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Abstract

We construct a radiative inverse seesaw model with local B − L symmetry, and investigate

the flavor structure of the lepton sector and the fermionic Dark Matter. Neutrino masses

are radiatively generated through a kind of inverse seesaw framework. The PMNS matrix is

derived from each mixing matrix of the neutrino and charged lepton sector with large Dirac

CP phase. We show that the annihilation processes via the interactions with Higgses which are

independent on the lepton flavor violation, have to be dominant in order to satisfy the observed

relic abundance by WMAP. The new interactions with Higgses allow us to be consistent with

the direct detection result reported by XENON100, and it is possible to verify the model by the

exposure of XENON100 (2012).
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1 Introduction

Inverse seesaw mechanism which generates neutrino masses due to small lepton number violation is

one of the intriguing way to describe tiny neutrino masses [1, 2]. Thus interesting phenomenologi-

cal implications have been accommodated [3–5]. However Dark Matter (DM) candidate has to be

introduced independently if we discuss DM phenomenology in this kind of models. On the other

hand, radiative seesaw mechanism is possible to relate neutrino mass generation with the existence

of DM [6–8]. In particular, the radiative seesaw model which is proposed by Ma [6] is the simplest

model with DM candidates. Subsequently there are a lot of recent works of the model [9–11] and

the extended models [12–19]. The other radiative neutrino mass models are studied in Refs. [20–23].

The Z2 parity imposed to the model forbids to have the Dirac neutrino masses, produces neutrino

masses at one loop level, and stabilizes DM candidates. Therefore the feature of the radiative seesaw

model motivates to connect the existence of DM with the neutrino mass generation due to inverse

seesaw mechanism.

In this paper, we construct a radiative inverse seesaw model with U(1)B−L as a concrete example

and analyze the neutrino masses, mixing and the feature of DM. We add three pairs of B−L charged

fermions and a scalar to Ma model [6]. The scalar particle breaks the B−L symmetry spontaneously.

In the model, the small Majorana mass terms which violate U(1)B−L weakly and explain the tiny

neutrino masses are generated from a higher operator when the U(1)B−L symmetry is spontaneously

broken. We assume the structure of neutrino mass matrix that induces the best fit value of θ12 of

the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix [24]: sin2 θ12=0.311, which

is within 1σ confidence level in the global analysis [25]. Moreover, we introduce the charged-lepton

mixing (λ) with nonzero Dirac CP phase to induce non-zero θ13 recently reported by T2K [26], Double

Chooz [27], Daya-Bay [28], and RENO [29]. This method was firstly proposed by S. King [30, 31].

Due to the mixing λ, neutrino Dirac Yukawa couplings are strongly constrained by the lepton flavor

violation (LFV), especially, µ → eγ process. Hence in the original radiative seesaw model [6], it

is hard to derive the observed relic density of DM [32] associated to the annihilation channel if we

assume that the lightest right-handed neutrino is DM. However since the radiative inverse seesaw

model has the other channels with different coupling due to the additional Higgs boson coming from

the B−L symmetry, the observed relic abundance can be naturally obtained via the channel. Since

the additional Higgs boson mixes with the SM like Higgs, the direct detection with Higgs portal also

comes into the target of a discussion whether the result can be consistent with the experimental limit

reported by XENON100 [33]. It implies that the model can be investigated in the direct search of
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DM near future. Therefore it is favored to be Higgs portal DM in the radiative inverse seesaw model

from the consistency with neutrino masses, mixing, LFV and the DM property.

This paper is organized as follows. In Section 2, we construct the radiative inverse seesaw model

and its Higgs sector. In Section 3, we discuss the constraints from LFV, especially, µ → eγ process

and the DM relic abundance. In Section 4, we analyze the direct detection of our DM including all

the other constraint. We summarize and conclude the paper in Section 5.

