(σ · p)(a)h = (σ · p)(a)N ′f = N ′(σ · p)(c)f , with h = t(h1, h2) = N ′f . (5.3)

Proof. Take matrices N := 1√
2

(
1 −i
1 i

)
, N ′ := 1√

2

(
1 −1
1 1

)
, which are uni-

tary. We have N−1 = 1√
2

(
1 1
i −i

)
, (N ′)−1 = 1√

2

(
1 1
−1 1

)
, and

1√
2

(
1 −i
1 i

)(
∂1 ∂2
∂2 −∂1

)
1√
2

(
1 1
i −i

)
=

(
0 ∂1 − i∂2

∂1 + i∂2 0

)
,

1√
2

(
1 −1
1 1

)(
∂1 −i∂2
i∂2 −∂1

)
1√
2

(
1 1
−1 1

)
=

(
0 ∂1 − i∂2

∂1 + i∂2 0

)
.

Taking into account the definition (1.40abc) of (σ ·p)(a), (σ ·p)(b), (σ ·p)(c) yields (5.2)
and (5.3), showing Lemma 5.1.

Now we continue the proof (b) of Theorem 1.4. Take the same matrices N and
N ′ as in Lemma 5.1, which we see reduce the cases (σ · p)(b) and (σ · p)(c) to the case
(σ · p)(a).
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Note the bounds of the matrix norms of them and their inverses that for 1 ≤ r ≤ ∞,

∥N∥ℓr→ℓr ≤
√
2, ∥N−1∥ℓr→ℓr ≤

√
2 ;

∥N ′∥ℓr→ℓr ≤
√
2, ∥(N ′)−1∥ℓr→ℓr ≤

√
2 . (5.4)

It follows that if h = Nf or h = N ′f , then

∥f∥r ≤
√
2∥h∥r, ∥h∥r ≤

√
2∥f∥r. (5.5)

First, we treat the case (σ · p)(b) with N . We have by (5.2) in Lemma 5.1 and (5.4)

∥(σ · p)(a)h∥p = ∥N(σ · p)(b)f∥p ≤ ∥N∥ℓp→ℓp∥(σ · p)(b)f∥p ≤
√
2∥(σ · p)(b)f∥p . (5.6)

We note that Pt commutes with N to get

|(Pth)(x)|ℓ∞ = |(PtNf)(x)|ℓ∞ = |(NPtf)(x)|ℓ∞
≤ ∥N∥ℓ∞→ℓ∞ |(Ptf)(x)|ℓ∞ ≤

√
2|(Ptf)(x)|ℓ∞ ,

whence

∥h∥
B

p/(p−q)
∞,∞

= sup
t>0

∥Pth∥∞ = sup
t>0

sup
x

|(Pth)(x)|ℓ∞

≤
√
2 sup
t>0

sup
x

|(Ptf)(x)|ℓ∞ =
√
2 sup
t>0

∥Ptf∥∞ =
√
2∥f∥

B
p/(p−q)
∞,∞

. (5.7)

Then, since we already (1.41) holds for (σ · p)(a) with h in place of f , we combine it
with (5.5), (5.6), (5.7) to get

∥f∥q ≤
√
2∥h∥q ≤

√
2C∥(σ · p)(a)h∥p/qp ∥h∥1−(p/q)

B
p/(p−q)
∞,∞

≤ 2C∥(σ · p)(b)f∥p/qp ∥f∥1−(p/q)

B
p/(p−q)
∞,∞

,

which yields the desired inequality (1.41) for (σ · p)(b).
Next, as for the other last case (σ · p)(c), exactly the same arguments apply to it as

those just made in the case (σ · p)(b) above, with the matrix N , relation (5.2) replaced
by the matrix N ′, relation (5.3).

This completes the proof of Theorem 1.4.

Proof of Corollary 1.5. (1.42) follows from Corollary 1.3 (1.39) because our function
ψ(x) = ψ(x1, x2) here is independent of x3, or from Theorem 1.4 (1.41) for h = t(h1, h2)
with h1 = 0, h2 = ψ.

Proof of Theorem 1.6. The proof is done by analogous arguments used to prove
Theorem 1.1. We only note that Lemma 4.1 is replaced by the following lemma, which
can be shown in the same way as before.

