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Abstract 

 

Asian dust (Kosa) events transport airborne microorganisms that significantly impact 

biological ecosystems, human health, and ice-cloud formation in downwind areas. 

However, the composition and population dynamics of airborne bacteria have rarely 

been investigated in downwind areas during Kosa events. In this study, air samplings 

were sequentially performed at the top of a 10-m high building within the Kosa event 

arrival area (Kanazawa city, Japan) from May 1 to May 7, 2011, during a Kosa event. 

The particle concentrations of bacterial cells and mineral particles was ten-fold higher 

during the Kosa event than on non-Kosa event days. A 16S ribosomal DNA clone 

library prepared from the air samples primarily contained sequences from three phyla: 

Cyanobacteria, Firmicutes, and Alphaproteobacteria. The clones from Cyanobacteria 

were mainly from a marine type of Synechococcus species that was dominant during the 

first phase of the Kosa event and was continuously detected throughout the Kosa event. 

The clones from Alphaproteobacteria were mainly detected at the initial and final 

periods of the Kosa event, and phylogenetic analysis showed that their sequences 

clustered with those from a marine bacterial clade (the SAR clade) and Sphingomonas 

spp. During the middle of the Kosa event, the Firmicutes species Bacillus subtilis and 

Bacillus pumilus were predominant; these species are known to be predominat in the 

atmosphere above the Chinese desert, which is the source of the dust during Kosa 

events. The clones obtained after the Kosa event had finished were mainly from 

Bacillus megaterium, which is thought to originate from local terrestrial areas. Our 

results suggest that airborne bacterial communities at the ground level in areas affected 
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by Kosa events change their species compositions during a Kosa event toward those 

containing terrestrial and pelagic bacteria transported from the Sea of Japan and the 

continental area of China by the Kosa event. 

 

Keywords: Asian dust, airborne, bioaerosol
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1. Introduction 

 

Asian dust (Kosa) events from the deserts of northern China, including the Gobi 

and Taklamakan deserts, pass over the Sea of Japan and disperse mineral-dust aerosol 

over the East Asian region via westerly winds (Duce et al., 1980, Iwasaka et al., 1983). 

The mineral-dust particles are associated with microbial particles commonly called 

“bioaerosols,” which include viruses, bacteria, and fungi (Jones and Harrison, 2004, 

Jaenicke, 2005, Prospero et al., 2005). Airborne microorganisms carried by dust events 

increase the allergen burden, causing an increased incidence of asthma (Ichinose et al., 

2005) and contributing to the dispersion of diseases such as Kawasaki disease in 

humans (Rodó et al., 2011) and rust diseases in plants (Brown and Hovmøller, 2002). 

Moreover, bioaerosols are thought to influence atmospheric processes by participating 

in atmospheric chemical reactions and cloud particle formation (Pratt et al., 2009, 

Creamean et al., 2013). 

The dynamics of airborne bacteria in downwind areas during Kosa events need to 

be elucidated in order to understand the characteristics of bacterial communities that are 

transported long distances and influence downwind ecosystems and climates. The size 

and composition of airborne bacterial communities at high altitudes above Kosa dust 

deposition areas such as Beijing (Li et al., 2010), Osaka (Yamaguchi et al., 2012), Noto 

Peninsula (Maki et al., 2013), and the North American mountains (Smith et al., 2012) 

varied significantly depending on the Kosa event studied. Investigations of airborne 

microbial dynamics at the ground level in China and Korea indicated that soma bacterial 

species from Firmicutes were predominant during Kosa events (Jeon et al., 2011). 
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However, there are a few reports investigating bacterial dynamics at the ground level in 

Japan when the dust particles that have passed through China and Korea have traversed 

the Sea of Japan. Dust particles reaching Japan are reported to change their chemical 

composition when passing over Chinese industrial area and the Sea of Japan. Thus, the 

chemical and biological characteristics of dust particles in Japan are expected to differ 

from the dust particles collected from Korea and China, and, in fact, it was reported that 

bacterial abundance and viabilities at the ground level in Japan dynamically changed 

during a Kosa events (Hara and Zhang, 2012). However, the diversity and structure 

dynamics of airborne bacteria have yet to be investigated in a populated area in Japan 

during a Kosa event.  

To investigate the population dynamics of airborne bacteria in Japan during a Kosa 

event, we collected air samples at the ground surface in Kanazawa city from May 1 to 

May 7, 2011, during a long-term of Kosa event. We determined the abundance of 

bioaerosols in the air samples by microscopic observation using a fluorescence staining 

technique. The composition of the bacterial species in the air samples was analyzed 

using clone-library analysis targeting bacterial 16S ribosomal RNA genes (16S rDNA). 