2 The Radiative Inverse Seesaw Model

2.1 Neutrino Mass and Mixing

Particle Q uc, dc L ec N c S S′ Φ η χ

SU(2)L 2 1 2 1 1 1 1 2 2 1

YB−L 1/3 -1/3 -1 1 1 -1/2 1/2 0 0 -1/2

Z2 + + + + − − + + − +

Table 1: The field contents and the charges. Three generations of right handed neutrinos N c
i and

additional fermions Si, S
′
i are introduced. A pair of fermions S and S ′ is required to cancel the

anomaly. The SM, inert and B − L Higgs bosons are denoted by Φ, η, and χ, respectively.

The radiative inverse seesaw mechanism can be realized by introducing the B − L symmetry

which is spontaneously broken at TeV scale [4]. The field contents of our model is shown in Table 1

and the Lagrangian in the lepton sector is

L = y`LΦe
c + yνLηN

c + ySN
cχS +

λS

Λ
χ†2S2 +

λS′

Λ
χ2S ′2 + h.c., (2.1)

where Λ is a cut-off scale and the generation indices are abbreviated. Note that the mass term SS ′

can be forbidden by the Z2 symmetry1. We have another dimension 5 operator such as LΦS ′χ†,

which affects on the neutrino mass, and it would be difficult to forbid it. Thus we need to assume

the coupling of this operator is small enough.

After the symmetry breaking, that is χ = (χ0 + v′)/
√
2 2, φ = (φ0 + v)/

√
2 with Φ = (φ+, φ)T

1Another way to induce the mass term of S is proposed by E. Ma [34], in which the term is done at loop level.
2The value of v′ can be constrained by the LEP experiment that tells us mZ′/g′ = |Y χ

B−L|v′ > 6 TeV [35], where

mZ′ and g′ are the B − L gauge boson and the B − L guage coupling, respectively. Since Yχ
B−L=-1/2 is taken in our

case, v′ > 12 TeV is obtained.
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and v = 246 GeV, the neutrino sector in the flavor basis can be written as

Lν
m = yνLηN

c +MTN cS +
µ

2
S2 + h.c., (2.2)

where M = ySv
′/
√
2 and µ = λSv

′2/Λ. The scale of µ ∼ 1 keV which corresponds to Λ ∼ 1014 GeV

is required as we will see in the following section. The inert doublet η ≡ (η+, (ηR + iηI)/
√
2)T does

not have any vacuum expectation values (VEV). As a result, the 6× 6 neutrino mass matrix in the

basis (N c, S) takes the form:

Mν =

(
0 MT

M µ

)
. (2.3)

The mass matrix M and µ cannot be diagonalized simultaneously in general. We assume that the

mass matrix M and µ are diagonal as M = diag(M1,M2,M3) and µ = diag (µ1, µ2, µ3) for simplicity.

Then the 6×6 mass matrixMν can be diagonalized for every family as diag(mi+,mi−) by the unitary

matrix Ui for i-th family. The mass eigenvalues are expressed as

mi± =

√
M2

i +
µ2
i

4
± µi

2
. (2.4)

When µi � Mi, the neutrino masses are degenerated. The unitary matrix Ui can be expressed as

Ui =

 Mi√
M2

i +m2
i+

iMi√
M2

i +m2
i−

mi+√
M2

i +m2
i+

− imi−√
M2

i +m2
i−

 , (2.5)

where (mi+,mi−) = UT
i Mi

νUi and Mi
ν implies the 2 × 2 mass matrix for i-th family. The flavor

eigenstates are rewritten by the mass eigenstates νi± as follows:

N c
i =

Mi√
M2

i +m2
i+

νi+ +
iMi√

M2
i +m2

i−
νi−, (2.6)

Si =
mi+√

M2
i +m2

i+

νi+ − imi−√
M2

i +m2
i−
νi−. (2.7)

The light neutrino mass matrix seen in Fig. 1 is given as Ref. [6] by 1-loop radiative correction:

(mν)αβ = −
3∑

i=1

(yν)αi (yν)βi
(4π)2

M2
i mi−

M2
i +m2

i−

[
m2

R

m2
R −m2

i−
log

m2
R

m2
i−

− m2
I

m2
I −m2

i−
log

m2
I

m2
i−

]

+
3∑

i=1

(yν)αi (yν)βi
(4π)2

M2
i mi+

M2 +m2
i+

[
m2

R

m2
R −m2

i+

log
m2

R

m2
i+

− m2
I

m2
I −m2

i+

log
m2

I

m2
i+

]
, (2.8)
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Figure 1: Neutrino mass generation via radiative inverse seesaw.

where mR and mI imply masses of ηR and ηI . When µi � Mi, we can obtain the approximate light

neutrino mass matrix by expanding mi± up to the leading order,

(mν)αβ ' −
3∑

i=1

(yν)αi (yν)βi µi

2(4π)2

[
m2

R

M2
i

I

(
M2

i

m2
R

)
− m2

I

M2
i

I

(
M2

i

m2
I

)]
+O

(
µ2
i

)
, (2.9)

where we will define the function I(x) and the parameter Λi as

I(x) =
x

1− x

(
1 +

x log x

1− x

)
, Λi =

µi

2(4π)2

[
m2

R

M2
i

I

(
M2

i

m2
R

)
− m2

I

M2
i

I

(
M2

i

m2
I

)]
. (2.10)

We can see from Eq. (2.9) that the mixing matrix of the light neutrino mass matrix is determined

by the structure of the neutrino Yukawa matrix yν since the majorana mass matrix µ is assumed to

be diagonal in this case. In order to identify the structure of yν , here we set a specific texture of the

neutrino mass matrix, which induces the best fit values of θ12, as

mν =


A B −B

B (3A+
√
3B)/6 −(3A+

√
3B)/6

−B −(3A+
√
3B)/6 (3A+

√
3B)/6

 . (2.11)

Then the mass matrix can be diagonalized by the following mixing matrix and the eigenvalues are

written as

OνL =


√

(1 + 1/
√
7)/2 −

√
(1− 1/

√
7)/2 0

−
√
1− 1/

√
7/2 −

√
1 + 1/

√
7/2 1/

√
2√

1− 1/
√
7/2

√
1 + 1/

√
7/2 1/

√
2

 , (2.12)

m1 = A+
2B√
3

(
1−

√
7
)
, m2 = A+

B√
3

(
1 +

√
7
)
, m3 = 0. (2.13)
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Thus the squared mass differences are ∆m2
sol ≡ m2

2 −m2
1 and ∆m2

atm ≡ |m2
1 −m2

3|, and the neutrino

mass hierarchy is predicted to be inverted. In order to get ∆m2
sol = 7.62 × 10−5 eV2, ∆m2

atm =

2.40× 10−3 eV2, which are the best fit values [25], we find the following solutions:

(A,B) = (±4.92× 10−2, ±2.53× 10−4), (±1.83× 10−2, ∓3.23× 10−2) eV. (2.14)

Notice that the other solutions do not exist any more. We cannot obtain non-zero sin θ13 from the light

neutrino mass matrix Eq. (2.11). Non-zero sin θ13 is derived from the charged lepton mixing as we will

discuss below. We find
∑

imi ' 7.7×10−4 eV, and the effective mass 〈mee〉 ≡ |
∑

i (OνL)
2
1imi| ' 0.026

eV and tan θ12 =
(
1−

√
7
)
/
√
6 which gives sin2 θ12 = 0.311 which is the best fit 1σ value [25]. The

recent experimental value for 〈mee〉 are referred in Ref. [36]. We can choose the following texture

which leads the above neutrino mass matrix3 :

yν =


0 0 b

a 0 c

−a 0 −c

 , (2.15)

where the parameters a, b, c are expressed by A and B as follows:

a =
1√
2AΛ1

√√√√(A+
1 +

√
7√

3
B

)(
A+

1−
√
7√

3
B

)
, b =

A√
AΛ3

, c =
B√
AΛ3

. (2.16)

