One- pot st er eosel ective synt hesi s of 2- acyl aziridi nes and 2- acyl pyrrolidi nes from N (pr opargyl ic) hydr oxyl ami nes

著者	M yamot o Yoshi aki, WAda Nor i hi ro, Soet a Takahi ro, Fuj i nami Shuhei, I nomat a Kat suhi ko, Ukaj i Yut aka
j our nal or publ i cat i on titl e	Chemi st ry - An Asi an Jour nal
vol une	8
nunber	4
page range	$824-831$
year	$2013-04$ 01
URL	ht t p: //hdl . handl e. net /2297/34680

One-pot Stereoselective Syntheses of 2-Acylaziridines and 2-Acylpyrrolidines from N-(Propargylic)hydroxylamines

Yoshiaki Miyamoto, Norihiro Wada, Takahiro Soeta, Shuhei Fujinami, Katsuhiko Inomata, and Yutaka Ukaji* ${ }^{[a]}$

Abstract: A stereoselective direct transformation of N (propargylic)hydroxylamines into cis-2acylaziridines was realized by the combined use of AgBF_{4} and CuCl . Copper salts were confirmed to promote the transformation of the
intermediary 4-isoxazolines to 2acylaziridines. Both 3-aryl and 3-alkyl substituted 2-acylaziridines could be prepared by this method. Furthermore, subsequent 1,3-dipolar cycloaddition of azomethine ylides generated in situ from the intermediary 2 -acylaziridines with maleimides was achieved by one-
pot procedure to afford the corresponding 2-acylpyrrolidines consisting of an octahydropyrrolo[3,4c] pyrrole skeleton stereoselectively.

Keywords: 2-acylaziridine •2acylpyrrolidine - 4-isoxazoline • rearrangement • azomethine ylide

Introduction

2-Acylaziridines are versatile synthetic intermediates for a wide range of important nitrogen-containing chemicals, for example via ring-opening reactions, ${ }^{[1]}$ and some of them have biological activities. ${ }^{[2]}$ General procedure to prepare 2-acylaziridines includes metal catalyzed addition of nitrene to alkenes, ${ }^{[3]}$ metal catalyzed carbene addition to imine functions, ${ }^{[4]}$ Micheal addition-elimination of hydroxylamine and hydrazine derivatives to enones, ${ }^{[5]}$ ringclosure of 2-azido-3-hydroxy ketones, ${ }^{[6]}$ and nucleophilic reaction of amines to α, β-dibromoketones. ${ }^{[7]}$ Although trans-2-acylaziridines could be readily prepared, stereoselective synthesis of cis-2acylaziridines is rather difficult. Only a few methods for preparation of cis-3-alkyl substituted 2 -acylaziridines were reported. ${ }^{[4, \mathrm{~b}, \mathrm{~d}]}$ Baldwin rearrangement of 4 -isoxazolines was known to afford 2acylaziridines, however, the reaction conditions were drastic and the diastereoselectivity was not always good. ${ }^{[8]}$ Although cobaltmediated rearrangement of 4 -isoxazolines also gave the corresponding 2-acylaziridines, stereoselectivity was not so high. ${ }^{[8 \mathrm{Bi]}}$
[a] Y. Miyamoto, N. Wada, Dr. T. Soeta, Dr. S. Fujinami, Prof. Dr. K. Inomata, Prof. Dr. Y. Ukaji
Division of Material Sciences, Graduate School of Natural Science and Technology
Kanazawa University
Kakuma, Kanazawa, Ishikawa 920-1192, Japan
Fax: (+81)76-264-5742
E-mail: ukaji@staff.kanazawa-u.ac.jp
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/asia.200xxxxxx.((Please delete if not appropriate))
Recently, microwave-assisted rearrangement was reported, however, the methods was limited to 3 -aryl substituted acylaziridines. ${ }^{[8 \mathrm{~m}]}$

Recently, we have reported a one-pot reaction consisting of an enantioselective nucleophilic addition of alkynylzinc reagents to nitrones and a subsequent cyclization to give the corresponding 4isoxazolines with high enantioselectivity. ${ }^{[9]}$ In order to prepare 4isoxazolines more efficiently, the cyclization of N (propargylic)hydroxylamines to 4-isoxazolines was investigated in the presence of a metal salt, and AgBF_{4} was found to be a catalyst of choice for the cyclization. ${ }^{[10]}$ During the investigation of the metal catalyzed ring closure of N-(propargylic)hydroxylamines, cis-2acylaziridines were found to be produced diastereoselectively in the presence of a copper salt at rt . Herein, we wish to report the details about one-pot preparation of 2-acylaziridines from N (propargylic)hydroxylamines via ring closure to 4 -isoxazolines and the successive Baldwin rearrangement in the presence of AgBF_{4} and a copper salt. ${ }^{[11]}$ Furthermore, one-pot stereoselective synthesis of 2acylpyrrolidines via 1,3-dipolar cylcloaddition of azomethine ylides generated from the 2 -acylaziridines is also described.

Results and Discussion

The cyclization of N-benzyl- N-(1,3-diphenylprop-2ynyl)hydroxylamine (1a) was examined in the presence of various kinds of metal salts without an amine, and it was found that AgBF_{4} was a good catalyst for cyclization to 4 -isoxazolines. ${ }^{[10]}$ During the survey of metal salts, it was found that not only 4 -isoxazoline $\mathbf{2 a}$ but also a cis-2-acylaziridine $\mathbf{3} \mathbf{a}^{[8 i, 12]}$ was produced with complete diastereoselectivity when CuCl was used in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt (Table 1, Entry 1). Then, direct transformation of 1a to 2-acylaziridine 3a was intensively investigated and the results were summarized in Table 1.

The reaction by the use of 1.0 equiv of CuCl_{2} or CuI was messy and the 2 -acylaziridine $\mathbf{3 a}$ was not obtained (Entries 2 and 3). The use of cationic copper salts afforded the cis-2-acylaziridine $\mathbf{3 a}$ as a major product (Entries 4-7), however, the chemical yield was not high. By monitoring the reaction using TLC, it was observed that the 4 -isoxazoline was once produced and gradually consumed. In order to promote the cyclization step to 4-isoxazoline, N -
(propargylic)hydroxylamine was firstly treated with 0.1 equiv AgBF_{4} for 7 h and then CuCl was added to the reaction mixture: The chemical yield of $\mathbf{3 a}$ was improved (Entry 8). The treatment with AgBF_{4} together with CuCl further increased the yield of $\mathbf{3 a}$ (Entry 9). By the use of 0.2 equiv of AgBF_{4} and 1.0 equiv of CuCl , the reaction proceeded rather smoothly to afford $\mathbf{3 a}$ in more than 80% yield (Entries 10 and 11). Solvent effect was examined in the reaction using 0.2 equiv of AgBF_{4} and 1.0 equiv of CuCl , and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was found to be best among the examined solvents (Entries $11-16)$. Although combination of 0.2 equiv of AgBF_{4} and 1.0 equiv of several cationic copper salts were examined, the reactions were not so clean and resulted in decrease of the chemical yields of $\mathbf{3 a}$ (Entries 17-20).

In order to explore the possibilities reducing the amount of copper salt, the reaction using 0.2 equiv of CuCl with 0.2 equiv of AgBF_{4} was carried out: The transformation proceeded a little sluggishly to afford 3a, but still in comparably good yield (Entries 21 and 22). In the present one-pot reaction, the active copper species was presumed to be CuBF_{4} accompanied with generation of AgCl . Then the reaction in the presence of only 0.2 equiv of $\mathrm{CuBF}_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ was again examined to give the cis-2-acylaziridine 3a in good yield (Entry 23), although the use of 1.0 equiv of $\mathrm{CuBF}_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}$ made the reaction rather complicated (Entry 6). Further addition of AgCl slightly decreased the yield (Entry 24). The use of 0.2 equiv of $\mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}$ was also effective to give 3a in good yield (Entry 25). Consequently, the combined use of 0.2 equiv of AgBF_{4} and 1.0 equiv of CuCl was the best for the sequential cyclization and Baldwin rearrangement.