 

2. Materials and Methods 

 

2.1. Sampling 

Aerosol samplings were performed in a coastal city, Kanazawa (36.33°N, 

136.39°E), on the south area of the Sea of Japan from 7:00 JST on May 1 to 8:00 JST 

on May 7., 2011, when a long-term Kosa event occurred (May 1 to May 4). Kanazawa 
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city is located on the northern coast of the Hokuriku region in Japan, where the aerosols 

from continental areas arrive directly from the Sea of Japan and aerosol contamination 

from Japan can be eliminated. The sampling system was placed on a 10-m high 

platform (located at Kanzawa University). Air samples (520 L) were collected using 

sterilized polycarbonate filters (0.22 µm pore size; Whatman, Tokyo, Japan) with a 

sterilized filter holder using an air pump. Four each sample, two filters were used 

continuously for 12 h; the filters were changed every 12 h. In total, 12 air samples were 

obtained during the sampling period from the morning of May 1 to the evening of May 

7, named Sample 1 to Sample 12. Of the two filters used to collect each sample, one 

filter was used to determine the abundance of bioaerosols by microscopic observation, 

and the other one was stored at –80°C before extraction of genomic DNA for the 

analysis of bacterial species compositions. 

 

2.2. Characteristics and trajectories of air masses during the sampling period 

Air quality and atmospheric data at the ground surface were obtained from the 

meteorological observatories of the Japan Meteorological Agency in Kanazawa city and 

Wajima city, which are located 10 and 50 km, respectively, from the sampling site. 

Environmental data were collected every hour. Information regarding atmospheric 

environmental factors, such as temperature, precipitation, relative humidity, wind 

velocity, dew point temperature, and steam pressure were obtained for analyzing 

air-mass dynamics (Table S1). 

To track the transport pathways of air masses, 72-h backward trajectories were 

calculated using the National Oceanic and Atmospheric Administration Hybrid Single 
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Particle Lagrangian Integrated Trajectory (HYSPLIT) model 

(http://www.arl.noaa.gov/HYSPLIT.php). The location of the backward trajectory start 

point was the sampling location for this study (36.33°N, 136.39°E) with altitudes of 10, 

1,000, and 3,000 m above the ground for estimating the accurate trajectories of air 

masses. The depolarization ratios of particles below 3,000 m on May 1 and May 7, 2011 

were measured using light detection and ranging (lidar) at Toyama city 

(http://www-lidar.nies.go.jp/). 

 

2.3. Microscopic analysis of particle abundance 

Within 2 h of sampling, 1 mL of sterilized water with paraformaldehyde at a final 

concentration of 1% was added to one of the filters to fix the aerosols. After a 1-h 

incubation, the filter was stained with 4 ,6-diamidino-2-phenylindole (DAPI) at a final 

concentration of 0.5 µg mL-1 for 15 min (Porter and Feig, 1980). Next, the filter was 

placed on a slide in a drop of low-fluorescence immersion oil. A second drop of oil was 

added, and a coverslip was placed on top. The prepared slides were then observed using 

an epifluorescence microscope (Olympus, Tokyo, Japan) equipped with a ultraviolet 

excitation system. A filter transect was scanned, and mineral particles (white particles), 

yellow particles and bacterial cells on the filter transect were counted. The detection 

limit of aerosols was below 5 × 103 particles m-3 of air. 

 

2.4. Cloning analysis targeting 16S rDNA sequences 

Aerosols were washed off the filters by shaking with 5 mL of Tris- 

ethylenediaminetetraacetic acid buffer. After washing, the aerosols were collected by 
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centrifugation at 20,000 × g for 5 min. Genomic DNA (gDNA) was extracted from the 

bacterial cell pellets using sodium dodecyl sulfate, proteinase K, and lysozyme, as 

described previously (Maki et al., 2008). gDNA was purified by phenol-chloroform 

extraction, followed by chloroform extraction and ethanol precipitation. Fragments of 

16S rDNA (approximately 1,450 bp) were amplified from the extracted gDNA by 

polymerase chain reaction (PCR) using the following oligonucleotide primers: 27F, 

5′-AGA GTT TGA TCM TGG CTC AG-3′; 1492R, 5′-GGY TAC CTT GTT ACG ACT 

T-3′ (Maidak et al., 1997). Thermal cycling was performed using the Program Temp 

Control System PC-700 under the following conditions: 30 cycles of denaturation at 

95°C for 1 min, annealing at 55°C for 2 min, and extension at 72°C for 2 min. PCR 

amplicons corresponding to 16S rDNA fragments were purified by phenol-chloroform 

extraction followed by chloroform extraction and ethanol precipitation; they were then 

cloned into Escherichia coli using a commercially available vector with a TA Cloning 

Kit (Invitrogen, CA, USA) according to the manufacturer’s protocol. More than 50 

clones were obtained for each sample, and the sequences were determined using a Dye 

Deoxy Terminator Cycle Sequencing Kit (Applied Biosystems, CA, USA) and an ABI 

Prism 373A DNA Sequencer according to the manufacturer’s recommended protocols. 

