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Abstract. A method is presented for realizing logic operations in a micro-
mechanical cantilever array based on the timed application of a lattice dis-
turbance to control the properties of intrinsic localized modes (ILMs). The
application of a specific inhomogeneous field destroys a driver-locked ILM,
while the same operation can create an ILM if initially no-ILM exists. Logic
states “1” and “0” correspond to “present” or “absent” ILM.

1. Introduction. As a mechanical array decreases in size it becomes easier in the
physical world for its vibrational dynamics to enter the nonlinear regime. One result
for a micro or nano-mechanical array is that a localized nonlinear excitation called
an intrinsic localized mode (ILM) can be generated.[1, 2] Some ideas[3, 4, 5, 6, 7]
and applications[8, 9] for vibrational localization in small scale arrays have already
been proposed. Experimental and simulation studies with micromechanical arrays
have shown that in the nonlinear regime a steady state ILM can be produced by
chirping the frequency of the driver[10] beyond the plane wave spectrum and then
maintaining it there with a cw oscillator at constant amplitude.[1] The resulting
locked ILM is stable at a lattice site, and can be moved from one place to another
by introducing a mobile impurity in the array.[11] The interaction between an ILM
and a vibrational impurity mode makes such motion possible. By using vibrational
impurity mode dynamics a number of different processes have been uncovered such
as seeding, annihilating, repelling and attracting driver-locked ILMs.[2, 12] When
two vibrational bands are available dynamic local control is also possible by using
a soliton in the acoustic-like band to act on an ILM associated with the optic-like
band.[13]

Important for the current study are some characteristic ILM-local mode results.
For a nonlinear array with hard nonlinearity a stationary ILM can be created above
the band states by using a chirped driver. When an impurity mode frequency is also
above the band state frequencies but below the ILM frequency the ILM is attracted
to it. (See Ref. [2], Fig. 9.) Two sets of frequency differences are important for the
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impurity mode control of the ILM. These are between the driver and the highest
frequency pure-band state identified as ∆dm = ωd−ωm and the frequency difference
between the driver and the impurity mode called ∆di = ωd − ωi. Since the ILM is
locked to the driver it is stable at the frequency shift ∆dm. When the ILM is near
an impurity mode and 0 < ∆di < ∆dm, attraction occurs. In that case, the ILM
releases some amplitude and becomes trapped at the impurity mode site. When the
impurity mode is removed, the ILM amplitude is recovered. A sudden application
of an impurity mode may end up un-locking the ILM from the driver and it will
then disappear in an energy dissipation relaxation time; hence, to maintain the
locked ILM its change in amplitude should occur over a longer time interval than
the damping time.

By employing simulations it is demonstrated in this report that an inhomoge-
neous, harmonic force constant, time dependent perturbation applied to a nonlinear
lattice can be used to control ILMs that are locked to a driver. It is shown that such
manipulations can be used to produce logic operations. All logic operations, such
as addition, subtraction, etc., can be made from basic sets of gates called complete
sets. Complete sets are (i) NAND and (ii) NOR gates.[14] By application of the
disturbance to the micromechanical cantilever array an inverter and NOR operation
are demonstrated.

In the next section the controlled lattice disturbance is described in some de-
tail and inversion is demonstrated. Section 3 focuses on the NOR operation and
the resulting truth table. Since signal processing become easier if more processes
are available additional operations are presented in Section 4. Observed transient
phenomena are discussed in the remaining section followed by a summary.

2. Inversion. Our micro-mechanical array simulation model is based on the ex-
perimental observations for cantilever arrays described in Ref. [2]. It makes use of
the lumped element model equation for cantilever i:

miẍi +
mi

τ
ẋi + k2Oixi + k4Ox

3
i

+
∑

j

k
(j)
2I (2xi − xi+j − xi−j)

+ k4I [(xi − xi+1)3 + (xi − xi−1)3] = miα cosωdt

(1)

where mi is the mass, τ is a life time, k2Oi and k4O are onsite harmonic and
quartic spring constants, k(j)

2I is a harmonic intersite spring constant of j-th nearest
neighbor, k4I is a quartic intersite spring constant, α is an acceleration, and ωd is
the driver frequency. The array is made from an alternative sequence of long and
short cantilevers to insure coupling to the optic branch with the uniform acceleration
force provided by a PZT transducer. Thus, mi and k2Oi are alternatively repeated
along the array. The nonlinear components k4O and k4I are both positive and
k4I >> k4O. There are a total of 200 modes. The ILM is generated above the
highest linear resonant band frequency (137.1 kHz). The center of the ILM is at
the short cantilever site (odd number site in the simulation). The driver frequency
and amplitude are fixed ωd/2π = 139 kHz and α = 500 m/s2 throughout the paper.