Table 1. Reaction conditions for direct transformation of 1a into 3a

		$\begin{aligned} & \quad \begin{array}{c} \mathrm{AgBF}_{4}\left(n^{1} \mathrm{e}\right. \\ \mathrm{CuX}_{\mathrm{m}}\left(n^{2} \mathrm{e}\right. \\ \text { solvent, rt } \end{array} \\ & \mathrm{Ph}^{2} \end{aligned}$	 2a				
Entry	$n^{l} /$ equiv	$\mathrm{CuX}_{\mathrm{m}}$	$n^{2} /$ equiv	solvent	t / h	2a / \%	3a/\%
1	0	CuCl	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	41	16	$2^{[a]}$
2	0	CuCl_{2}	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	44	--	--
3	0	CuI	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	44	--	--[${ }^{\text {b] }}$
4	0	$\mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}$	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	17	23	58
5	0	$\mathrm{Cu}(\mathrm{OTf})_{2}$	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	48	--	45
6	0	$\mathrm{CuBF}_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}$	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	7	--	45
7	0	$\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	--	48
$8^{[\mathrm{c}]}$	0.1	CuCl	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	41	24	53
9	0.1	CuCl	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	32	61
10	0.2	CuCl	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	13	84
11	0.2	CuCl	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	20	4	88
12	0.2	CuCl	1.0	MeCN	20	24	-- ${ }^{[a]}$
13	0.2	CuCl	1.0	MeOH	20	12	21
14	0.2	CuCl	1.0	THF	20	23	47
15	0.2	CuCl	1.0	$\mathrm{Et}_{2} \mathrm{O}$	20	22	$6^{\text {[a] }}$
16	0.2	CuCl	1.0	toluene	20	28	$13^{[a]}$
17	0.2	$\mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}$	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	7	--	35
18	0.2	$\mathrm{Cu}(\mathrm{OTf})_{2}$	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	--	13
19	0.2	$\mathrm{CuBF}_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}$	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	--	42
20	0.2	$\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$	1.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	10	42
21	0.2	CuCl	0.2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	10	58
22	0.2	CuCl	0.2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	23	--	82
23	0	$\mathrm{CuBF}_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}$	0.2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	23	--	74
24	$0.2{ }^{\text {[d] }}$	$\mathrm{CuBF}_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}$	0.2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	23	--	65
25	0	$\mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}$	0.2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	41	--	78

[a] The hydroxylamine 1a was recovered in 69\% (Entry 1), 32\% (Entry 12), 65\% (Entry 15), and 7% (Entry 16) yields, respectively. [b] Most of the hydroxylamine 1a was recovered. [c] The hydroxylamine 1a was firstly treated with AgBF_{4} for 7 h , and then CuCl was added to the resulting reaction mixture. [d] 0.2 Equiv of AgCl was used instead of AgBF_{4}.

Toward the rearrangement from 4-isoxazoline to 2-acylaziridine, evaluation of copper salts was separately performed, that is, the 4isoxazoline 2a was treated with copper salts as shown in the Table 2.

Although the reaction was rather sluggish when only CuCl was used, addition of AgBF_{4} again promoted the rearrangement (Entries 1 and 2). Cationic $\mathrm{Cu}(\mathrm{I})$ salts, especially $\mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}$, were found to be effective as a promoter for this rearrangement (Entries 3 and 5), whereas $\mathrm{Cu}(\mathrm{II})$ salts were not effective (Entries 4 and 6).

Table 2. Evaluation of copper salts for Baldwin rearrangement

[a] The 4 -isoxazoline $2 \mathbf{a}$ was recovered in 68% yield. [b] In addition to $\mathrm{CuCl}, 0.2$ equiv of AgBF_{4} was also added to the reaction.

The one-pot cyclization-rearrangement was applied to several N (propargylic)hydroxylamines $\mathbf{1}$ bearing aromatic and/or aliphatic substituents by the treatment with AgBF_{4} (0.2 equiv) and $\mathrm{CuCl}(1.0$ equiv). As listed in Table 3, the corresponding cis-acylaziridines 3 were produced stereoselectively. ${ }^{[12]}$ A cis-2-heptanoyl-3phenylaziridine $\mathbf{3 b}$ was obtained in reasonable chemical yield (Entry 2). In the case of 2-pivaloylaziridine $\mathbf{3 c}$, a small amount of transisomer was furnished (Entry 3). Although transformation of propylsubstituted hydroxylamine 1d was not so clean and a small amount of the corresponding trans-isomer and a dehydrated imine $4 d$ were formed, cis-2-benzoyl-3-propylaziridine 3d was predominantly produced (Entry 4). In the case of cyclohexyl-substituted N (propargylic)hydroxylamine $\mathbf{1 e}$, increase of the amount of AgBF_{4} could improve the chemical yield (Entries 5 and 6). The reaction of a hydroxylamine $\mathbf{1 f}$, in which both R^{1} and R^{2} were alkyl groups, afforded cis-2-acylaziridine 3f stereoselectively (Entry 7).

[a] The corresponding trans-isomer of $\mathbf{3}$ was obtained in 6\% (Entry 3) and 10\% (Entry 4) yields, respectively. [b] An imine, 1-phenyl-N-(1-phenylhex-1-yn-3ylidene)methanamine ($\mathbf{4 d}$), was obtained in 28% yield. [c] The amount of AgBF_{4} was 0.3 equiv.

In the case of $\mathrm{Co}_{2}(\mathrm{CO})_{8}(0.5$ equiv) mediated rearrangement of 4-isoxazoline, a radical pathway was proposed to give $2.8 / 1$ mixture of cis/trans-2-acylaziridines starting from 1a. ${ }^{[8 i]}$ When 1a was treated with 1.0 equiv of $\mathrm{CuOTf}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{0.5}$ under a similar conditions (in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ at $80^{\circ} \mathrm{C}$ for 0.5 h), 3a was obtained in 80% yield and the diastereoselectivity was still high ($\mathbf{3 a}$ /trans-isomer $=20 / 1$, determined by ${ }^{1} \mathrm{H}$ NMR spectrum of the crude products), different from the result of the reaction catalyzed by $\mathrm{Co}_{2}(\mathrm{CO})_{8}$. Furthermore, addition of galvinoxyl free radical did not affect the reaction from

2a to 3a (according to Entry 3 in Table 2) as a radical inhibitor. These facts might suggest that a radical pathway might be ruled out. Although the precise reaction mechanism of the present rearrangement is not yet clear, $[1,3]$-sigmatropic rearrangement proposed for original Baldwin rearrangement without metal salts is a probable pathway to afford the cis-2-acylaziridine (Figure 1). ${ }^{[8 c, \mathrm{~d}, \mathrm{f}]}$ The reaction might be activated by coordination of nitrogen to copper resulting in weakening the $\mathrm{N}-\mathrm{O}$ bond (Figure 1).

Figure 1. [1,3]-Sigmatropic rearrangement proposed for the present transformation

2-Acylaziridines are well-known to generate azomethine ylides via thermal ring-opening, which proceeds through a conrotatory CC bond-breaking process according to the Woodward-Hoffmann rules. Following 1,3-dioplar cycloaddition of the generated azomethine ylides with electron-deficient olefins afforded 2acylpyrrolidine skeletons, ${ }^{[13,14]}$ some of which were bioactive. ${ }^{[15]}$ For example, the cycloaddition of azomethine ylides generated from cisand/or trans-2-benzoylaziridines with N-phenylmaleinimde gave a diastereomeric mixture of pyrrolidines depends on the reaction conditions. ${ }^{[14 d, e]}$ However, cis-2-acylaziridines were not so easy to be prepared and related cycloaddition of azomethine ylides derived from 2-acylaziridines with various substituents including aliphatic groups at C 3 position was scarcely reported. Now, we could prepare 2-acylaziridines possessing aromatic and/or aliphatic substitutents in a cis-selective manner. Therefore, we investigated 1,3-dipolar cycloaddition of azomethine ylides generated in situ from the $2-$ acylaziridines via one-pot procedure starting from N (propargylic)hydroxylamines 1 .