Lemma 5.2. For f = t(f1, f2, f3, f4), one has∫ ∞

0
d(uq)u−qMβ·p;p(fu)

p = q(log c)Mβ·p;p(f)
p. (5.8)

Here we only note with (1.50) that the proof turns out to deal, instead of (4.13),
with

Mβ·p;p(fu)
p

=

∫ (
|(∂1 + i∂2)fu,1|p + |(∂3 + i∂4)fu,1|p

)
dx+

∫ (
|(∂1 − i∂2)fu,2|p + |(∂3 − i∂4)fu,2|p

)
dx

+

∫ (
|(∂1 + i∂2)fu,3|p + |(∂3 − i∂4)fu,3|p

)
dx+

∫ (
|(∂1 − i∂2)fu,4|p + |(∂3 + i∂4)fu,4|p

)
dx.
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6 Concluding Comments

We have originated a version of improved Sobolev embedding theorem for vector-
valued functions involved with for the three-dimensional Dirac operator D = α · p, the
three-dimensional Weyl–Dirac (or Pauli) operator D = σ · p, and the four-dimensional
Euclidian Dirac operator D = β · p. To this end we have introduced in Section 1 the
corresponding first-order-derivative semi-norms Mα·p;p(f), Mσ·p;p(h) and Mβ·p;p(f) by
decomposing them into two parts: D = D1 + D2. Although the used decomposition
looked to be artificial, it turns out there are other meaningful decompositions which
give the same semi-norms as thus defined. In fact, we have characterized, in Proposition
1.0 for α · p and its counterpart for σ · p and β · p, which kind of decompositions are
fit for our semi-norms at all. It turns out that they should be those which satisfy the
condition that each row of the matrices of both the parts D1 and D2 contains only
one nonzero entry. Why one needs this condition is simply because our proof given in
Section 4 needs it.

In this section we will make some further comments and observe that after all this
semi-norm is of reasonably good and optimal choice, having intrinsic and universal
character and being an intermediate one in strength lying between both the semi-norm
∥(α · p)f∥p, ∥(σ · p)h∥p or ∥(β · p)f∥p and the seminorm ∥∇f∥p, ∥∇h∥p or ∥∇f∥p,
respectively. We describe only with the 4-dimensional Euclidian Dirac operator, as we
can deal with the other two operators just in the same way.

So consider the 4-dimensional Euclidian Dirac operator D := β · p in (1.46) and
its decomposition into the sum of its two parts : D = D1 + D2. Ignoring the order
of the pair (D1, D2), we regard the two decomposition (D1, D2) and (D2, D1) as the
same. Then there are totally 1

2 · 27 = 64 decompositions including the trivial decom-
position with (D1, D2) = (D, 0) or (D1, D2) = (0, D). The set of all decompositions
of D = β · p is denoted by Decom(D). Let Decom1(D) be the subset of all (D1, D2)
in Decom(D) which satisfy the condition that each row of D1 and D2 contains only
one nonzero entry. It is seen that Decom1(D) consists of 1

2 · 24 = 8 decompositions
of D. The decompositions (1.47), (1.53), (1.54) and (1.55) are examples of elements
of Decom1(D). With the decomposition (1.47), i.e. ((β · p)P13, (β · p)P24), we have
defined the semi-norm Mβ·p;1(f) by (1.48), that is,

Mβ·p; p(f) :=
[
∥(β · p)P13f∥p + ∥(β · p)P24f∥p

]1/p
. (6.1)

We have shown Theorem 1.6, a version of improved Sobolev embedding theorem for
vector-valued functions, that inequality (1.57) holds with this semi-norm Mβ·p;1(f) for
1 ≤ p < ∞, and also seen in Section 3 that in case of p = 1 one cannot replace the
semi-norm Mβ·p; p(f) on the right by a weaker one ∥(β · p)f∥p, though one can for
1 < p <∞. Actually we have

(D1, D2) ∈ Decom1(D) ⇒ Mβ·p; p(f) :=MD1∨D2;p(f) =
[
∥D1f∥p + ∥D2f∥p

]1/p
.

