Video-rate high-speed atomic force microscopy for biological sciences

著者	Ando Toshio, Uchihashi Takayuki, Kodera
	Noriyuki
雑誌名	Shinku /Journal of the Vacuum Society of Japan
巻	51
号	12
ページ	783-788
発行年	2009-01-01
URL	http://hdl.handle.net/2297/18990

ビデオレート高速バイオ原子間力顕微鏡 安藤 敏夫^{1,2}、内橋 貴之^{1,2}、古寺 哲幸^{1,2} Video-rate High-speed Atomic Force Microscopy for Biological Sciences Toshio ANDO*^{1,2}, Takayuki UCHIHASHI^{1,2}, Noriyuki KODERA^{1,2} ¹Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan ²CREST/JST, Sanban-cho, Chiyoda-ku, Tokyo, 102-0075, Japan (Received , Accepted) *金沢大学理工研究域数物科学系(〒920-1192 石川県金沢市角間町)

1

Abstract

The atomic force microscope (AFM) is unique in its capability to capture high-resolution images of biological samples in liquids. This capability becomes more valuable to biological sciences if AFM additionally acquires an ability of high-speed imaging. "Direct and real-time visualization" is a straightforward and powerful means of understanding biomolecular processes. With conventional AFM, it takes more than a minute to capture an image, while biomolecular processes generally occur on a millisecond timescale. In order to fill this large gap, various efforts have been carried out in the past decade. Here, we review these past efforts, describe the current state of the capability and limitations of our high-speed AFM, and discuss possibilities that may break the limitations, leading to an innovative high-speed bioAFM.

1. はじめに

機能している生体分子の構造・動作を直接見て,その機能 する仕組みを理解することは生命科学のひとつの夢であった. その夢が今,ようやく現実のものとなった.液中のナノメー ター世界を唯一観察できる原子間力顕微鏡(AFM)の走査速度 を飛躍的に高めることで,実現された.これまで想像するし かなく,見ることが不可能であった極微世界のダイナミック な振舞いが手に取るように見える.

AFM が誕生した 1986 年の 3 年後既に,タンパク質の動作 を見ようとする試みが Hansma らにより試みられた. Fibrinogen を酵素で消化して生成された Fibrin が凝集してい く様子 (血液凝固の分子過程)が約1分間隔で観察された¹⁾. もちろん鮮明な像ではないが,新しいツールを手にして未知 の世界を見ようとする熱気が伝わってくる.しかし,この熱 気が広がることはなかった.1枚の画像撮影に分のオーダー の時間がかかるのに対して,生体分子プロセスは遙かに短い 時間で起こるからである.AFM のイメージング速度を上げよ うとする方向に向かうのは当然のように思えるが,それに挑 戦した研究者は極めて少ない.半導体ウェハの広い表面を高 速に観察することを狙って,Quate のグループはいくつかの 試みを行ったが²⁻³⁾,生物試料の高速観察に要求される条件は 硬い試料のそれよりも遙かに厳しいため,高速 BioAFM につ ながることはなかった。

1995年前後に、米国の Hansma 研究室と金沢大の我々の研 究室は、互いに独立に高速 BioAFM の開発に着手した. 微小 カンチレバーや微小カンチレバーに最適化した光テコ光学系 が Hansma 研で開発された⁴⁻⁵⁾. 我々の研究室では、7 年の間 途中の成果をまったく公表せず、最初の高速 BioAFM が完成 した 2001 年に、80ms/frame で撮影した動くタンパク質分子 の映像とともにその成果を発表した⁶⁻⁷⁾. この成果が大きな刺 激となり、高速 AFM の開発が世界のいくつかの研究室でも 開始されたが、タンパク質を破壊せずに撮影できるビデオレ ート高速 AFM は我々の研究室以外には未だ開発されていな い.

2001 年以降現在まで, 我々は高速 BioAFM の性能向上に向けた研究を継続し, その性能はほぼ理論的限界に達している. 本稿では, この高速 BioAFM を実現した技術, 現状の問題点 と限界, その限界を破るであろう新しい方向などを紹介する. 詳しくは総説⁸⁻¹⁰⁾を参照されたい.尚,動画像は http://www.s.kanazawa-u.ac.jp/phys/biophys/roadmap.htm を参照 されたい。

2. 高速 BioAFM の基本技術

以下の説明では, 探針から試料に横方向の大きな力が作用 しにくく, 生物試料観察に適した Tapping mode を想定してい る. 主に3点が高速 BioAFM 実現の鍵を握っている. (1)探 針・試料間に働く力を一定に保つフィードバック走査の高速 化, (2)スキャナーの振動抑制, (3)振動する探針が試料を叩く 力の軽減化.