To induce non-zero θ13, we consider the charged lepton mixing [30, 31]. If we set the Dirac mass

matrix of charged leptons me and the mixing matrix UeL as

me =
v√
2


y`1 y`2 0

y`2 y`3 0

0 0 y`4

 , UeL ∼


1 λeiδ 0

−λe−iδ 1 0

0 0 1

 , (2.17)

where we define (|me|2, |mµ|2, |mτ |2) = U †
eLmem

†
eUeL and δ is the Dirac CP phase. From the mixing

matrix OνL and UeL, we can obtain each of the element of the PMNS matrix, which is defined as

UPMNS = U †
eLOνP , is found by

sin θ13 ' − λ√
2
, sin θ12 ' −

√
(1− 1/

√
7)/2 +

λ√
2

√
(1 + 1/

√
7)/2 cos δ, sin θ23 '

1√
2
, (2.18)

3Our parametrization is taken so that DM ν1− couples to the charged leptons. Even if one selects another

parametrization, e.g, by replacing the first column and the second one of yν , the severe constraints from LFV do

not change as we will discuss in the next section.
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Figure 2: sin θ13 versus CP Dirac phase δ. Here we restrict sin θ12 within the range of the best fit

with 1σ that is 0.303 ≤ sin2 θ12 ≤ 0.335 [25].

where P contains two majorana phases. The allowed value of sin θ13 is shown in Fig. 2 as the function

of δ, within the range of the best fit with 1σ that is 0.303 ≤ sin2 θ12 ≤ 0.335 [25]. The light red

region is in 1σ range of sin θ12. It suggests that large CP Dirac phase is required to satisfy the current

global experimental limit of sin θ13 for inverted hierarchy such as 0.023 ≤ sin2 θ13 ≤ 0.030 [25] which

is shown as the two green sandwiched regions.

2.2 Higgs Sector

The Higgses φ0 and χ0 mix after the symmetry breaking and these are not mass eigenstates. Inter-

actions should be written by mass eigenstates in order to analyze the DM relic density and direct

detection in the next section. The Higgs potential of this model is given by

V = m2
1Φ

†Φ +m2
2η

†η +m2
3χ

†χ+ λ1(Φ
†Φ)2 + λ2(η

†η)2 + λ3(Φ
†Φ)(η†η) + λ4(Φ

†η)(η†Φ)

+λ5[(Φ
†η)2 + h.c.] + λ6(χ

†χ)2 + λ7(χ
†χ)(Φ†Φ) + λ8(χ

†χ)(η†η), (2.19)

where λ5 has been chosen real without any loss of generality. The couplings λ1, λ2 and λ6 have to

be positive to stabilize the potential. Inserting the tadpole conditions; m2
1 = −λ1v

2 − λ7v
′2/2 and
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m2
3 = −λ6v

′2 − λ7v
2/2, the resulting mass matrices are given by

m2(φ0, χ0) =

(
2λ1v

2 λ7vv
′

λ7vv
′ 2λ6v

′2

)
=

(
cosα sinα

− sinα cosα

)(
m2

h 0

0 m2
H

)(
cosα − sinα

sinα cosα

)
,

(2.20)

m2(η±) = m2
2 +

1

2
λ3v

2 +
1

2
λ8v

′2, (2.21)

m2
R ≡ m2(Reη0) = m2

2 +
1

2
λ8v

′2 +
1

2
(λ3 + λ4 + 2λ5)v

2, (2.22)

m2
I ≡ m2(Imη0) = m2

2 +
1

2
λ8v

′2 +
1

2
(λ3 + λ4 − 2λ5)v

2, (2.23)

where h implies SM-like Higgs and H is an additional Higgs mass eigenstate. The tadpole condition

for η, which is given by ∂V
∂η

∣∣∣
VEV

= 0, tells us that

m2
2 > 0, λ2 > 0, λ3 + λ4 + 2λ5 > 0, λ8 > 0, (2.24)

in order to satisfy the condition vη = 0 at tree level. The masses of φ0 and χ0 are rewritten in terms

of the mass eigenstates of h and H as

φ0 = h cosα+H sinα,

χ0 = −h sinα+H cosα. (2.25)