(6.2)
Thus our semi-normMβ·p; p(f) is characterized as the one associated with Decom1(D).
At this point also notice that this semi-norm has the very expression (1.50) with sym-
metric arrangement of eight terms in its last member. Inequality (1.51) shows that
Mβ·p; p(f) is lying in strength between the semi-norms ∥(β · p)f∥p and ∥∇f∥p. Notice
that the condition that each row of D1 and D2 contains only one nonzero entry is satis-
fied by neither the 3-dimensional Dirac operator (1.17), 3-dimensional Weyl–Dirac (or
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Pauli) operator (1.31) nor 4-dimensional Euclidian Dirac operator (1.46) themselves.
Otherwise, our proof could establish for p = 1 inequality (1.28) of Theorem 1.1, (1.35)
of Corollary 1.2 and (1.57) of Theorem 1.6 with the semi-norm ∥(α · p)f∥1, ∥(σ · p)h∥1
and ∥(β · p)f∥1 in place of Mα·p;1(f), Mσ·p;1(h) and Mβ·p;1(f) on the right-hand side.
But this is not in general possible because we have counterexamples as given in Section
3.

In Kähler Geometry and/or Spin Geometry (e.g. [Fr], [LawM]), the four-dimensional
Euclidian Dirac operator D appears as an operator acting on the Clifford algebra
CL(R4), which is canonically isomorphic to the exterior algebra Λ∗(R4) ≡ Λ∗(T ∗(R4)).
On this Λ∗(R4), in turn, there act two canonical first-order differential operators,
namely, the exterior derivative d : Λ∗(R4) → Λ∗(R4) and its formal adjoint d∗ :
Λ∗(R4) → Λ∗(R4), which satisfy d2 = d∗2 = 0. Then the fact is that the Dirac
operator D is considered to decompose into their sum: D ∼= d + d∗. In passing, it is
conversely along with such a decomposition that the Dirac operator of even infinite
dimension is defined on a Fock space in [A1, 2].

In this connection, notice that Decom1(D) contains two pairs (D1, D2), (1.53)
and (1.54), which satisfy the one condition D2 = D∗

1, but neither of the elements
of Decom1(D) satisfy the other condition D2

1 = D2
2 = 0. We ask: how about the

inequality

∥f∥q ≤ CMD1∨D2;p(f)
p/q∥f∥1−(p/q)

B
p/(p−q)
∞,∞

(6.3)

like (1.57) for the decompositions not belonging to Decom1(D), to hold with a fixed
constant C > 0 for all functions f(x) = t(f1(x), f2(x), f3(x), f4(x)) on R4 ? To answer
it, consider the following three decompositions D ≡ β · p = D1 + D2 in Decom(D) \
Decom1(D) which are typical in some sense :

M
(4)
β

β · p = (β · p)P12 + (β · p)P34

=


0 0 0 0
0 0 0 0

p3+i p4 p1−i p2 0 0
p1+i p2 −(p3−ip4) 0 0

+


0 0 p3−i p4 p1−i p2
0 0 p1+i p2 −(p3+ip4)
0 0 0 0
0 0 0 0

 ,

(6.4a)

M
(4)
β·p;1(f) := ∥(β · p)P12f∥1 + ∥(β · p)P34f∥1

= ∥(∂1 + i∂2)f1 − (∂3 − i∂4)f2∥1 + ∥(∂1 − i∂2)f2 + (∂3 + i∂4)f1∥1
+ ∥(∂1 + i∂2)f3 − (∂3 + i∂4)f4∥1 + ∥(∂1 − i∂2)f4 + (∂3 − i∂4)f3∥1 ;

(6.4b)
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M
(5)
β

β · p =


0 0 p3−i p4 p1−i p2
0 0 0 0
0 p1−i p2 0 0
0 −(p3−i p4) 0 0

+


0 0 0 0
0 0 p1+i p2 −(p3+i p4)

p3+i p4 0 0 0
p1+i p2 0 0 0


=: (β · p)5 + (β · p)6 , (6.5a)

M
(5)
β·p;1(f) := ∥(β · p)5f∥1 + ∥(β · p)6f∥1

= ∥(∂1 + i∂2)f1∥1 + ∥(∂3 + i∂4)f1∥1 + ∥(∂1 − i∂2)f2∥1 + ∥(∂3 − i∂4)f2∥1
+ ∥(∂1 + i∂2)f3 − (∂3 + i∂4)f4∥1 + ∥(∂1 − i∂2)f4 + (∂3 − i∂4)f3∥1 ;