After treatment of N-(propargylic)hydroxylamines $\mathbf{1 a}$ with 0.2 equiv of AgBF_{4} and 1.0 equiv of CuCl for 24 h at rt in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~N}$ methylmaleimide $(\mathbf{5 A})$ was added to the reaction mixture. When the reaction was carried out at rt , the desired product was not obtained. However, the expected 1,3-dipolar cycloaddition proceeded at $75^{\circ} \mathrm{C}$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$, after exchanging the solvent from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to give a 2-acylpyrrolidine $\mathbf{6 a A}$ consisting of an octahydropyrrolo[3,4c] pyrrole skeleton diastereoselectively in 33% yield (Table 4, Entry 1). Cycloaddition to N-benzylmaleimide (5B) afforded the corresponding cycloadduct $\mathbf{6 a B}$ in a similar chemical yield (Entry 2). Due to easy handling of N-benzylmaleimide (5B) and its product $\mathbf{6 a B}$ especially for their relatively high solubility, 1,3-dipolar cycloaddition was further examined using 5B. When the reaction temperature was increased, the chemical yield was improved (Entry 3). The cycloadduct $\mathbf{6 a B}$ was obtained in 60% yield when cycloaddition was carried out at $145{ }^{\circ} \mathrm{C}$ in xylene (Entry 4). When the reaction was performed under more condensed conditions, the chemical yield was further improved up to 85% yield (Entry 5).

One-pot synthesis of substituted pyrrolidines was then investigated starting from N -(propargylic)hydroxylamines $\mathbf{1}$ possessing not only aromatic but also aliphatic substituents. Phenylsubstituted pyrrolidines $\mathbf{6} \mathbf{b B}$ and $\mathbf{6 c B}\left(\mathrm{R}^{1}=\mathrm{Ph}\right)$ were obtained in ca 60% yields with complete diastereoselectivity (Entries 6 and 7). It was revealed that 1,3 -dipolar cycloaddition of azomethine ylides via 2-acylaziridines 3d-f bearing an aliphatic substituent at C3 position $\left(\mathrm{R}^{1}=\right.$ alkyl) afforded the corresponding pyrrolidines stereoselectively although total chemical yields were not good enough (Entries 8-11). In the case of 5 -cylohexyl-substituted pyrrolidines $\mathbf{6 e} \mathbf{A}$ and $\mathbf{6 e B}$, chemical yields were still over 50%
yields after 3 step-reaction consisting of ring-closure, Baldwin rearrangement, and 1,3-dipolar cycloaddition (Entries 9 and 10).

Table 4. One-pot preparatio (propargylic)hydroxylamines						2-acylpyrrolidines			
		R^{2}	AgBF_{4} CuCl CH_{2}	0.2 eq .0 equ $\mathrm{l}_{2}, \mathrm{rt}$,	quiv) uiv)	$1.2 \text { ed }$ ${ }^{\circ} \mathrm{C}, t^{2}$			
Entry	R^{1}	R^{2}	R	t^{\prime} / h	solvent	T/ ${ }^{\circ} \mathrm{C}$	t^{2} / h	6	Yield / \%
1	Ph	Ph	Me	24	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}^{\left[{ }^{[a]}\right.}$	75	24	6aA	33
2	Ph	Ph	Bn	24	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}^{[\mathrm{a}]}$	75	24	6 aB	32
3				24	toluene ${ }^{[2]}$	110	6		53
4				27	xylene ${ }^{[1]}$	145	1		60
5				24	xylene ${ }^{[b]}$	145	2		85
6	Ph	$n \mathrm{Hex}$	Bn	31	xylene ${ }^{[b]}$	145	3	6bB	56
7	Ph	$t \mathrm{Bu}$	Bn	31	xylene ${ }^{[b]}$	145	1	6 cB	66
8	$n \mathrm{Pr}$	Ph	Bn	48	xylene ${ }^{[b]}$	145	2	6 dB	39
$9^{[c]}$	$c \mathrm{Hex}$	Ph	Me	27	xylene ${ }^{[b]}$	145	3	6 e A	52
$10^{\text {[c] }}$	$c \mathrm{Hex}$	Ph	Bn	27	xylene ${ }^{[b]}$	145	3	6 eB	53
11	Me	$n \mathrm{Hex}$	Bn	24	xylene ${ }^{[b]}$	145	1.5	6fB	27

[a] Concentration was $0.06 \mathrm{mmol}_{\mathrm{mL}}{ }^{-1}$. [b] Concentration was $0.25 \mathrm{mmol} \mathrm{mL}^{-1}$.
[c] Amount of AgBF_{4} was 0.3 equiv.

Figure 2. X-ray structure of $\mathbf{6 a B}$

Figure 3. X-ray structure of 6 e A

Relative stereochemistry of the product $\mathbf{6 a b}$ and $\mathbf{6 e A}$ was determined to be $3 \mathrm{a} R^{*}, 4 R^{*}, 6 R^{*}, 6 \mathrm{a} S^{*}$ by X-ray crystallographic analyses of their single crystals (Figures 2 and 3). The stereochemistry of other cycloadducts was tentatively assigned to be also $3 \mathrm{a} R^{*}, 4 R^{*}, 6 R^{*}, 6 \mathrm{a} S^{*}$, since the coupling constants $J_{3 \mathrm{a}-4}$ and $J_{6-6 \mathrm{a}}$ between the methine protons in their ${ }^{1} \mathrm{H}$ NMR spectra were in accordance with those of $\mathbf{6 a B}$ and $\mathbf{6 e A}$, the stereochemistry of which was determined by X-ray crystallography. Based on this assignment, 1,3-dipolar cycloaddition was considered to proceed via exo-mode with S-shaped azomethine ylide 7 and/or endo-mode with S-shaped azomethine ylide 8 regardless of R^{1}, whether it is an aromatic or aliphatic substituent (Scheme 1) ${ }^{[16]}$ In the case of pyrrolidines $\mathbf{6 c B}$ and $\mathbf{6 d B}$, the products were isolated as single diastereomers although the intermediary cis-2-acylaziridines might be contaminated with their trans-isomers as observed in Table 3 (Entries 3 and 4). We confirmed that 1,3-dipolar cycloaddition of
the isolated trans-isomer of $\mathbf{3 c}$ with $\mathbf{5 B}$ gave $\mathbf{6 c B}$ stereoselectively at $145{ }^{\circ} \mathrm{C}$ in xylene in 84% yield (eq. 1). ${ }^{[17]}$ These results suggested existence of the equilibrium between W-dipole 9 , which might be favorable than U-dipole, ${ }^{[18]}$ and S-dipole 7 and/or 8 under high temperature even in the case of 3 -alkyl substituted 2 -acylaziridine 3d. ${ }^{[19]}$ Therefore, the trans-2-acylaziridine also afforded 6 via 1,3dipolar cycloaddition through S-dipole 7 and/or 8 .

Scheme 1. Proposed pathway of 1,3-dipolar cycloaddition

Conclusion

As described above, a direct transformation of N (propargylic)hydroxylamines into cis-2-acylaziridines has been developed. Furthermore, one-pot stereoselective preparation of 2acylpyrrolidine consisting of an octahydropyrrolo[3,4-c]pyrrole skeleton was achieved via 1,3-dipolar cycloaddition of azomethine ylides, generated in situ by thermal ring-opening of the intermediary 2-acylaziridines, in the presence of maleimides. The present methods would be quite useful for the synthesis of a wide range of nitrogen containing biologically active compounds because cis-2acylaziridines and 2-acylpyrrolidines are versatile synthons for such chemicals.

Experimental Section

General Remarks: The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL ECS 400 NMR (400 MHz) spectrometer in CDCl_{3} and the chemical shifts were determined in the δ-scale relative to TMS ($\delta=0 \mathrm{ppm})$ as an internal standard. The ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL ECS 400 NMR (100 MHz) spectrometer in CDCl_{3} and the chemical shifts were determined in the δ-scale relative to $\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm})$ as an internal standard. The IR spectra were performed on a JASCO FT/IR-230 spectrometer. All measurements for X-ray crystallographic analyses were made on a Rigaku/MSC Mercury diffractometer with graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. Elemental analyses were carried out on a Yanaco CHN Corder MT-5 elemental analyzer. The MS spectra were recorded with JEOL JMS-SX102A and JMS-700 mass spectrometers. All solvents were distilled and stored over drying agents. Merck silica gel 60 PF254 (Art. 7749) and Cica silica gel 60 N spherical neutral (37563-84) were used for thin-layer chromatography (TLC) and flash column chromatography, respectively. All of the melting points were determined with a micro melting apparatus (YanagimotoSeisakusho) and are uncorrected.