3 The Constraints from Lepton Flavor Violation and DM

Relic Density

3.1 Lepton Flavor Violation

We investigate Lepton Flavor Violation (LFV) under the flavor structure Eq. (2.15). We put a

reasonable approximation mi± ' Mi hereafter, since the scale of µ that is keV scale is negligible

compared to the scale of Mi that is expected O(102∼3) GeV. The experimental upper bounds of the

branching ratios are Br (µ → eγ) ≤ 2.4 × 10−12 [37], Br (τ → µγ) ≤ 4.4 × 10−8 and Br (τ → eγ) ≤
3.3× 10−8 [38]. The branching ratios of the processes `α → `βγ (`α, `β = e, µ, τ) are calculated as

Br(`α → `βγ) =
3αem

64π(GFM2
η )

2

∣∣∣∣∣
3∑

i=1

(
U †
eLy

†
ν

)
αi

(
yνUeL

)
iβ
F2

(
M2

i

M2
η

)∣∣∣∣∣
2

Br(`α → `βνβνα), (3.1)

7



where αem = 1/137, Br (µ → eνeνµ) = 1.0, Br (τ → eνeντ ) = 0.178, Br (τ → µνµντ ) = 0.174, Mη is

η+ mass, GF is the Fermi constant and the loop function F2(x) is given by

F2(x) =
1− 6x+ 3x2 + 2x3 − 6x2 ln x

6(1− x)4
. (3.2)

The µ → eγ process gives the most stringent constraint. If the mixing matrix of the charged leptons

Eq. (2.17) is diagonal, i.e. λ = 0, the µ → eγ process does not constrain the model since the

branching ratio Eq. (3.1) can be zero. Although τ → µγ and τ → eγ processes remain as LFV

constraint, these are much weaker than µ → eγ. Instead of that, non-zero θ13 is not derived. Thus

we can insist that µ → eγ constraint is closely correlated with non-zero θ13. In order to be consistent

with LFV and obtaining non-zero θ13, the neutrino Yukawa couplings must be small enough to escape

the LFV constraint.

3.2 DM Relic Density

If we assume that DM is fermionic and mass hierarchy M1 < M2 < M3 for the right-handed neutrinos

Ni, the mass eigenstates ν1± can be highly degenerated DMs due to the weak lepton number violation

term µi which induces small neutrino masses. Thus we have to take into account coannihilation of

ν1− and ν1+. The typical interacting terms are found as

Lint ' (UeLyν)α1
(
`αη

+ − ναη
0
) [

− i√
2
ν1− +

1√
2
ν1+

]
+ h.c.

+
(yS)11 sinα

2
h
(
ν2
1− + ν2

1+

)
− (yS)11 cosα

2
H
(
ν2
1− + ν2

1+

)
+
yf cosα√

2
hff +

yf sinα√
2

Hff, (3.3)

where the masses of η0(±) assumed to be always heavier than ν± to avoid the too short lifetime of

DMs through our analysis. Three types of the coannihilation processes exist and these are shown in

Fig 3. The effective cross section to ``, ff and hh are given as

σ`
effvrel '

1

96π

(
τ∑

α=e

|(UeLyν)α1|
2

)2
M2

1

(
M4

1 +M4
η

)(
M2

1 +M2
η

)4 v2rel, (3.4)

σt
effvrel '