The M13 forward primer was used as the sequencing primer. 

The amplicon sequences were compared against the DNA Data Bank of Japan 

(DDBJ) using Basic Local Alignment Search Tool (BLAST) to analyze bacterial species 

compositions. All sequences without chimeras were assigned as operational taxonomic 

units (OTUs) based on bacterial species with more than 97% similarities. The coverage 

of the 16S rDNA library was calculated using the formula [1 – (n/N)], where n is the 
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number of OTUs represented by one clone and N is the total number of clones (Good 

1953). The full sequences of the dominant clones were determined using the M13 

reverse primer. Phylogenetic trees including representative sequences were constructed 

according to the neighbor-joining algorithm using TreeViewPPC (Saitou and Nei 1987).  

 

2.5. Accession numbers 

DDBJ accession numbers for the 16S rDNA sequences determined in this study are 

shown in Table 1. 

 

3. Results 

 

3.1. Environmental conditions 

During the sampling period, the relative humidity varied randomly around 40%, and 

the temperature from May 2 to May 5, 2011 fluctuated at lower values, below 20 ºC, 

than on May 1 and from May 6 to May 7 (Table S1). Some precipitation occurred on 

May 1, suggesting that a cyclonic flow originating from the western North Pacific or 

from the East China Sea contributed to rainfall in Kanazawa city on May 1. From the 

evening of May 1 to the morning on May 7, the days were sunny and calm. 

Analyses of air-mass backward trajectories revealed four variations from May 1 to 

May 7, 2011 (Fig. S1). The air mass on May 1, 2011 originated from the North Pacific 

Ocean and passed the southern or western parts of Japan to Kanazawa city (Fig. S1a). In 

contrast, the air mass between May 2 and May 3 came from the desert area of the Asian 

continent and passed over the industrial area in China and across the Sea of Japan (Fig. 
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S1b). From May 4 to May 5, the air mass was carried from the northern of the Sea of 

Japan or Korea Peninsula to Kanazawa city for 3 days with low-level transport over 

Korea and Japan (Fig. S1c). The air mass from May 6 to May 7 had a similar transport 

pattern to that of May 1 and came from the southern or western parts of Japan (Fig. 

S1d). Changes in aerosol transportation are primarily controlled by the prevailing air 

flowing from China. 

According to lidar measurements at Toyama city, Japan, the depolarization ratio at 

the ground surface was significantly increased from the evening of May 1 to the 

evening on May 4; in addition, trajectory analysis indicated that the air mass during the 

period from May 1 to May 4 originated from west. These observations indicated that a 

long-term Kosa event occurred during this time around the Hokuriku area (Fig. S2). In 

this study, the period from the evening of May 1 to the evening on May 4 is defined as 

the Kosa event. 

 

3.2. Microscopic observation of aerosols 

When DAPI staining of aerosol particles collected at 10 m in Kanazawa city was 

performed on the sampling filter, the aerosols comprised both separate and aggregated 

particles. White-blue self-fluorescent particles, which were mineral particles, exhibited 

relatively large sizes, with diameters ranging from 0.2 µm to 100 µm. Yellow 

fluorescent particles, potentially organic matter, were observed to range from 0.2 µm to 

10 µm in diameter. DAPI-stained bacteria were observed as coccoid and bacilli-like 

particles with a diameter of <1.0 µm and bright-blue fluorescence. These thee types of 

particles formed aggregates ranging from 2.0 µm to 100 µm in diameter. This indicates 
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that bacterial particles attached to large particles were transported through the 

atmosphere. 

The total density of bacterial cells in air samples increased from 7.5 × 104 particles 

m-3 to 2.0 × 107 particles m-3 during the Kosa event and decreased to 7.7 × 104 particles 

m-3 on non-Kosa event days (Fig. 1a). White-blue fluorescent particles with diameters 

ranging from 0.2 µm to 5.0 µm significantly increased to 4.5 × 106 particles m-3 during 

the Kosa event and decreased to 105 particles m-3 after the Kosa event finished (Fig. 1b, 

c). White-blue particles of >5.0 µm diameters also increased to 7.4 × 104 particles m-3 

during the Kosa event but were less than 103 particles m-3 on non-Kosa event days (Fig. 