Representative procedure of direct transformation of N (propargylic)hydroxylamine 1a to 2-acylaziridine 3a (Table 3, Entry 1): A mixture of N-(propargylic)hydroxylamine 1a ($219 \mathrm{mg}, 0.7 \mathrm{mmol}$), $\mathrm{AgBF}_{4}(27 \mathrm{mg}, 0.14 \mathrm{mmol})$ and $\mathrm{CuCl}(69 \mathrm{mg}, 0.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred at rt under an argon atmosphere. After 20 h , the mixture was filtered through a pad of Celite and the solvent was removed under reduced pressure. The residue was purified by preparative TLC (hexane/AcOEt $=5 / 1$) to give cis-2-acylaziridine 3a (193 mg, 88% yield) and 4 isoxazoline $2 \mathbf{a}^{[20]}$ ($9 \mathrm{mg}, 4 \%$ yield).
In a similar manner, 2-acylaziridines $\mathbf{3 b}$ - $\mathbf{3 f}$ were prepared from the corresponding N (propargylic)hydroxylamines $\mathbf{1 b}-\mathbf{1 f}$, respectively.
$\left[\left(2 R^{*}, 3 R^{*}\right)\right.$-1-Benzyl-3-phenylaziridin-2-yl](phenyl)methanone (3a): ${ }^{[8 \mathrm{i}]} \quad R_{\mathrm{f}}=0.35$ (hexane/AcOEt $=5 / 1$); a solid; m.p. $94-96{ }^{\circ} \mathrm{C}$ (from EtOH/hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 3.22(\mathrm{~d}$, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.30(\mathrm{~d}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.71(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 3.93(\mathrm{~d}, 1 \mathrm{H}, J=$ $14.0 \mathrm{~Hz}), 7.01-7.40(\mathrm{~m}, 13 \mathrm{H}), 7.77(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 49.6,51.0,63.5$, $127.0,127.2,127.4,127.7,127.8,127.9,128.2,132.8,134.8,136.7,137.7,192.9$; IR $(\mathrm{KBr}) 3027,1681,1495,1449,1355,1223,1056,935,747,737,707,696 \mathrm{~cm}^{-1}$.
1-[(2R*,3R*)-1-Benzyl-3-phenylaziridin-2-yl]heptan-1-one (3b): $\quad R_{\mathrm{f}}=0.45$ (hexane/AcOEt $=5 / 1$); an oil; ${ }^{1} \mathrm{H}$ NMR $\delta 0.80(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}), 0.88-1.30(\mathrm{~m}, 8 \mathrm{H})$, $1.88(\mathrm{ddd}, 1 \mathrm{H}, J=17.4,8.2,6.4 \mathrm{~Hz}), 2.20(\mathrm{ddd}, 1 \mathrm{H}, J=17.4,8.2,6.4 \mathrm{~Hz}), 2.64(\mathrm{~d}, 1 \mathrm{H}$, $J=7.0 \mathrm{~Hz}), 3.14(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.69(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.78(\mathrm{~d}, 1 \mathrm{H}, J=13.8$ Hz), 7.18-7.43 (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\delta 14.0,22.3,22.8,28.5,31.4,40.7,48.6,52.4,64.0$, $127.36,127.43,127.8,128.10,128.14,128.4,135.3138 .0,207.4$; IR (neat) 3062, 3031, 2928, 2857, 1699, 1604, 1496, 1454, 1376, 1204, 1067, 1029, 738, $699 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{EI}^{+}\right)\left(\mathrm{M}^{+}\right)$, Found: m / z 321.2087; Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}: 321.2093$.
1-[(2R*,3R*)-1-Benzyl-3-phenylaziridin-2-yl]-2,2-dimethylpropan-1-one (3c): $R_{\mathrm{f}}=0.45$ (hexane/AcOEt $=5 / 1$); a solid; m.p. $85-88{ }^{\circ} \mathrm{C}$ (from EtOH/hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 0.96$ (s, $9 \mathrm{H}), 3.05(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.12(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.67(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 3.94$ $(\mathrm{d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 7.19-7.41(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.7,43.2,49.4,50.0,63.4,126.8$, 127.1, 127.4, 127.5, 128.1, 134,9, 137.7, 206.6; IR (KBr) 3027, 2973, 1703, 1604, 1495, $1455,1378,1312,1265,1091,1027,840,758,732 \mathrm{~cm}^{-1}$; Found: C, $81.81 ;$ H, 7.79 ; N, 4.79%; Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}: \mathrm{C}, 81.87$; $\mathrm{H}, 7.90$; $\mathrm{N}, 4.77 \%$.
1-[(2S*,3 $\left.R^{*}\right)$-1-Benzyl-3-phenylaziridin-2-yl]-2,2-dimethylpropan-1-one (trans-isomer of 3 c$): R_{\mathrm{f}}=0.50$ (hexane/AcOEt $=5 / 1$); an oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.04(\mathrm{~s}, 9 \mathrm{H}), 3.15(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.5 \mathrm{~Hz}), 3.37(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 3.93(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 4.20(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz})$, $7.19-7.41(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.7,44.6,45.9,49.7,54.0,126.3,126.9,128.2,128.4$, 128.5, 138.9, 139.3, 210.2; IR (neat) 3038, 2966, 1683, 1541, 1507, 1457, 1395, 1362, 1073, 752, $698 \mathrm{~cm}^{-1}$; HRMS (EI $)\left(\mathrm{M}^{+}\right)$, Found: m / z 293.1774; Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}$: 293.1780.
[(2R*,3R*)-1-Benzyl-3-propylaziridin-2-yl](phenyl)methanone (3d): $\quad R_{\mathrm{f}}=0.40$ (hexane $/ \mathrm{AcOEt}=4 / 1$); an oil; ${ }^{1} \mathrm{H}$ NMR $\delta 0.80(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.18-1.52(\mathrm{~m}, 4 \mathrm{H})$, $2.21(\mathrm{q}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.08(\mathrm{~d}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.61(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 3.77(\mathrm{~d}, 1 \mathrm{H}$, $J=13.7 \mathrm{~Hz}), 7.22-7.56(\mathrm{~m}, 8 \mathrm{H}), 8.00(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.7,20.6,29.6$, $47.4,48.9,64.1,127.1,128.0,128.1,128.3,128.5,133.1,137.3,137.9,195.2$; IR (neat) 3059, 2954, 2869, 1673, 1596, 1578, 1496, 1449, 1389, 1361, 1228, 1067, 1020, 930, 737, 700, $661 \mathrm{~cm}^{-1}$; HRMS (EI $)\left(\mathrm{M}^{+}\right)$, Found: $m / z 279.1621$; Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$: 279.1623.
[($2 S^{*}, 3 R^{*}$)-1-Benzyl-3-propylaziridin-2-yl](phenyl)methanone (trans-isomer of 3d): R_{f} $=0.45$ (hexane $/ \mathrm{AcOEt}=4 / 1$); an oil; NMR showed the presence of two isomers (ratio $=$ $3.5 / 1$), which might be a sort of diastereomers in equilibrium as depicted below. ${ }^{21}$ Major isomer: ${ }^{1} \mathrm{H}$ NMR $\delta 0.86(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.30-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.56(\mathrm{~m}, 2 \mathrm{H}), 2.59$ $(\mathrm{dt}, 1 \mathrm{H}, J=2.7,6.0 \mathrm{~Hz}), 3.40(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 3.78(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}), 3.86(\mathrm{~d}, 1 \mathrm{H}$, $J=13.3 \mathrm{~Hz}), 7.18-7.59(\mathrm{~m}, 8 \mathrm{H}), 7.92-7.95(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.8,20.4,34.9,44.2$, 48.1, 55.3, 126.9, 128.2, 128.3, 128.5, 128.6, 133.1, 138.4, 139.1, 196.1; Minor isomer: ${ }^{1} \mathrm{H}$ NMR $\delta 0.99(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.47-1.91(\mathrm{~m}, 4 \mathrm{H}), 2.66(\mathrm{dt}, 1 \mathrm{H}, J=2.7,7.4 \mathrm{~Hz})$, $2.87(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 3.72(\mathrm{~d}, 1 \mathrm{H}, J=14.2 \mathrm{~Hz}), 4.10(\mathrm{~d}, 1 \mathrm{H}, J=14.2 \mathrm{~Hz}), 7.18-7.59$ (m, 8H), 7.92-7.95 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\delta 14.0,21.5,28.0,47.6,48.3,127.6 .128 .1$, $128.4,128.5,133.0,138.9,196.6$ (Three signals might be overlaped with those of major isomer); IR (neat) $3061,2959,2929,2871,1667,1538,1449,1379,1265,1070,1026$, $695 \mathrm{~cm}^{-1}$; HRMS (EI $)\left(\mathrm{M}^{+}\right)$, Found: m / z 279.1627; Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}: 279.1623$.