3 (yS)
2
11 y

2
tM

2
1

64π

∣∣∣∣ sinα cosα

4M2
1 −m2

h + imhΓh

− sinα cosα

4M2
1 −m2

H + imHΓH

∣∣∣∣2(1− m2
t

M2
1

)3/2

v2rel, (3.5)

σh
effvrel '

(yS)
4
11 sin

4 αM2
1

32π (m2
h − 2M2

1 )
2

[
1− 1

3

m2
h −M2

1

m2
h − 2M2

1

+
1

12

(
m2

h −M2
1

m2
h − 2M2

1

)2
]√

1− m2
h

M2
1

v2rel (3.6)
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Figure 3: t, u and s-channel of coannihilation processes of DM ν1±.

where ηR, ηI and η+ masses are regarded as same parameter Mη for simplicity and only top pair is

taken into account in fermion pair ff because of the largeness of the Yukawa coupling. The SM-like

Higgs mass and decay width are fixed to mh = 125 GeV and Γh = 10−2 GeV, and the heavy Higgs

mass is assumed to be mH < 200 GeV. The decay width of the heavy Higgs ΓH is expressed as

ΓH =
y2t sin

2 α

16π
mH

(
1− 4m2

t

m2
H

)3/2

. (3.7)

The contribution of the process H → ν1±ν1± is also added to the decay width when the relation

mH > 2M1 is satisfied. Note that the mixing matrix of charged leptons UeL is introduced in the

effective cross section σ`
effvrel since the initial Lagrangian (2.1) is not assumed as diagonal base of

charged leptons. The s-wave vanishes and p-wave only remains in the above annihilation cross section

due to the helicity suppression.

Since the neutrino Yukawa couplings yν are severely restricted by LFV, the annihilation cross

section of ``-channel is too small to obtain the proper DM relic abundance. Thus large contributions

from tt and hh channels are required to have sizable effective annihilation cross section. These

processes are possible because of the mixing of Higgses φ0 and χ0, namely the DMs ν1± can be Higgs

portal DMs. This is a different aspect from the loop induced neutrino mass model [6] and the various

analysis of the right-handed neutrino DM in the original model [9, 39–42].

The independent parameters which appear in the analysis are Λ1, Λ3, M1, M3, Mη, mH , (yS)11

and sinα. The parameters A and B of the neutrino mass matrix Eq. (2.11) are determined by

neutrino mass eigenvalues as Eq. (2.14), and we take the fourth solution of Eq. (2.14) as example.

The parameter λ of the charged lepton mixing matrix is fixed by the experimental value of sin θ13

as Eq. (2.18), and Λ2 and M2 are not relative with the analysis since the second column of the

neutrino Yukawa matrix Eq. (2.15) is zero. The allowed parameter spaces from LFV and the DM

relic abundance for (yS)11 = 0.5 and 1.0 in M1-mH plane are shown in Fig. 4 where the parameters

are fixed to Λi = 1 eV, M2 = 1.5 TeV and M3 = 2.0 TeV. The parameter choice Λi ∼ 1 eV means

9
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Figure 4: The allowed parameter spaces for (yS)11 = 0.5 and 1.0 in M1-mH plane. The other

parameters are fixed to Λi = 1.0 eV, M2 = 1.5 TeV, M3 = 2.0 TeV. The unfixed parameters are M1,

Mη, mH and sinα.

that µi ∼ 1 keV if I (M2
i /m

2
R) ' I (M2

i /m
2
I) ∼ 0.1 is assumed as can be seen from Eq. (2.10). The

result does not practically depend on Λi, M2 and M3 since the dependence of Λi appears in only

σ`
effvrel which has small annihilation cross section. Thus we can see that the appropriate contribution

comes from the tt-channel and hh-channel. The red, green and blue points correspond to each range

of sinα as written in Fig. 4. In the case of (yS)11 = 0.5, the mass relation 2M1 ≈ mH is required

since the coupling (yS)11 is not so large and the annihilation cross section σt
effvrel has to be enhanced

due to a resonance. The resonance relation is not required for the right side one which corresponds

to (yS)11 = 1.0 if sinα is large since the hh-channel is effective in this case. There is no allowed

parameter space in M1 < mh region because the main channel is ν1±ν1± → bb and the contribution

to the annihilation cross section is too small.