2.1 フィードバック走査の高速化

フィードバックループにはほとんど全ての AFM デバイス が含まれており、それらをすべて高速化する必要がある.フ ィードバック走査の速さは、各デバイスで生ずる遅れ時間の 総和 $\Delta \tau$ でほぼ決まる¹¹⁾. 簡単のために、試料が周期 λ のサ イン波形状をしているとする. 試料ステージを X 方向に速度 V_s で走査すると、固定 X 点で試料の高さは $f = V_s \Lambda$ の周波数 で変化する. オープンループの遅れ $\Delta \tau$ により、クローズドル ープのフィードバック走査はほぼ $\Delta \varphi = 4\pi f \Delta \tau$ だけ位相が遅れ る. 45 度の位相遅れが生ずる走査周波数をフィードバック帯 域 f_B と定義すると、 $f_B = 1/(16\Delta \tau)$ となる. もちろん、この位相 遅れにより余分の力が探針から試料に作用するため、この力 が試料系を破壊、或いは、大きく乱してしまう場合には、有 効なフィードバック帯域は 1/(16 $\Delta \tau$)よりも低くなる. ところ で、遅れ時間の主なものは、カンチレバーの振幅計測時間 τ_d 、 カンチレバーの応答時間 τ_c 、Z スキャナーの遅れ時間 τ_s 、フ ィードバック制御の PID 回路の遅れ時間(主に, エラー信号 を積分する時間 τ_{l})である.その他に,パラシューティング 時間 τ_{p} がある.パラシューティングとは,試料の急な降り勾 配で探針が試料から完全に離れて,再着地までに時間がかか ることを意味する. τ_{d} の最小時間は 1/(2 f_{c}), $\tau_{c} = Q_{c}/(\pi f_{c})$, $\tau_{c} = Q_{c}/(\pi f_{c})$, $\tau_{c} = Q_{c}/(\pi f_{c})$ と表わせる.ここで, f_{c} , Q_{c} はカンチレバーの共振 周波数とQ値, f_{s} , Q_{s} はZスキャナーの共振周波数とQ値 である. $\tau_{l} \ge \tau_{p}$ は,試料の高さ $h_{0} \ge$ カンチレバーの自由振動 振幅 $A_{0} \ge$ の比や,カンチレバーの振幅のセットポイントrな どの複雑な関数であり,厳密に求めることは難しいが,実験 結果との照合により,ほぼ次のように表わせる(導出の一部 は文献¹⁰⁻¹¹⁾を参照).

$$\tau_{I} \approx 4h_{0} \sin(\pi/8)/(A_{0}f_{c}) \qquad (1)$$

$$\tau_{p} \approx \left[(\tan\beta)/\beta - 1 \right] / f_{c} \qquad (2)$$

ここで、 $\beta \approx cos^{-1}[2A_0(1-r)/\{5h_0 sin(\varphi/2)\}]$ である. PID 回路の微分操作は位相遅れを若干改善するので、その改善効果を α と表わすと、フィードバック帯域はおおよそ

$$f_B = \alpha \frac{f_c}{16} / \left(\frac{1}{2} + \frac{Q_c}{\pi} + \frac{Q_s f_c}{\pi f_s} + f_c \left(\tau_p + \tau_I \right) \right)$$
(3)

と表わされる. イメージング速度は, 走査範囲を $L \times L$, 走査 線数を N とすると, $\lambda f_B / 2LN$ となり, 試料の凹凸の細かさ にも関係している. 装置の速度性能をイメージング速度や X走査速度で記載している論文が多いが, フィードバック帯域 で表わすべきである.

カンチレバー関連:カンチレバーは τ_d と τ_cの両方に関わり, 高い共振周波数が要求される.また,生物試料が対象である ため,バネ定数は小さい必要がある.この両者を同時に満た すには,小さく薄い微小カンチレバーが必要であるが,その 変位検出に使う光てこ光学系のレーザースポットサイズとの 関係で,極端に小さくすることはできない.それらのバラン スの結果として,長さ約6 μm, 幅2 μm, 厚さ約90 nmの カンチレバーをオリンパスと共同で開発した. 大気中共振周 波数約 3.5 MHz,水中共振周波数約 1.2 MHz, ばね定数約 0.2 N/m で,水中でのQ値はおおよそ 2.5 である.従って,水中 では,振幅計測の最小時間は 0.42 μs,応答時間は 0.66 μs と なる.最小時間で振幅計測するために,サンプル/ホールド

(S/H) 回路を利用して振動信号のピークとボトムの電圧を ホールドし,その差を振幅として出力する高速振幅計測回路 を開発した⁶⁾. 微小カンチレバーに半導体レーザ光を小さく 絞るために 20 倍の長作動距離対物レンズを使い,反射光を同 じ対物レンズで集める光てこ光学系を開発した⁶⁾. 入射光と 反射光は偏光ビームスプリッターと λ/4 板で分離した. 半導 体レーザ電源には高周波重畳を施し,戻り光によるノイズの 発生を小さくしている¹²⁾. 4 分割センサーは PIN ダイオード で,センサーアンプの帯域は 20 MHz ある.