1-Phenyl- N-(1-phenylhex-1-yn-3-ylidene)methanamine (4d): $R_{\mathrm{f}}=0.20$ (hexane/AcOEt $=5 / 1$); a solid; m.p. $77-78{ }^{\circ} \mathrm{C}$ (from AcOEt/hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 0.93(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}$), $1.57-1.68(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 7.23-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.37-7.40$ $(\mathrm{m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.7,18.8,32.4,66.6,82.9,104.2,121.5$, 128.3, 128.5, 128.6, 129.3, 131.0, 133.9, 134.0; IR (KBr) 3058, 2955, 2870, 1517, 1485, $1438,1303,1250,1176,1164,935,759 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+\mathrm{H}\right)$, Found: m / z 262.1592; Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}: 262.1596$.
$\left[\left(2 R^{*}, 3 R^{*}\right)\right.$-1-Benzyl-3-cyclohexylaziridin-2-yl](phenyl)methanone $(\mathbf{3 e}): \quad R_{\mathrm{f}}=0.40$ (hexane/AcOEt $=5 / 1$); a solid; m.p. $113-115{ }^{\circ} \mathrm{C}$ (from hexane/EtOH); ${ }^{1} \mathrm{H}$ NMR $\delta 0.92-$ $1.26(\mathrm{~m}, 6 \mathrm{H}), 1.40-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.96(\mathrm{dd}, 1 \mathrm{H}, J=8.7,6.9 \mathrm{~Hz}), 3.10(\mathrm{~d}, 1 \mathrm{H}, J=6.9$ $\mathrm{Hz}), 3.60(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 3.73(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 7.23-7.58(\mathrm{~m}, 8 \mathrm{H}), 8.01(\mathrm{~d}$, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.27,25.29,26.0,30.2,31.2,35.5,47.3,55.1,64.5,127.1$, $128.0,128.17,128.19,128.4,132.9,137.3,137.8,195.0$; IR (KBr) 3031, 2924, 2849, 1683, 1598, 1448, 1225, 1049, 1023, 915, 738, $688 \mathrm{~cm}^{-1}$; Found: C, 82.72; H, 7.89; N, 4.38%; Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}$: C, 82.41 ; H, 7.94; N, 4.42%.

1-[(2R*, 3R*)-1-Benzyl-3-methylaziridin-2-yl]heptan-1-one (3f): $\quad R_{\mathrm{f}} \quad=\quad 0.4$ (hexane/AcOEt $=4 / 1$); an oil; ${ }^{1} \mathrm{H}$ NMR $\delta 0.86(\mathrm{t}, 3 \mathrm{H}, J=5.5 \mathrm{~Hz}), 1.19(\mathrm{~d}, 3 \mathrm{H}, J=5.5$ $\mathrm{Hz}), 1.19-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.46-1.56(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{dq}, 1 \mathrm{H}, J=6.9,5.5 \mathrm{~Hz}), 2.32(\mathrm{~d}, 1 \mathrm{H}$, $J=6.9 \mathrm{~Hz}), 2.38-2.53(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 3.69(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz})$, $7.21-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.3,14.0,22.4,23.5,28.9,31.5,42.3,43.4,49.1,63.9$, 127.1, 127.8, 128.3, 138.2, 207.8; IR (neat) 3030, 2956, 2928, 2858, 1699, 1496, 1454, 1413, 1354, 1142, 1121, 1073, 1030, 733, $698 \mathrm{~cm}^{-1}$; HRMS (EI $)\left(\mathrm{M}^{+}\right)$, Found: m / z 259.1937; Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}: 259.1936$.