(6.5b)

M
(6)
β

β · p =


0 0 p3−ip4 p1−i p2
0 0 0 −(p3+i p4)
0 p1−ip2 0 0
0 −(p3−ip4) 0 0

+


0 0 0 0
0 0 p1+i p2 0

p3+ip4 0 0 0
p1+ip2 0 0 0


=: (β · p)7 + (β · p)8 , (6.6a)

M
(6)
β·p;1(f) := ∥(β · p)7f∥1 + ∥(β · p)8f∥1

= ∥(∂1 + i∂2)f1∥1 + ∥(∂3 + i∂4)f1∥1 + ∥(∂1 − i∂2)f2∥1 + ∥(∂3 − i∂4)f2∥1
+ ∥(∂1 + i∂2)f3∥+ ∥(∂3 + i∂4)f4∥1 + ∥(∂1 − i∂2)f4 + (∂3 − i∂4)f3∥1 .

(6.6b)

Here the first decomposition (6.4a) and the second (6.5a) enjoy the same property as
the Dirac operator D mentioned above in connection with Kähler Geometry and/or
Spin Geometry. Further, the former (6.4a), which we have already referred to in Section
1 below Proof of Proposition 1.0 and also below equations (1.56a, b, c), has a beauty
of symmetry. The latter (6.4a) has another beauty that each nonzero entry of (β · p)6
is either of the two Cauchy–Riemann operators in the variables (x1, x2) and (x3, x4),
while that of (β · p)5 either of their adjoints. The third decomposition (6.5a), which
is a slight modification of (6.4a), looks artificial, lacking in beauty of symmetry and
satisfying neither (β · p)8 = (β · p)7∗ nor (β · p)72 = (β · p)82 = 0.

Our answer from the present paper is affimative for 1 < p <∞, as already shown in
Theorem 1.6 (ii), because, for any decomposition (D1, D2) ∈ Decom(D), the semi-norm
MD1∨D2;p(f) is equivalent to the semi-norms ∥(β · p)f∥p and ∥∇f∥p as seen in (1.51).
However, as for p = 1, it will be negative, so long as one requires that D1

2 = D2
2 = 0.

Thus the problem is when p = 1.
Comparing with the semi-norm Mβ·p;1(f) in (1.50) for p = 1, we note (cf. (1.51))

∥(β · p)f∥1 =M
(4)
β·p;1(f) ≤M

(5)
β·p;1(f) ≤M

(6)
β·p;1(f) ≤Mβ·p;1(f) ≤ ∥∇f∥1 , (6.7)

where these three semi-norms are not equivalent to one another. Hence we also real-

ize that M
(6)
β·p;1(f) is next weaker than Mβ·p;1(f), and M

(5)
β·p;1(f) is next weaker than

M
(6)
β·p;1(f).
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Proposition 6.1. For p = 1, inequality (6.3) does not hold with the semi-norm

MD1∨D2;1(f) replaced by M
(4)
β·p;1(f) in (6.4b) and M

(5)
β·p;1(f) in (6.5b) corresponding

to the decompositions (6.4a) and (6.5a), respectively.

The proof of Proposition 6.1 is omitted. We give only some notes here. As to

M
(4)
β·p;1(f) in (6.4b), the asertion is clear, because the last member of this semi-norm

is the same as (1.49), namely, M
(4)
β·p;1(f) = ∥(β · p)f∥1. As to M

(5)
β·p;1(f) in (6.5b), we

can show the same sequence {fn}∞n=1 used to construct the counterexample in Section
3 violates inequality (6.3) for p = 1, q = 4

3 , so that p
p−q = −3.

It should be probably approriate to mention here whether the present work has any
connection with those of [BoBr] and [LanSt]. They proved an inequality of the form

∥u∥n/(n−1) ≤ C (∥du∥1 + ∥d∗u∥1)

holds with a constant C > 0 for all smooth m-forms u on Rn, when m is neither 1
nor n − 1. For m = 1, it holds with ∥d∗u∥1 replaced by ∥d∗u∥H1 , and for m = n − 1,
with ∥du∥1 replaced by ∥du∥H1 , where H1 is the real Hardy space. This looks a little
similar since (1.57) implies that ∥f∥q ≤ C1Mβ·p;1(f) + C2∥f∥B1/(1−q)

∞,∞
with constants

C1, C2 > 0. But we don’t know whether it is related to our results, partly because,
though it will be the case n = 4, m = 1 and q = 4

3 , so that if our paper should have a
relation, as Proposition 6.1 above says, inequality (6.3) fails to hold for the semi-norms

M
(4)
β·p;1(f) in (6.4b) and M

(5)
β·p;1(f) in (6.5b) in place of MD1,D2;1(f).