The lattice disturbance is introduced as a time and spatial dependence of the
onsite harmonic spring constant over a fixed region. The spatial pattern to be
applied to the array is shown in Fig. 1(a). It extends over a third of the lattice and
the maximum increase in the onsite harmonic spring constant is 10%. As shown
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Figure 1. (a) Spatial inhomogenous pattern applied to manipu-
late ILMs. The disturbance is characterized as the ratio of the
on-site impurity spring constant to the pure one. (b) Linear eigen-
vectors from the highest resonance frequency down to the 19-th
mode. The top 16 modes show a variety of localization behavior.
Extended band modes begin at the 17-th mode. Total numbers of
modes = 200.

in Fig. 1(b) at the time of maximum application the top 16 modes range from
extended island modes at low frequencies to local modes at high frequencies.

Figure 2(a) shows a simulation result for the time dependence of a locked ILM
in the presence of the time-dependent spatial disturbance. The driver frequency is
fixed at 139.0 kHz, so ∆dm = 1.9 kHz while ∆di = 0.05 kHz at the disturbance
maximum. After turning the disturbance on instantaneously a localized pulsing
structure appears at its center, indicating an amplitude modulation (AM) of the
trapped ILM. Upon reducing the strength of the perturbation to 0 in a time charac-
terized by the ILM relaxation time, τ , one ILM remains in the system. The presence
or absence of the ILM depends crucially on the phase of its AM modulation at the
time of the removal of the disturbance. Fig. 2(b) shows that if the removal of the
disturbance is one half period AM earlier than for frame (a), no ILM remains. At
least three cycles of “presence” and “absence” of ILMs are seen in simulations when
the removal time is scanned with respect to the AM period. The difference in the
end results, i.e., ILM or no ILM, is observed in the time region where the pulsing
structure is clearly seen.

Figure 2(c) shows an ILM at site 87 interacting with a disturbance whose growth
and removal time is the same, ∼ τ . In this case the initial ILM is attracted to
island modes of larger and larger amplitude shifting it towards the local mode at
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Figure 2. Simulated inverter logic in a micromechanical cantilever
array. Dark region corresponds to high energy. The horizontal lines
separated by a vertical dashed line identify the boundaries of the
triangular disturbance. (a) One ILM is created from the no ILM
state. (b) If the disturbance is removed a half AM period earlier
than (a), see dashed line in (c), no ILM remains. (c) ILM at site
87, shifted by 24 sites from the maximum, is destroyed by the
lattice perturbation. The solid line shows the time dependence of
disturbance used in (a) and (c). Vertical arrows indicate different
times where energy has maxima in (a).

center of the disturbance (site 111). Notice the interesting result that the ILM
crosses the disturbance center due to its translational inertia and oscillates about
that “equilibrium” position. At the same time, the AM of the nonlinear mode at the
disturbance center begins to grow in amplitude. This nonlinear mode is an incipient
ILM that stabilizes once the disturbance is removed, similar to that shown in Fig.
2(a). At a later time (around 5000 ∼ 7000 periods) the phase of the AM is shifted
by 180 degrees compared with its value in Fig. 2(a). Since the phase is inverted,
the end result is also inverted even if the removal time interval of the disturbance
is unchanged. It should be noted that the combination of the translation and the
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AM with respect to the time disturbance causes the results shown in Fig. 2(c) to
depend to some extent on the initial relative location of the ILM.

The first two frames in Fig. 2 have also been obtained in another set of simula-
tions where the time dependent pattern shown at the bottom of Fig. 2(c) is used.
In this case the time dependence of the disturbance is the same in frames (a) and
(c) with its finish shifted by 1/2 period in (b). As expected the AM patterns are
the same between t = 4000 ∼ 6000 periods in (a) and (b), while the pattern is
inverted in (c) as illustrated by the vertical arrows shown in all three frames. The
180 degree phase shift of the amplitude modulation in (c) causes the end result to
be reversed from that in (a). It is the presence and location of the initial ILM that
changes the result. Assigning the existence and absence of ILMs as “1” and “0” the
simulations described here demonstrate inverter action in the array.