Representative procedure of one-pot synthesis of $\mathbf{2}$-acylpyrrolidine $\mathbf{6 a B}$ starting from N-(propargylic)hydroxylamine 1a (Table 4, Entry 5): A mixture of N (propargylic)hydroxylamine $\mathbf{1 a}(157 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{AgBF}_{4}(19 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{CuCl}(50 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred at rt under an argon atmosphere. After $24 \mathrm{~h}, N$-benzylmaleimide (5B) ($112 \mathrm{mg}, 0.6 \mathrm{mmol}$) in xylene (2 mL) was added to the reaction mixture and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated under the reduced pressure. The resulting mixture in xylene was heated at $145^{\circ} \mathrm{C}$ for 2 h and cooled to rt . The insoluble substance was filtered off through a pad of Celite and the solvent was removed under reduced pressure. The residue was purified by preparative TLC (hexane/ $\mathrm{Et}_{2} \mathrm{O}=1 / 1$) to give $\mathbf{6 a B}(215 \mathrm{mg}, 85 \%$ yield).
In a similar manner, other 2 -acylpyrrolidines $\mathbf{6 a A}, 6 \mathbf{e A}$, and $\mathbf{6 b B}-\mathbf{6 f B}$ were prepared from the corresponding N-(propargylic)hydroxylamines 1a-1f, respectively. ($3 \mathrm{a} R^{*}, 4 R^{*}, 6 R^{*}, 6 \mathrm{a} S^{*}$)-4-Benzoyl-5-benzyl-2-methyl-6-phenyltetrahydropyrrolo [3,4-c]pyrrole-1,3(2H,3aH)-dione ($\mathbf{6 a A}$): $R_{\mathrm{f}}=0.30$ (hexane $/ \mathrm{Et}_{2} \mathrm{O}=1 / 1$); a solid; m.p. 164 $165{ }^{\circ} \mathrm{C}$ (from AcOEt/hexane); ${ }^{\text {H }} \mathrm{H}$ NMR $\delta 2.94$ (s, 3 H), 3.24 (d, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}$), 3.63 (d, $1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 3.70(\mathrm{dd}, 1 \mathrm{H}, J=9.6,7.8 \mathrm{~Hz}), 3.77(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 5.15(\mathrm{~d}, 1 \mathrm{H}$, $J=9.6 \mathrm{~Hz}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 7.04-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.41(\mathrm{~m}, 7 \mathrm{H})$, $7.56(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.80(\mathrm{dd}, 2 \mathrm{H}, J=8.3,0.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.0,48.5,50.2$, $51.1,62.4,68.2,127.2,128.1,128.30,128.31,128.4,128.6,128.7,133.8,135.0,137.8$, 137.9, 175.7, 177.3, 200.7; IR (KBr) 3031, 2876, 1773, 1697, 1668, 1591, 1494, 1434, 1381, 1323, 1284, 1230, 1115, 1069, 1001, 870, 755, 731, $697 \mathrm{~cm}^{-1}$; Found: C, 76.25; H, $5.82 ; \mathrm{N}, 6.57 \%$; Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $76.39 ; \mathrm{H}, 5.70 ; \mathrm{N}, 6.60 \%$.
(3a $\left.R^{*}, 4 R^{*}, 6 R^{*}, 6 \mathrm{a} S^{*}\right)$-4-Benzoyl-2,5-dibenzyl-6-phenyltetrahydropyrrolo[3,4-c]pyrrole$1,3(2 H, 3 \mathrm{aH})$-dione ($6 \mathrm{6B}$): $R_{\mathrm{f}}=0.35$ (hexane $/ \mathrm{Et}_{2} \mathrm{O}=1 / 1$); a solid; m.p. $165-166{ }^{\circ} \mathrm{C}$ (from AcOEt/hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 3.28(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}$), $3.56(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}$), 3.62 (dd, $1 \mathrm{H}, J=9.6,7.8 \mathrm{~Hz}$), 3.67 (d, 1H, $J=13.7 \mathrm{~Hz}$), 4.56 (d, 1H, $J=13.8 \mathrm{~Hz}$), 4.65 $(\mathrm{d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 5.11(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 6.93-6.97(\mathrm{~m}, 2 \mathrm{H}), 7.02-$ $7.12(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.37-7.46(\mathrm{~m}, 7 \mathrm{H}), 7.55(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.83(\mathrm{~d}$, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 42.6,48.0,49.9,50.5,62.6,68.0,127.1,127.8,128.0$, 128.1, 128.3, 128.35, 128.40, 128.5, 128.7, 129.4, 133.7, 135.0, 135.8, 136.9, 138.0, 175.0, 177.3, 200.3. IR (KBr) 3030, 2878, 1772, 1702, 1579, 1494, 1453, 1422, 1396, 1339, 1235, 1175, 1136, 1027, 989, 727, $699 \mathrm{~cm}^{-1}$; Found: C, 79.25 ; H, 5.65; N, 5.63\%; Calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 79.18 ; H, $5.64 ; \mathrm{N}, 5.60 \%$. Crystal data: $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}, M_{\mathrm{r}}=$ 500.60, monoclinic, $P 2_{1} / \mathrm{n}, a=11.7284(8), b=9.1475(5), c=24.016(2) \AA, V=$ 2528.7(3) $\AA^{3}, \beta=101.057(2)^{\circ}, Z=4, D_{\text {calcd }}=1.315 \mathrm{~g} \mathrm{~cm}^{-3}, R=0.065\left(R_{\mathrm{w}}=0.070\right)$ for 5599 reflections with I > 3.00 o(I) and 343 variable parameters. Crystallographic data for 6aB have been deposited with Cambridge Crystallographic Data Centre as supplementary publication No. CCDC 913503.
($3 \mathrm{a} R^{*}, 4 R^{*}, 6 R^{*}, 6 \mathrm{a} S^{*}$)-2,5-Dibenzyl-4-heptanoyl-6-phenyltetrahydropyrrolo[3,4-
c]pyrrole-1,3(2H,3aH)-dione (6bB): $R_{\mathrm{f}}=0.30$ (hexane/ $\mathrm{AcOEt}=3 / 1$); an oil; ${ }^{1} \mathrm{H}$ NMR δ $1.00-1.31(\mathrm{~m}, 5 \mathrm{H}), 1.52-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.95-2.05(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz})$, $3.40-3.43$ (m, 2H), $3.54(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.70(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=$ $13.7 \mathrm{~Hz}), 4.75(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 7.16-7.30(\mathrm{~m}$, $6 \mathrm{H}), 7.35(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.42-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ 14,0, 22.4, 23.0, 28.7, 31.5, 42.1, 42.7, 47.2, 49.8, 51.0, 66.5, 68.1, 127.4, 127.9, 128.11, 128.13, 128.50, 128.54, 128.6, 129.5, 135.8, 136.7, 138.0, 175.0, 177.1, 212.7; IR (neat) 3063, 3032, 2929, 2857, 1775, 1713, 1604, 1585, 1495, 1454, 1433, 1398, 1347, 1290, $1215,1173,1144,1074,1029,921,882,832,754,699 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+\mathrm{H}\right)$, Found: $m / z 509.2808$; Calcd for $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{3}$: 509.2804.
(3a $R^{*}, 4 R^{*}, 6 R^{*}, 6 \mathrm{aS}{ }^{*}$)-2,5-Dibenzyl-4-phenyl-6-pivaloyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione ($\mathbf{6 c B}$): $R_{\mathrm{f}}=0.35$ (hexane $/ \mathrm{Et}_{2} \mathrm{O}=1 / 1$); a solid; m.p. 133$134{ }^{\circ} \mathrm{C}$ (from AcOEt/hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 0.99(\mathrm{~s}, 9 \mathrm{H}), 3.11(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 3.37(\mathrm{~d}$, $1 \mathrm{H}, J=15.1 \mathrm{~Hz}), 3.55(\mathrm{dd}, 1 \mathrm{H}, J=9.6,8.2 \mathrm{~Hz}), 3.68(\mathrm{~d}, 1 \mathrm{H}, J=15.1 \mathrm{~Hz}), 4.55(\mathrm{~d}, 1 \mathrm{H}$ $J=13.7 \mathrm{~Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 6.96-7.29$ $(\mathrm{m}, 10 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 26.0,42.6,44.9,48.3$, 49.3, 50.4, 61.7, 68.4, 126.9, 127.2, 128.0, 128.1, 128.4, 128.5, 129.5, 135.8, 137.3, 138.2, 175.0, 177.0, 217.8; IR (KBr) 3037, 2977, 1774, 1702, 1493, 1477, 1436, 1394, 1343, 1215, 1172, 1136, 1062, 988, 878, 778, 753, 730, $701 \mathrm{~cm}^{-1}$; Found: C, 77.35 ; H, 6.80; N, 5.79\%; Calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 77.47; H, 6.71; $\mathrm{N}, 5.83 \%$.