Finally, as for the third semi-norm M
(6)
β·p;1(f) in (6.6b) associated with the decom-

position (6.6a), it is not clear whether or not (6.3) holds, although we learn in Theorem
1.6 that it holds for its next stronger semi-normMβ·p;1(f), but in Proposition 6.1 above

that it does not for its next weaker semi-norm M
(5)
β·p;1(f). However, it should be proba-

bly noted here that the sequence {fn} used to construct the counterexample in Section

3 does not violate but keeps inequality (1.57) with semi-norm M
(6)
β·p;1(f) in place of

Mβ·p;1(f). Needless to say, this sequence {fn} of course keeps inequality (1.57) safe,
though.

7 Summary

In this work we have extended the improved Sobolev embedding theorem (1.1), which
originally is for single-valued functions, to a vector-valued version, (1.28) and (1.30),
which are connected with the three-dimensional massless Dirac operator α·p in (1.4)/(1.17):

1 ≤ p < q <∞ : ∥f∥q ≤ CMα·p;p(f)
p/q∥f∥1−(p/q)

B
p/(p−q)
∞,∞

, (1.28)

1 < p < q <∞ : ∥f∥q ≤ C∥(α · p)f∥p/qp ∥f∥1−(p/q)

B
p/(p−q)
∞,∞

, (1.30)

where f(x) = t(f1(x), f2(x), f3(x), f4(x)) are C4-valued functions on R3. The first-
order-derivative semi-norm Mα·p;p(f) on the right of (1.28) is at first defined by (1.19)
with the rather artificial decomposition (1.18) of α ·p into the sum of its two parts, but
then can be seen, through its explicit expression (1.21), to coincide with the ones to be
defined with the other decompositions like (1.24), (1.25) and (1.26), just as clarified in
Proposition 1.0. This will reveal the semi-normMα·p;p(f) to have an intrinsic meaning.
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When 1 < p < q < ∞, the semi-norm Mα·p;p(f) is equivalent to the semi-norm
∥(α · p)f∥p as well as ∥∇f∥p. Therefore, in this case it is no wonder that inequality
(1.30) holds, because (1.28) is reduced to (1.30) which is also equivalent to (1.13). It
also is an improvement of the (1.14) that has the weak Lq norm on the left-hand side.

But when p = 1, these three first-order-derivative semi-norms are not equivalent
to one another, cf. (1.22). In this case, (1.16)/(1.30) does not hold in general. A
counterexample is given in Section 3. Further, for p = 1 two inequalities (1.28) and
(1.14) cannot be compared so as to say which of them is sharper.

Analogous improved Sobolev embedding theorems are also given for the three-
dimensional Weyl–Dirac (or Pauli) operator σ · p in (1.31), the Cauchy–Riemann op-
erator 1

2(∂1 + i∂2) and the four-dimensional Euclidian Dirac operator β · p in (1.46).
Here, for the last one β · p, in the same way as for α · p, the semi-norm Mβ·p;p(f),
which is defined at first by (1.48) with the rather artificial decomposition (1.47), turns
out to coincide with the ones to be defined with the other decompositions like (1.53),
(1.54) and (1.55), and so to be meaningful. Noted is in Section 2, 5o that all the results
are also vaild for the other represntations of the three-dimensional massless and the
four-dimensional Euclidian Dirac operators.

However, exceptionally for the two-dimensional Weyl–Dirac (or Pauli) operator
(σ · p)(2) in (1.40abc), we have proved an inequality which is just expected as (1.16)
for all 1 ≤ p < q <∞:

∥f∥q ≤ C∥(σ · p)(2)f∥p/qp ∥f∥1−(p/q)

B
p/(p−q)
∞,∞

, (1.41)

for C2-valued functions f(x) = t(f1(x), f2(x)) on R2, which might be said to be a true
extension of the single-valued (1.1) to the vector-valued version.
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