1d). Yellow fluorescent particles from 0.2 µm to 5.0 µm in diameter fluctuated from 

concentrations of more than 2.4 × 105 particles m-3 to 104 particles m-3 during non-Kosa 

event days (Fig. 1b, c). Yellow fluorescent particles of >5.0 µm diameter peaked at 

approximately 4.3 × 104 particles m-3 during the Kosa event and were undetectable on 

non-Kosa event days (Fig 1d). The concentration of aggregated particles ranging from 

0.2 µm to 5.0 µm in diameter increased to more than 1.4 × 105 particles m-3 during the 

Kosa event but maintained values in the order of 103 particles m-3 on non-Kosa event 

days. Larger aggregated particles of >5.0 µm diameter significantly increased to 9.8 × 

104 particles m-3 during the Kosa event, decreasing to below limited detection on 

non-Kosa event days and increasing to 2.2 × 104 particles m-3 at the non-Kosa event 

days May 6 and May 7. 

 

3.3. Dynamics of 16S rDNA clone libraries 

The 16S rDNA fragments in the air samples were amplified by PCR using primers 
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targeting eubacterial 16S rDNA. The PCR amplicons were cloned into E. coli, and a 

total of 402 clones including eubacterial 16S rDNA fragments were obtained from the 

12 samples. Sequences of the 16S rDNA clones indicated that the airborne bacterial 

populations were composed of several bacterial species (Table 1). Reasonable coverage 

ranging from 80% to 93% was obtained, indicating that the majority of the airborne 

bacteria was represented in the libraries. Most of the majority of phylotypes recovered 

from the air samples belonged to the phyla Cyanobacteria, Proteobacteria, and 

Firmicutes, which are typically well represented in 16S rDNA clone libraries generated 

from terrestrial and marine environments. Only a few bacterial sequences were affiliated 

with Actinobacteria or Acidobacteria. The bacterial compositions of the clone libraries 

showed significant dynamics during the sampling period (Fig. 2). Only eight of the total 

403 sequenced clones could not be affiliated with any known bacterial group. 

Of the sequenced clones derived from all 12 samples, 27% were from 

Cyanobacteria (Table 1) and formed two distinct groups in the marine type cluster of 

the genus Synechococcus in the phylogenetic tree (Fig. 3). One group was composed of 

clones detected from Kosa event samples (Samples 3 and 5; Fig. 2). Sequences from 

this group clustered with the coastal and ocean Synechococcus spp. found in warm areas 

and were closely related to strains previously isolated from the Sea of Japan. In contrast, 

the sequences of the other group were detected in every sample and were mainly related 

to a coastal Synechococcus species found in cold environments. 

More than 46.5% of the clones were from Firmicutes (Fig. 2), almost all of which 

were related to members from the genera Bacillus and Staphylococcus (>99.7% 

similarity). The complete 16S rDNA sequences of the Bacillus species had high 
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similarities (>99.7%) with Bacillus subtilis, Bacillus pumilus and Bacillus megaterium 

(Fig. 4). Some of the B. subtilis and B. pumilus clones appeared specifically at night 

during the Kosa event (Samples 4 and 6) and were closely related with isolates detected 

at high altitudes above Suzu city during a Kosa event (Maki et al. 2010) and above 

Taklamakan Desert (Maki et al. 2008). Other clones belonging to the genus Bacillus 

were closely related to B. megaterium and were predominant in Samples 10, 11, and 12, 

which were obtained after the Kosa event had finished. Several minor clones were 

related to Staphylococcus hominis and increased in Sample 6, which was obtained 

during the Kosa event. 

Clones from Proteobacteria comprised 13.3% of the total clones (Table 1) and 

were mainly clustered in the genus Sphingomonas and the Alphaproteobacteria SAR 

clade (Fig. 5). The clones affiliated with Sphingomonas spp. were detected in almost all 

samples, and their numbers significantly increased at the end phase of the Kosa event 

(Sample 9; Fig. 2). Some clones showed 99.8% similarity with some species of 

Sphingomonas found in the northern sea, whereas other clones were closely related to 

Sphingomonas paucimobilis. Clones from the Alphaproteobacteria SAR clade, which 

contains species unique to ocean environments at the Sea of Japan and Pacific Ocean 

had low similarities (<97.1%) with other members of the SAR clade, suggesting that 

these clones represent novel bacterial species in the SAR clade. These sequences 

appeared randomly throughout the Kosa event as <10% of the total clones in each 

sample (Samples 5 and 6) and significantly increased to 50% of the total after the Kosa 

event finished (Sample 8). 
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4. Discussion 

 

4.1. Environmental conditions and aerosol dynamics 

Kosa carries bioaerosols such as bacteria, fungi, viruses, and mineral particles. 