(3a $R^{*}, 4 R^{*}, 6 S^{*}, 6 \mathrm{a} S^{*}$)-4-Benzoyl-2,5-dibenzyl-6-propyltetrahydropyrrolo[3,4-c]pyrrole$1,3(2 H, 3 \mathrm{a} H)$-dione ($\mathbf{6 d B}$): $R_{\mathrm{f}}=0.30$ (hexane/ $\mathrm{AcOEt}=4 / 1$); a solid; m.p. $146-147^{\circ} \mathrm{C}$ (from AcOEt/hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 0.93(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.33-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.67-$ $1.81(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.38(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.71(\mathrm{~d}, 1 \mathrm{H}, J=14.2$ Hz), $3.87-3.96$ (m, 1H), 3.94 (d, 1H, $J=14.2 \mathrm{~Hz}$), 4.69 (d, 1H, $J=14.2 \mathrm{~Hz}$), 4.76 (d, $1 \mathrm{H}, J=14.2 \mathrm{~Hz}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 7.09-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.44$ $(\mathrm{m}, 7 \mathrm{H}), 7.52(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.84(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.4,19.7,31.8$, 42.6, 47.1, 47.4, 50.8, 63.6, 65.0, 127.0, 127.9, 128.0, 128.4, 128.5, 128.56, 128.64, 128.7, 133.6, 134.9, 135.6, 138.8, 176.2, 177.8, 199.7; IR (KBr) 2960, 2869, 1772, 1702, 1541, 1506, 1490, 1428, 1398, 1340, 1238, 1185, 1135, 1000, 724, $702 \mathrm{~cm}^{-1}$; Found: C, $77.15 ; \mathrm{H}, 6.62$; N, 5.96\%; Calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 77.23; H, 6.48; N, 6.00\%. ($3 \mathrm{a} R^{*}, 4 R^{*}, 6 S^{*}, 6 \mathrm{a} S^{*}$)-4-Benzoyl-5-benzyl-6-cyclohexyl-2-methyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (6eA): $R_{\mathrm{f}}=0.40$ (hexane $/ \mathrm{Et}_{2} \mathrm{O}=1 / 1$); a solid. m.p. 142-
$143{ }^{\circ} \mathrm{C}$ (from AcOEt/hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 1.11-1.37(\mathrm{~m}, 5 \mathrm{H}), 1.66-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.94$ $2.04(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.15(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.53(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~d}, 1 \mathrm{H}, J=13.3$ $\mathrm{Hz}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.43-7.49(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.3,26.2,26.4,26.5,29.5,30.0,36.1,47.2,47.3,52.2,65.4,69.2,127.5,128.3$, 128.56, 128.65, 129.2, 133.1, 134.8, 137.8, 178.0, 179.0, 198.2. IR (KBr) 2922, 2851, 1769, 1697, 1593, 1432, 1381, 1337, 1277, 1230, 1189, 1131, 1094, 1048, 752, 730, $694 \mathrm{~cm}^{-1}$; Found: C, 75.26 ; H, 7.11 ; N, 6.53%; Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 75.32; H, 7.02 ; $\mathrm{N}, 6.51 \%$. Crystal data: $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}, M_{\mathrm{r}}=430.55$, monoclinic, $P 2_{1} / \mathrm{c}, a=$ 8.4348(7), $b=21.818(2), c=12.635(1) \AA, V=2231.4(3) \AA^{3}, \beta=106.338(2)^{\circ}, Z=4$, $D_{\text {calcd }}=1.281 \mathrm{~g} \mathrm{~cm}^{-3}, R=0.051\left(R_{\mathrm{w}}=0.066\right)$ for 3690 reflections with $\mathrm{I}>3.00 \sigma(\mathrm{I})$ and 289 variable parameters. Crystallographic data for 6eA have been deposited with Cambridge Crystallographic Data Centre as supplementary publication No. CCDC 913504.
(3a $\left.R^{*}, 4 R^{*}, 6 S^{*}, 6 \mathrm{a} S^{*}\right)$-4-Benzoyl-2,5-benzyl-6-cyclohexyltetrahydropyrrolo[3,4-
c]pyrrole-1,3(2H,3aH)-dione ($6 \mathbf{e B}$): $R_{\mathrm{f}}=0.40$ (hexane $/ \mathrm{Et}_{2} \mathrm{O}=1 / 1$); a solid; m.p. $161-$ $162{ }^{\circ} \mathrm{C}$ (from AcOEt/hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 1.01-1.31(\mathrm{~m}, 5 \mathrm{H}), 1.62-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.88-$ $1.96(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.15(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 3.39-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.52-$ $3.55(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 4.74(\mathrm{~d}, 1 \mathrm{H}, J=13.8$ $\mathrm{Hz}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 7.16-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.33(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $7.41-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.51(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 26.2$, 26.3, 26.4, 29.6, 30.0, 36.0, 43.0, 47.2, 47.3, 51.8, 65.8, 69.2, 127.3, 128.2, 128.35, 128.41, 128.6, 128.7, 129.0, 129.5, 133.1, 134.75, 134.83, 138.0, 177.4, 178.6, 197.9; IR (KBr) 3038, 2933, 2853, 1774, 1705, 1673, 1577, 1494, 1396, 1343, 1227, 1172, $1142,1073,732,704 \mathrm{~cm}^{-1}$; Found: C, $78.25 ; \mathrm{H}, 6.78$; N, 5.55%; Calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 78.23; H, 6.76; N, 5.53\%.
($3 \mathrm{a} R^{*}, 4 R^{*}, 6 \mathrm{~S}^{*}, 6 \mathrm{a} S^{*}$)-2,5-Dibenzyl-4-heptanoyl-6-methyltetrahydropyrrolo[3,4-
c]pyrrole-1,3(2H,3aH)-dione ($6 \mathbf{f B}$): $R_{\mathrm{f}}=0.35$ (hexane/ $\mathrm{Et}_{2} \mathrm{O}=1 / 1$); an oil; ${ }^{1} \mathrm{H}$ NMR δ $0.87(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.13-1.27(\mathrm{~m}, 6 \mathrm{H}), 1.40-1.45(\mathrm{~m}, 2 \mathrm{H})$, 2.15 (td, $1 \mathrm{H}, J=7.4,17.4 \mathrm{~Hz}$), $2.30(\mathrm{td}, 1 \mathrm{H}, J=7.8,17.4 \mathrm{~Hz}), 3.04(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $3.24(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.58(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.82-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~d}, 1 \mathrm{H}, J=$ $13.8 \mathrm{~Hz}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, 1 \mathrm{H}, J=14.2 \mathrm{~Hz}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=14.2 \mathrm{~Hz}), 7.00-7.02$ $(\mathrm{m}, 2 \mathrm{H}), 7.18-7.42(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.0,15.7,22.3,23.1,28.7,31.4,41.4,42.5$, $46.5,48.1,50.8,57.9,68.2,127.2,127.9,128.0,128.39,128.41,128.5,135.6,138.4$, $176.2,177.5,211.9$; IR (neat) $3038,2929,2857,1774,1708,1496,1455,1432,1397$, 1345, 1178, 1078, 732, $700 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{FAB}^{+}\right)\left(\mathrm{M}^{+}+\mathrm{H}\right)$, Found: $m / z 447.2640$; Calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}: 447.2648$.
1,3-Dipolar cycloaddition of azomethine ylide generated from trans-isomer of 3c: A mixture of trans-isomer of $\mathbf{3 c}(26 \mathrm{mg}, 0.09 \mathrm{mmol})$ and N-benzylmaleimide (5B) (20 mg , $0.11 \mathrm{mmol})$ in xylene (0.9 mL) was heated at $145{ }^{\circ} \mathrm{C}$ for 1.5 h and cooled to rt . The solvent was removed under reduced pressure. The residue was purified by preparative TLC (hexane $/ \mathrm{AcOEt}=5 / 1$) to give $\mathbf{6 c B}(36 \mathrm{mg}, 84 \%$ yield $)$.