Figure 3. NOR logic operation. (a) Initial ILM at site 135, shifted
by 24 sites to the other side of the disturbance maximum as applied
in Fig. 2(c). (b) Two simultaneous ILMs at site 87 and site 135
end in no ILM after the perturbation is applied and removed.

3. NOR operation. Figure 3(a) shows that when the initial ILM is located on
the symmetrically opposite side of the disturbance, at site 135, and the same time
dependence of Fig. 2(c) is applied, the AM phase of the ILM is inverted. [Compare
Fig. 2(c) with Fig. 3(a).] When two ILMs are placed at sites 87 and 135 then at
the end of the perturbation cycle no ILM remains as shown in Fig. 3(b). In this
case, the smooth AM observed in Fig. 2(a) is more difficult to see.

A truth table for the triangular disturbance operation is presented in Table 1.
Inputs are the initial existence or absence of ILMs at sites 87 and 135. The output
is site 111, the peak of the impurity pattern in Fig. 1. The results from Figs. 2 and
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Table 1. Truth table of the logic operation. A and B are inputs
at sites 135 and 87. Output site is 111. “1” and “0” mean existence
and absence of ILMs. From this table, we can see that the logic
operation ĀB̄ = (A+B) is realized. It corresponds to the NOR.

A(135) B(87) Output(111) Figure
0 0 1 2(a)
0 1 0 2(c)
1 0 0 3(a)
1 1 0 3(b)

3 are summarized in Table 1. Output “1” is obtained for input “00”. The operation
is expressed as ĀB̄ = (A+B) and is a NOR.

If the logic “1” results for two ILMs placed at other symmetric distances with
respect to the disturbance center then logic operations are still possible as long as
the “1” occurs with high reliability. In this case, the 3rd column, last row of the
truth table will be changed to “1” and the operation expression will beĀB̄ + AB,
that is, an EXOR-NOT gate. For all operations observing a well-defined amplitude
modulation is most important.

4. Other operations. With a larger variety of possible operations available signal
processing can become much easier. Figure 4 shows an OR operation, again pro-
duced with the triangular disturbance. Input sites are 99 and 149. One triangular
disturbance is moved along the dashed line as a function of time. The disturbance
is sufficiently weak so that it doesn’t create an ILM by its application if there is
no ILM present initially. Figures 4(b) and (c) are for the one ILM present initial
condition. The result is the same as the manipulation by a single impurity mode.
Figure 4(d) starts with two ILMs and they collide at site 99. In most cases the
collision of two locked ILMs by the manipulation of a single ILM ends with no ILM.
However, for the triangular disturbance, the result is one ILM.

Other useful operations are duplication and swapping. Often one signal is used
many times in general logic circuits. The signal is simply branched in such circuit
diagrams; however, in the nonlinear array for the ILM operation, each ILM signal
must be prepared before the operation. Thus, duplication of an ILM is required.
Figure 5 shows such a process for two triangular disturbances that slightly overlap.
In this case two ILMs appear although only one is initially present.

Branches are often seen in circuit diagrams and the crossing of circuit lines may
exist at many locations. No interaction occurs between two crossing lines. For the
one-dimensional nonlinear array, this corresponds to moving one ILM signal from
a site to the other side of another ILM signal position. Figure 6 shows such a case.
The ILM signal at site 55 propagates to site 99, and that initially on site 123 is
transmitted to site 79.

5. Discussion. Two transient phenomena have been observed in the production
or destruction of an ILM. (1) Oscillation of the frequency locked ILM around the
point of maximum disturbance and (2) transient amplitude modulation.[15] The
first signature indicates that the ILM has translational inertial while the source of
the second effect is more subtle.
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Figure 4. OR operation. One triangular disturbance is translated
from site 149 to 99 with time as illustrated by the dashed line in
panel (a). The time dependence of the disturbance itself is shown
by the solid line at the lower part of panel (a). The width of the
disturbance is the same as for the previous figure. (a) With the
no ILM initial condition, nothing appears at output site 99. (b)
Starting with one ILM at site 99. (c) Starting with one ILM at site
149. (d) Starting with two ILMs at site 99 and 149. Operations
shown here indicate OR logic, that is, it matches with Boolean
equation A+B where A and B are inputs at site 99 and 149.