Bioaerosols play an important role in microbial dispersal and have a significant impact 

on ecosystems, human health, agricultural productivity and climate changes in 

downwind areas (Jaenicke, 2005, Brown and Hovmøller, 2002). Outbreaks of Kosa over 

East Asian region are very frequent in the spring and last for a few days each time. In 

this study, the lidar measurements at Toyama city revealed that dust particles were 

transported to Hokuriku area (Kanazawa city) and that a Kosa event occurred between 

May 1 and May 4, 2011. Epifluorescence microscopy demonstrated that the several 

types of particles such as mineral particles (white particles), organic particles (yellow 

particles), and microbial particles were present in air samples collected at an altitude of 

10 m. DAPI-stained particles with yellow fluorescence have been reported to resemble 

organic materials originating from proteins and other microbial cell components 

(Mostajir et al., 1995) and were observed to be present at the altitude of 3000 m over 

Suzu city, Japan during a Kosa event (Maki et al., 2013).  

The concentration of aerosol particles increased 10– to 100–fold during the dust 

event (Fig. 1). Kosa events have been reported to increase the biomass of airborne 

microorganisms in correspondence with the amount of mineral particles (Hara et al., 

2012) and significantly change bacterial species structures in the free troposphere (Maki 

et al., 2013). The majority of phylotypes recovered from the 12 samples belonged to the 

phyla Cyanobacteria, Alphaproteobacteria, and Firmicutes, and the bacterial 
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compositions consisting of the members from the three phyla showed significant 

dynamics from the initiation of the Kosa to the days after the event had passed (Table 1, 

Fig. 2). 

 

4.2. Cyanobacteria 

Phylogenetic analysis showed that all the clones from Cyanobacteria formed two 

clusters in the marine genus Synechococcus and were closely related to the 

Synechococcus spp. found in the Sea of Japan and East China Sea (Choi and Noh, 2009) 

and coastal areas (Fuller et al., 2013; Fig. 3). Kosa particles reaching Japan are mixed 

with seawater compounds when passing over the Sea of Japan (Zhang et al., 2006). 

Cyanobacteria including Synechococcus spp., are known to be resistant to UV 

irradiation and oxygenic stress because they have to eliminate excess peroxide 

generated from photosynthesis (Latifi et al., 2009, Perelman et al., 2003). In a previous 

study, marine microorganisms such as cyanobacteria were shown to be transported by a 

Kosa event and comprised 20% of clone libraries obtained from air samples collected 

from Europe regions (Polymenakou at al. 2008). Clones affiliated with Synechococcus 

spp. dominated Samples 1 and 2, which had been collected during the first phase of the 

Kosa event, and then decreased to no less than 30% during the sampling period (Fig. 2). 

It is likely that the front air mass of the Kosa event coming from the continental area 

would have blown the cells of marine Synechococcus spp., as well as seawater, up into 

the air; the cells and the seawater would subsequently have fallen down upon the 

downwind area.  
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4.3. Firmicutes 

Sequences related to the Firmicutes members B. subtilis and B. pumilus 

comprised most of the 16S rDNA clone libraries from Samples 4, 6, and 8 (Figs. 2 and 

4), which had been taken at night during the Kosa event. These samples contained 

higher concentrations of aerosol particles than the other samples, in accordance with the 

occurrence of a Kosa event (Fig. 1). Some clones showed more than 99.7% similarity 

with B. subtilis and B. pumilus, which were predominant among aerosols collected at 

high altitudes above the Taklamakan Desert (Maki et al., 2008), from an area downwind 

of Kosa events (Suzu city; Maki et al., 2010), and from the mineral particles collected 

from snowfall at Mount Tateyama (Maki et al., 2011). Species related to B. subtilis were 

isolated from sand from the Gobi Desert (Hua et al., 2007) and are reported to dominate 

in the surface air of Saul city during Kosa events (Jeon et al., 2011). In addition, isolates 

of Bacillus spp. carried by a Kosa event were predominant in air samples taken during a 

free-tropospheric sampling carried out on a North American mountain (Smith et al., 

2012). It has been shown that Bacillus spp. form resistant endospores to enhance their 

survival in the atmosphere (Nicholson et al., 2000). Presumably, at night during the 

Kosa events, microbial particles such as B. subtilis and B. pumilus fell from the free 

troposphere to near ground surface levels in Kanazawa city. 

Unlike to B. subtilis and B. pumilus, the Firmicutes species B. megaterium was 

found in the daytime during the Kosa event and dominated after the dust event finished. 