Acknowledgement

The present work was financially supported in part by Grants in-Aid for Scientific Research (B) and (C) from Japan Society for the Promotion of Science (JSPS).
$\begin{array}{ll}{[1]} & \text { a) T. Hudlicky, G. Seoane, T. C. Lovelace, J. Org. Chem. 1988, 53, 2094-2099; }\end{array}$ b) I. J. Kim, Y. J. Park, J. I. Kim, K. T. Lee, S. K. Kim, Arch. Pharm. Res. 1997, 20, 476-479; c) A. E. Wróblewski, W. Maniukiewicz, W. Karolczak, J. Chem. Soc., Perkin Trans. 1, 2000, 1433-1437; d) J. M. Yun, T. B. Sim, H. S. Hahm, W. K. Lee, H.-J. Ha, J. Org. Chem. 2003, 68, 7675-7680; e) Y. Ogawa,. K Kuroda, T. Mukaiyama, Bull. Chem. Soc. Jpn. 2005, 78, 1309-1333; f) G. Chen, M. Sasaki, X. Li, A. K. Yudin, J. Org. Chem. 2006, 71, 6067-6073; g) S. Baktharaman, R. Hili, A. K. Yudin, Aldrichimica Acta 2008, 41, 109-119; h) L. Wei, J. Zhang, Chem. Commun. 2012, 48, 2636-2638.
[2] a) M. M. Paz, P. B. Hopkins, J. Am. Chem. Soc. 1997, 119, 5999-6005; b) T. C. Judd, R. M. Williams, Org. Lett. 2002, 4, 3711-3714; c) G. Cardillo, L. Gentilucci, A. Tolomelli, Aldrichimica Acta 2003, 36, 39-50; d) P. Sharma, A. Kumar, S. Upadhyay, V. Sahu, J. Singh, Eur. J. Med. Chem. 2009, 44, 251-259 and references cited therein.
[3] a) P. Müller, C. Fruit, Chem. Rev. 2003, 103, 2905-2919; b) I. D. G. Watson, L. Yu, A. K. Yudin, Acc. Chem. Res. 2006, 39, 194-206; c) I. Saikia, B. Kashyap, P. Phukan, Chem. Commun. 2011, 47, 2967-2969 and references cited therein.
[4] a) Y. Deng, Y. R. Lee, C. A. Newman, W. D. Wulff. Eur. J. Org. Chem. 2007, 2068-2071; b) Y. Zhang, Z. Lu, W. D. Wulff, Synlett 2009, 2715-2739; c) T. Akiyama, T. Suzuki, K. Mori, Org. Lett. 2009, 11, 2445-2447; d) H. Ren, W. D. Wulff, Org. Lett. 2010, 12, 4908-4911; e) J. N. Johnston, H. Muchalski, T. L. Troyer, Angew. Chem., Int. Ed. 2010, 49, 2290-2298; f) T. Hashimoto, H. Nakatsu, K. Yamamoto, K. Maruoka J. Am. Chem. Soc. 2011, 133, 9730-9733 and references cited therein.
[5] a) I. Coldham, A. J. Collis, R. J. Mould, R. E. Rathmell, Tetrahedron Lett. 1995, 36, 3557-3560; b) J. Xu, P. Jiao. J. Chem. Soc., Perkin Trans. 1 2002, 14911493; c) X. L. Jin, H. Sugihara, K. Daikai, H. Tateishi, Y. Z. Jin, H. Furuno, J Inanaga, Tetrahedron 2002, 58, 8321-8329; d) A. Armstrong, C. A. Baxter, S G. Lamont, A. R. Pape, R. Wincewicz, Org. Lett. 2007, 9, 351-353.
[6] a) T. Patonay, R. V. Hoffman, J. Org. Chem. 1995, 60, 2368-2377; b) T. Patonay, É. Juhász-Tóth, A. Bényei, Eur. J. Org. Chem. 2002, 285-295.
[7] a) N. H. Cromwell, R. D. Babson, C. E. Harris, J. Am. Chem. Soc. 1943, 65, $312-315$; b) N. H. Cromwell, J. A. Caughlan, J. Am. Chem. Soc. 1945, 67, 2235-2238; c) J. W. Lown, M. H. Akhtar, Can. J. Chem. 1972, 50, 2236-2248.
[8] a) J. E. Baldwin, R. G. Pudussery, A. K. Qureshi, B. Sklarz, J. Am. Chem. Soc. 1968, 90, 5325-5326; b) I. Adachi, R. Miyazaki, H. Kano, Chem. Pharm. Bull. 1974, 22, 70-77; c) R. Grée, R. Carrié, J. Am. Chem. Soc. 1977, 99, 6667-6672; d) D. Döpp, A. M. Nour-el-Din, Tetrahedron Lett. 1978, 19, 1463-1466; e) G. Chidichimo, G. Cum, F. Lelj, G. Sindona, N. Uccella, J. Am. Chem. Soc. 1980, 102, 1372-1377; f) K. Tanaka, M. Ohsuga, Y. Sugimoto, Y. Okafuji, K. Mitsuhashi, J. Fluor. Chem. 1988, 39, 39-45; g) D. Seebach, I. M. Lyapkalo, R. Dahinden, Helv. Chim. Acta 1999, 82, 1829-1842; h) W. Friebolin, W. Eberbach, Tetrahedron 2001, 57, 4349-4358; i) T. Ishikawa, T. Kudoh, J. Yoshida, A. Yasuhara, S. Manabe, S. Saito, Org. Lett. 2002, 4, 1907-1910; j) B. Alcaide, P. Almendros, J. M. Alonso, M. F. Aly, C. Pardo, E. Sáez, M. R. Torres, J. Org. Chem. 2002, 67, 7004-7013; k) E. Lopez-Calle, M. Keller, W. Eberbach, Eur. J. Org. Chem. 2003, 1438-1453; 1) E. M. Budynina, E. B. Averina, O. A. Ivanova, T. S. Kuznetsova, N. S. Zefirov, Tetrahedron Lett. 2005, 46, 657-659; m) E. Gayon, O. Debleds, M. Nicouleau, F. Lamaty, A. Lee, E. Vrancken, J.-M. Campagne, J. Org. Chem. 2010, 75, 6050-6053.
[9] a) W. Wei, M. Kobayashi, Y. Ukaji, K. Inomata, Heterocycles 2009, 78, 717724; b) Y. Ukaji, K. Inomata, Chem. Rec. 2010, 10, 173-187.
[10] N. Wada, K. Kaneko, Y. Ukaji, K. Inomata, Chem. Lett. 2011, 40, 440-442.
[11] Preliminary results have been described in ref. 10.
[12] The cis stereochemistry of 3a-f was confirmed by the coupling constant J_{2-3} ($6.4-7.4 \mathrm{~Hz}$) between the methine protons in aziridine rings. ${ }^{[8 \mathrm{i}, \mathrm{m}, 21]}$
[13] a) I. Coldham, R. Hufton, Chem. Rev. 2005, 105, 2765-2809; b) G. Pandey, P. Banerjee, S. R. Gadre, Chem. Rev. 2006, 106, 4484-4517; c) P. Dauban, G. Malik, Angew. Chem., Int. Ed. 2009, 48, 9026-9029.
$[14]$ a) H. W. Heine, R. Peavy, Tetrahedron Lett. 1965, 6, 3123-3126; b) A. Padwa, L. Hamilton, Tetrahedron Lett. 1965, 6, 4363-4367; c) R. Huisgen, W. Scheer, G. Szeimies, H. Huber, Tetrahedron Lett. 1966, 7, 397-404; d) E. Vedejs, J. W.

Grissom, J. Org. Chem. 1988, 53, 1882-1887; e) K. Tanaka, S. Nagatani, M. Ohsuga, K. Mitsuhashi, Bull. Chem. Soc. Jpn. 1994, 67, 589-591; f) A. L. Cardoso, R. M. D. Nunes, L. G. Arnaut, T. M. V. D. Pinho e Melo, Synthesis 2011, 3516-3522 and references cited therein.
$[15]$ a) A. Amal Raj, R. Raghunathan, M. R. SrideviKumari, N. Raman, Bioorg. Med. Chem. 2003, 11, 407-419; b) X. Y. Yu, J. Finn, J. M. Hill, Z. G. Wang, D. Keith, J. Silverman. N. Oliver. Bioorg. Med. Chem. Lett. 2004, 14, 1339-1342; c) Z. Duan, J. Bradner, E. Greenberg, R. Mazitschek, R. Foster, J. Mahoney, M. V. Seiden, Mol. Pharmacol. 2007, 72, 1137-1145; d) R. M. Butnariu, I. I. Mangalagiu, Bioorg. Med. Chem. 2009, 17, 2823-2829.
[16] Both endo-approach and exo-approach were proposed for the 1,3-dipolar cycloaddition of azomethine ylides with maleimides. Examples of endoapproach: a) Ö. Dogan, H. Koyuncu, P. Garner, A. Bulut, W. J. Youngs, M. Panzner, Org. Lett. 2006, 8, 4687-4690; b) J.-W. Shi, M.-X. Zhao, Z.-Y. Lei, M. Shi, J. Org. Chem. 2008, 73, 305-308. An example of exo-approach: c) Y. Oderaotoshi, W. Cheng, S. Fujitomi, Y. Kasano, S. Minakata, M. Komatsu, Org. Lett. 2003, 5, 5043-5046.
[17] In the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude products, generation of other diastereomers was not observed.
[18] R. Huisgen, H. Mäder, Angew. Chem., Int. Ed. Engl. 1969, 8, 604-606.
$[19]$ a) D. Wenkert, S. B. Ferguson, B. Porter, A. Qvarnstrom, A. T. McPhail, J. Org. Chem. 1985, 50, 4114-4119; b) E. Vedejs, J. W. Grissom, J. Am. Chem. Soc. 1988, 110, 3238-3246.
[20] P. Aschwanden, D. E. Frantz, E. M. Carreira, Org. Lett. 2000, 2, 2331-2333.
[21] D. L. Nagel, P. B. Woller, N. H. Cromwell, J. Org. Chem. 1971, 36, 3911-3917.

Received: ((will be filled in by the editorial staff))
Revised: ((will be filled in by the editorial staff)) Published online: ((will be filled in by the editorial staff))

Entry for the Table of Contents (Please choose one layout only)

Layout 1:

Catch Phrase

Author(s), Corresponding
Author(s)* \qquad Page - Page

Title Text

Text for Table of Contents, max. 450 characters

Layout 2:

Catch Phrase

Yoshiaki Miyamoto, Norihiro Wada, Takahiro Soeta, Katsuhiko Inomata, and Yutaka Ukaji*

Page - Page
One-pot Stereoselective Syntheses
of 2-Acylaziridines and 2-
Acylpyrrolidines from N (Propargylic)hydroxylamines