For a linear oscillator the AM frequency is the difference frequency between the
driver and the oscillator, i.e., ∆di = 0.05kHz, but the observed AM oscillation
frequency in the cases presented here is ∼ 0.14 kHz. In addition, the lifetime of the
AM (∼ 2300 periods) is longer than the damping time, τ ∼ 1200 periods. Thus, the
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Figure 5. Duplication of an ILM. Two triangular disturbances
are used centered at sites 79 and 109 with the same width as in the
previous figures. Two dashed lines indicate their positions. These
disturbances overlap in the middle as illustrated with the pattern
shown in the left-top corner. Time dependence of the disturbance
itself is shown in lower part of (a). (a) With no initial ILM, no
ILMs appear at site 79 and 109. (b) With an initial ILM at site
55, two ILMs appear as outputs after the application of the distur-
bance.

observed AM cannot be explained by a simple linear calculation, instead it must be
strongly influenced by the nonlinear effect.

Such AM has already been observed in the sideband spectrum of driver locked
ILMs[15] and has been identified with a low frequency deformation mode of the
ILM itself.[16] The oscillation parametrically receives energy from the main driver
so this parasitic oscillation has a longer lifetime than for the linear case. The added
translational component observed here may be the source of the large AM depth.

Bistability of a driver locked ILM is a known property[17] and such bistability is
also known to occur for a Duffing oscillator.[18] By using the ILM eigenvector and a
transformation method described in Ref. [19] and integrating along the array (not
along the cantilever), a Duffing model has been created with effectively the same
parameters as used in the above simulations. Similar to the array case, locked and
unlocked final states appear alternatively when the perturbation removal time is
changed by 1/2 the AM period. Thus, one nonlinear oscillator with a fixed driver is
sufficient to have both amplitude modulation and two end results, namely, locked
and un-locked states.

Even if amplitude oscillation and bistability are explained by the single nonlinear
oscillator model, the multiple input operation demonstrated here requires many
degrees of freedom. Since the end result is sensitive to the phase of the AM of the
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Figure 6. Swapping of ILMs. Two triangular disturbances are
used centered at sites 79 and 99 (positions indicated by two dashed
lines) with the same width as in the previous figure. These distur-
bances overlap in the middle as illustrated with the pattern shown
in the left-top corner. Time dependence of the disturbance is shown
in lower part of (a). (a) No initial ILM results in no outputs at
site 79 and 99. (b) An initial ILM at sites 55 moves to site 99. (c)
An initial ILM at site 123 moves to site 79. (d) Starting with two
ILMs, the end result is two ILMs at sites 99 and 79.

ILM, logic operations are possible as long as a method to modify the AM phase can
be found.

The triangular disturbance has a definite advantage for controlling ILMs. Since
the locked ILM has fixed excitation amplitude, interaction of two nearby ILMs usu-
ally causes repulsion interaction between them. The strong repulsion often ends up
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producing the no ILM result. Although a single impurity mode may also manipu-
late ILMs, the triangular disturbance has an advantage in terms of multiple ILM
interactions because interactions will occur over a larger region of space.

One question is how to make the operations shown here work for a large 1-D
array. In this case, multiple ILM interactions are possible. Ideally, there should be
no interaction during the crossing; however, locked ILMs are stationary stable and
strongly interact when they cross each other. More desirable would be a localized
excitation with a weaker interaction during a rapid crossing so that swapping would
be easier. Because solitons do not interact with each other and because solitons
run while ILMs do not, converting an ILM into a soliton and then after the swap
converting the soliton back to an ILM, would make the swapping operation highly
reliability in a large array. Just exactly how to engineer such a process is not yet
clear although the results in Ref. [13] may provide clues. So far it appears that
handling the ILM-ILM interaction between stationary stable ILM is much simpler
than dealing with the still to be explored ILM-soliton interaction.

6. Summary. Logic operations inverter and NOR have been demonstrated in sim-
ulations involving a cantilever array. The triangular spatial perturbation to the
array vibrational dynamics operated off-center to the initial ILM state inverts the
existence or absence of the ILM. The operation is explained by a phase shift of the
AM produced by the attraction of the initial ILM(s) and the growing (or decaying)
array of impurity modes produced by the time dependent perturbation. Any kind
of logic operation can be achieved by combinations of the inverter and NOR.

The operations shown here are based on the transient response AM together with
the bistability of this Duffing-like oscillator. Such a process also would be expected
to occur in other kind of MEMS oscillator arrays. Finally, such logic operations
may be applicable to information processing, actuator arrays, and sensor arrays.
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