B. megaterium has rarely been detected at high altitudes above the Taklamakan Desert 

and Kosa arrival areas (Suzu city and Mt. Tateyama; Hau et al., 2007, Kakikawa et al., 

2008). Conceivably, in the daytime, the upward flow of air caused by sunlight may 
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contaminate the surface atmosphere with the local bacterial population from ground 

surface. The trajectories indicated that after the Kosa event finished, the air mass mainly 

remained around Japan for a few days. Thus, it is possible that the B. megaterium 

detected in the samples originated from the local ground surface and was transported to 

the airborne bacterial communities by upper flow. 

 

4.4. Alphaproteobacteria 

The proportion of the clone libraries representing the Alphaproteobacteria 

members of the SAR clade and the genus Sphingomonas fluctuated from 13% to 25% 

and increased at the end phase of Kosa event and after the Kosa event finished (Samples 

5, 6, and 9; Figs. 3 and 6). Members of the SAR clade (Giovannoni and Stingl, 2005) 

and Sphingomonas spp. (Eguchi et al., 1996) are known to be ubiquitous marine 

oligotrophic ultramicrobacteria, which are thought to demonstrate improved survival at 

low substrate concentrations. The SAR clade is composed of ubiquitous and 

unculturable marine bacteria detected in the Sea of Japan (Song et al., 2009) and in 

ocean areas such as the Pacific Ocean (Giovannoni and Stingl 2005). Members of 

Pelagibacter, including the SAR clade, occupy approximately 25%–50% of marine 

bacteria in ocean areas, indicating their ability to survive in extreme environments 

(Morris et al., 2002). Sphingomonas spp. have also been identified as being an 

important part of marine bacterial plankton and are often found in marine bacterial 

communities from north Asian areas (Dieser et al., 2010) and the polar regions 

(Gloeckner et al., 2000). Sphingomonas spp. are often found to comprise the dominant 

bacterial population in the free troposphere over Noto Peninsula, Japan (Maki et al., 

 17 



2013) and in cloud water (Amato et al., 2007). Sphingomonas spp. have been reported 

to be particularly resistant to elevated concentrations of oxidants such as hydrogen 

peroxide, one of the major sources of free radicals in cloud water, and to have the 

capacity to rapidly adapt to changing nutritive conditions (Eguchi et al., 1996; 

Ostrowski et al., 2001). Furthermore, some strains of Sphingomonas spp. have been 

repeatedly isolated from extreme and cold environments such as Arctic and Antarctic 

soils (Baraniecki et al., 2002) and a Greenland ice core (Miteva et al., 2004). Bacterial 

populations that are resistant to various environmental stressors in extreme 

environments, such as oceans or cold regions, would be able to extend their habitats 

efficiently via atmospheric transport. 

 

4.5. Influences of bacterial communities on ecosystems and human societies 

Clone libraries recovered from air samples from May 1 to May 7, 2011 were 

dominated by several bacterial species from the phyla Firmicutes and 

Alphaproteobacteria, which are often associated with effects on plant and animal 

growth and human health (Table 1, Fig. 2). The Firmicutes clones had high similarities 

with B. subtilis, B. pumilus, B. megaterium and Staphylococcus spp. Although the 

overwhelming majority of Firmicutes members are nonpathogenic bacteria, some 

species are well known as pathogens of plants, animals, and humans (e.g., B. pumilus, 

Staphylococcus spp.; Thomas and Whitte, 1991, Yoshida et al., 2001). The 

Alphaproteobacteria clones that were predominant in air samples collected after the 

Kosa event were related to Sphingomonas spp., which are reported to cause human 

infections (Ammendolia at al., 2004) and to be opportunistic pathogens in clinical 
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environments (Kilic et al., 2007). In contrast, many Bacillus strains have been exploited 

for biotechnological applications (Hou et al., 2005) and have been shown to contribute 

to the promotion of plant growth (Yadav et al., 2011). Thus, the transport of airborne 

bacteria provides a mechanism for the dispersal of bacterial populations that can have 

both beneficial and negative influences on human health and plant growth. 

Members of the phyla Cyannobacteria, Firmicutes, and Proteobacteria have often 

been found to contribute to geochemical processes and organic-matter cycles. In natural 

environments, the main roles of the genus Bacillus in Firmicutes appear to involve 

carbon and nitrogen cycling (Das and Mukherjee, 2007, Ulrich et al., 2008). In fact, the 

Bacillus sequences that were predominant in the air samples were related to or identical 

to those of B. subtilis and B. megaterium, which mineralize organic matter, thus 

contributing to the carbon cycle in terrestrial environments (Das and Mukherjee, 2007, 

Ulrich et al., 2008). Moreover, members of the genus Sphingomonas found in the air 

samples included many strains that degrade organic matters such as xenobiotics and 

hydrocarbons (Baraniecki et al., 2002, Stolz, 2009). Members of the phylum 

Cyanobacteria, including Synechococcus spp. have photosynthetic abilities and 

sometimes form blooms that contribute to carbon dioxide cycles in marine ecosystems 

(Stewart and Falconer, 2008). The population of Synechococcus spp. in the atmosphere 

is possibly the seed population for forming blooms in aquatic environments. The 

Pelagibacter group including the SAR clade in Alphaproteobacteria comprises the most 

abundant and ubiquitous clade of heterotrophic bacteria in the ocean (Morris et al., 

2002), and it has been suggested that the seasonal dynamics of these microorganisms 

contribute to organic carbon cycling in ocean (Morris et al., 2005). Therefore, the 
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dispersal of airborne bacterial communities may contribute to geochemical cycles and 

microbial-diversity maintenance in several environments. 