4 Direct Detection

The DM candidates ν1± interact with quarks via Higgs exchange. Thus it is possible to explore the

DM in direct detection experiments like XENON100 [33]. The Spin Independent (SI) elastic cross

section σSI with nucleon N is given by

σN
SI '

µ2
DM

π

(
1

m2
h

− 1

m2
H

)2
(
(yS)11 mN sinα cosα√

2v

∑
q

fN
q

)2

, (4.1)
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Figure 5: The comparison with XENON100 experiment. The left figure is for (yS)11 = 0.5 and the

right one is for (yS)11 = 1.0. The parameter choice is same as Fig. 4.

where µDM =
(
M−1

1 +m−1
N

)−1
is the DM-nucleon reduced mass and the heavy Higgs contribution

is neglected. The parameters fN
q which imply the contribution of each quark to nucleon mass are

calculated by the lattice simulation [43,44] as

fp
u = 0.023, fp

d = 0.032, fp
s = 0.020, (4.2)

fn
u = 0.017, fn

d = 0.041, fn
s = 0.020, (4.3)

for the light quarks and fN
Q = 2/27

(
1−

∑
q≤3 f

N
q

)
for the heavy quarks Q where q ≤ 3 implies the

summation of the light quarks. The recent another calculation is performed in Ref. [45].

The comparison with XENON100 upper bound is shown in Fig. 5 where the other parameters

are fixed as same as Fig. 4 and these correspond to red, green and blue points. The violet dotted

line is XENON100 (2011) upper bound and the light blue dashed line is XENON100 expected one

in 2012. We can see that from the figure, the XENON100 (2011) limit excludes M1 . 800 GeV in

the large sinα region for (yS)11 = 1.0. The almost excluded region of rather small M1 implies that

the parameter region of the hh-channel is the most effective for the DM annihilation (Fig. 4). The

other certain region will be verified by the future XENON experiment. In the case of taking into

account the lightest right-handed neutrino as DM in the original radiative neutrino mass model [6],

the elastic cross section with nuclei is not obtained at tree level because of the leptophilic feature of

the DM. However interactions with quarks via Higgses are obtained in the radiative inverse seesaw

model and hence verification by direct detection of DM is possible.
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5 Conclusions

We constructed a radiative inverse seesaw model which generates neutrino masses and includes DMs

simultaneously, and studied the mixing of the lepton sector and the DM features. The neutrino

mass matrix was radiatively generated via the inverse seesaw framework. Considering the latest data

of non-zero θ13, we applied the charged lepton mixing effect with almost Maximal Dirac CP phase

suggested by S. King. We can obtain the neutrino Dirac Yukawa matrix which produces the best fit

value of θ12 on the diagonal basis of the right-handed neutrinos and additional fermions and non-zero

θ13 comes from the charged lepton mixing matrix. The size of the neutrino Yukawa couplings is

severely constrained by LFV at the same time. As a result, the annihilation cross section which

comes from the Yukawa interaction becomes ineffective, however we found that new interactions via

Higgs bosons which are independent on LFV. Thus the DM can have the certain annihilation cross

section due to the interactions with Higgses. Verification of the model is also possible by direct

detection of DM through the interaction with Higgses. In particular, the region of the large mixing

sinα will be testable by the exposure of the XENON100 (2012) experiment. Therefore it is favored

to be Higgs portal DM in the radiative inverse seesaw model from the view point of avoiding the

LFV constraint and obtaining the proper detection rate by direct search of DM.
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