 

5. Conclusion 

This study demonstrated that the airborne bacterial communities in an area 

downwind of a Kosa event significantly varied between the time of the Kosa event and 

the non-Kosa event days during which the air-mass sources changed. In the initial 

phases of the Kosa event, the dust mainly included marine cyanobacteria and seawater 

components. Then, during the middle of the Kosa event, the members of the Firmicutes 

B. subtilis and B. pumilus, which are thought to have been carried by the Kosa event, 

increased. At the end phase of the Kosa event, the air mass over the north areas of the 

Sea of Japan transported the Pelagibacter spp. (SAR clade) and Sphingomonas spp. to 

Kanazawa city. When the air mass remained over Japan after the Kosa event had 

finished, B. megaterium thought to originate from the local bacterial population became 

predominant. Since the amount of airborne bacteria during the non-Kosa period was low, 

the bacterial biomass and species composition may be easily changed by immigrations 

of bacterial populations associated with dust mineral particles and marine bacterial 

populations during Kosa events. It is possible that the bacterial communities around 

human habitats exhibit significant differences in dynamics depending on the appearance 

of a Kosa event and the origin of the air masses participating in the event. The clones 

obtained from the air samples were related to several species that were found to be 

associated with plant and animal growth, human health, geochemical processes, and 

organic-matter cycles. In the future, the impact of airborne bacterial populations on 
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human societies and bio-ecosystems in environments downwind of Kosa events should 

be investigated using physiological experiments targeting bacterial cultures and genetic 

analysis of functional genes. 
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Figure Legends 

 

Fig. 1 Temporal variations of concentrations of all bacterial particles (open circles) (a), 

and white particles (closed circles) and yellow fluorescence particles (closed triangles) 

of 0.2–2.5 µm (b), 2.5–5.0 µm (c), and >5.0 µm in diameter (d) in bioaerosol samples 

collected at a 10-m altitude in Kanazawa city from May 1 to May 7, 2011. 

 

Fig. 2 Change in compositions of the partial sequences of 16S rDNA clones (ca. 400 bp) 

obtained from bioaerosol samples collected at a 10-m altitude in Kanazawa city from 

May 1 to May 7, 2011. 

 

Fig. 3 Phylogenetic tree including the partial sequences of 16S rDNA amplicons 

obtained from the clone libraries (Kzp series) from the bioaerosol samples collected in 

Kanazawa city and the known members of Cyanobacteria. The phylogenetic tree was 

calculated from a dissimilarity matrix of an approximately 1,400 bp alignment (E. coli 

numbering 92 to 1,475) using a neighbor-joining algorithm. The sample information and 

the accession number of each reference sequence are given in parentheses. Open circles 

at branch points indicate that bootstrap values obtained by neighbor-joining analysis 

exceeded 50% (after 1,000 resamplings). 

 

Fig. 4 Phylogenetic tree including the partial sequences of 16S rDNA amplicons 

obtained from the clone libraries (Kzp series) from the bioaerosol samples collected in 

Kanazawa city and the known members of Firmicutes. The phylogenetic tree was 
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calculated from a dissimilarity matrix of an approximately 1,400 bp alignment (E. coli 

numbering 71 to 1,432) using a neighbor-joining algorithm. The sample information and 

the accession number of each reference sequence are given in parentheses. Open circles 

at branch points indicate that bootstrap values obtained by neighbor-joining analysis 

exceeded 50% (after 1,000 resamplings). 

 

Fig. 5 Phylogenetic tree including the partial sequences of 16S rDNA amplicons 

obtained from the clone libraries (Kzp series) from the bioaerosol samples collected in 

Kanazawa city and the known members of Alphaproteobacteria. The phylogenetic tree 

was calculated from a dissimilarity matrix of an approximately 1,400 bp alignment (E. 

coli numbering 86 to 1,437) using a neighbor-joining algorithm. The sample 

information and the accession number of each reference sequence are given in 

parentheses. Open circles at branch points indicate that bootstrap values obtained by 

neighbor-joining analysis exceeded 50% (after 1,000 resamplings). 
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Category Clone No.*1
of

clones*2 Sampling period*3
Length

(bp)
GenBank

accession no. Closest relative
Similarity

(%)*4

Acidobacteria KZtp1-28 1 1 597 AB900929 bacterium Ellin6099 (AY234751) 90.3
Actinobacteria KZtp12-17 4 1,2,12 602 AB900930 bacterium SCGC AAA071-N11 (JF488663) 94.2

KZtp3-22 1 3 721 AB900931 Actinoplanes pyriformis  (AJ277582|) 85.6
Cyanobacteria KZtp1-1 80 1,2,3,4,6,7,8,9,10,11 1479 AB900932 Synechococcus sp. CC9902 (CP000097) 96.2

KZtp3-16 13 2,3,6,11 1360 AB900933 Synechococcus sp. CC9605 (CP000110) 99.8
KZtp1-19 5 1,2,7 454 AB900934 bacterium WHC3-9 (JQ269283) 91.2
KZtp10-6 4 1,7,10 479 AB900935 Synechococcus sp. CC9311 (CP000435) 90.9
KZtp4-12 1 4 710 AB900936 Halospirulina  sp. EF17(2012) (JX912466) 95.5

Firmicutes KZtp5-8 96 2,4,5,7,10,11,12 1580 AB900937 Bacillus megaterium  (DQ789400) 100.0
KZtp6-42 60 6,8 1459 AB900938 Bacillus  sp. 4115 ( JX566594) 99.9
KZtp9-16 16 4,6,8,9 1432 AB900939 Bacillus subtilis (KC542358) 100.0
KZtp2-5 7 1,2 1492 AB900940 [Brevibacterium] halotolerans (JX644589) 99.8
KZtp8-30 4 8, 10 1460 AB900941 Bacillus subtilis  (EF523474) 99.7
KZtp6-1 3 6, 8 1515 AB900942 Staphylococcus hominis  (FJ768458) 99.9
KZtp5-10 2 5,7 613 AB900943 Bacillus megaterium (KF419129) 100.0
KZtp7-43 2 7 600 AB900944 Bacillus sp. 6014 (JX566659) 99.3
KZtp6-38 2 6 596 AB900945 Bacillus sp. H69 (KC466132) 99.8
KZtp8-32 1 8 1462 AB900946 Bacillus subtilis (JQ435698) 98.4
KZtp5-26 1 5 621 AB900947 Bacillus sp. M81 ( KC466182) 99.8

Eukaryota KZtp4-9 11 1,4,9 710 AB900948 Quercus nigra  chloroplast  (HQ664601) 99.9
KZtp2-13 11 2,3,4,5 694 AB900949 Quercus nigra chloroplast  (HQ664601) 99.7
KZtp7-13 6 7,8 567 AB900950 Pinus merkusii  chloroplast (FJ899579) 99.8
KZtp12-26 6 2,6,7,12 599 AB900951 Pinus pinaster  chloroplast (FJ899583) 100
KZtp3-19 1 3 717 AB900952 Micromonas sp. RCC299 chloroplast (FJ85 99.3

Proteobacteria KZtp5-4 21 5,7,11 1547 AB900953 Sphingomonas paucimobilis (KC017473) 100
KZt-9-1 15 9 1424 AB900954 bacterium WHC5-1 (JQ269290) 99.2
KZtp3-3 12 1,2,3,4,8,9,10 1549 AB900955 bacterium SH1-7 (JQ269250) 91.6
KZtp7-24 2 7,11 1498 AB900956 Sphingomonas paucimobilis  (KC017473) 97.4
KZtp4-2 2 4 740 AB900957 Escherichia coli DH1 (CP001637) 99.9
KZtp2-23 2 2,4 625 AB900958 Alpha proteobacterium IMCC10406 (FJ532 99.4
KZtp5-16 1 5 622 AB900959 Herbaspirillum aurantiacum (HQ830497) 99.5
KZtp5-1 1 5 691 AB900960 Cupriavidus metallidurans (JQ659694) 99.6
KZtp7-37 5 7 599 AB900961 Bacterium SH1-7 (JQ269250) 90.9
KZtp6-14 3 6 535 AB900962 Alteromonas macleodii (CP004855) 92.5
KZtp1-17 1 1 650 AB900963 Acinetobacter calcoaceticus (JX010982) 99.6

*1  Clones of 16S rDNA library were named as the KZtp serie.

*2  The numbers of the clones in 16S rDNA clone libraries. 

*3  Sampling period when the air sample was collected.

*4  Similarity value between each isolate and the closest relative in databases.

Table 1. Phylogenetic affiliation of 16S rDNA gene sequences obtained from clone libraries.  
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