スキャナー: XYZ スキャナーの干渉を小さくするために, 図 1 に示すように、フレクシャー(板ばね)を利用した¹³⁻¹⁴⁾. また、複雑な共振を防ぐためにピエゾ以外はモノリシック加 工で製作した. ピエゾの速い変位で生ずる撃力を緩和するた めに、カウンターバランス方式⁶を採用し、X ピエゾはその 両端をフレクシャーで挟み、Z ピエゾは対向する位置にもう ひとつのピエゾをベース部に固定した. 共振周波数は X スキ ャナーが約 60 kHz, Z スキャナーが約 150 kHz である. 最近 では、ひとつのZピエゾの4辺だけで固定し、Zピエゾが両 向きに自由に変位する方式を採用している. この固定方法で は、非固定の場合の共振周波数とほぼ一致する 540 kHz の共 振周波数が得られた¹⁵⁾. 試料ステージは台形円錐状をしてお り、試料基板を接着する面は1 mm o である. このように小 さくするのは、軽量化するためと、Z スキャナーの高速な変 位に伴う水圧効果を小さくするためである⁷⁾.最大変位量は、 X 方向 1 um, Y 方向 3 um, Z 方向は前者の固定方法で 2 um 弱,後者の固定方法で1 µm 弱である.スキャナーのQ 値を 小さくする方法(アクティブダンピング)については次節で

2.2 スキャナーの振動抑制

スキャナーの共振周波数を, 走査周波数に含まれる調和周波 数以上に上げることは不可能である. それ故, アクティブダ ンピングは必須である. アクティブダンピングには, ノッチ フィルター, フィードバック, フィードフォワードの3方式 がある(図 2a, b, c).

X スキャナー:走査信号は予め三角波と定まっているので, X スキャナーの伝達関数 *G*(*s*)の逆伝達関数と三角波のフーリ エ変換を掛けたものを逆フーリエ変換した信号を D/A コンバ ータを介して出力するだけで,ダンピングできる⁹⁻¹⁰⁾.複数 の共振ピークを持つような複雑な場合でもこの方法で対応で きる.もちろん,これから述べる Z スキャナーに対する方法 も利用できないわけではない.

Ζスキャナー: 簡単のために Ζスキャナーが単一共振ピーク (共振角周波数 ω₁, Q 値 Q₁) を持つとして, ノッチフィ ルター方式をまず考える. このフィルターの伝達関数 N(s)は

$$N(s) = \frac{s^2 + \omega_0 s / q + \omega_0^2}{s^2 + \omega_0 s / Q + \omega_0^2}$$
(4)

と表わせる. $\omega_0 = \omega_1$, $q = Q_1$, $Q \sim 0.5$ と設定すれば, フィ ルター処理後の伝達関数は $\omega_0^2 / (s^2 + \omega_0 s / Q + \omega_0^2)$ となり, Q 値を下げることができる.

次にフィードバック方式を考える. 図 2b の全体の伝達関数 を *R*(*s*)とすると,

$$R(s) = \frac{G(s)}{1 - G(s)H(s)} \tag{5}$$

と表わされる. これがQ値Q₀(~0.5)をもつようにするには

$$H(s) = \frac{1}{G(s)} - \frac{1}{R(s)} = \left(\frac{s^2}{\omega_1^2} + \frac{s}{Q_1\omega_1} + 1\right) - \left(\frac{s^2}{\omega_0^2} + \frac{s}{Q_0\omega_0} + 1\right) \quad (6)$$

とH(s)を設定する. $\omega_0 = \omega_1$ と設定すると,

$$H(s) = -\left(\frac{1}{Q_0} - \frac{1}{Q_1}\right)\frac{s}{\omega_1} \qquad (7)$$

となる. すなわち, H(s)は単純な微分回路となる. $\omega_0 = \omega_1$ と 設定したために, ダンピング後の帯域は元の共振周波数を超 えない. $\omega_0 > \omega_1$ と設定すれば, 超えることができるが, H(s)は2回微分と1回微分が並列になったものになる. 以上の説 明では, Z スキャナーの予知できない速い出力変位が計測で きると仮定しているが, 実際には極めて難しい. 我々はこの 問題をZスキャナーと同じ伝達関数で特徴付けられる回路を 模擬スキャナーとして利用することを考案した¹⁶⁾.

フィードフォワード方式では G(s)の逆伝達関数の特性をも つ回路を設計しなければならない. コンピュータで処理する 方法もあり得るが、ビデオレート高速 AFM では現在のとこ ろアナログ方式しかない.しかし、単一共振の場合でさえ、 その逆伝達特性の回路を設計することは容易ではない.しか し、フィードフォワード方式は、帯域を実際の共振周波数よ りも伸ばすことが可能であり、利用できるピエゾ素子の共振 周波数に限界があることを考えると極めて有益である. 我々 は、任意伝達関数の逆伝達関数を自動生成する回路を考案し た¹⁷⁻¹⁸⁾ (図 3a, b). ゲインgを1とすれば, 図 3aの回路の 伝達関数は 1/M(s) (~1/G(s))となる.実際には、回路に使うア ンプなどの素子に遅れがあり, g=1とすることはできず, 理 想的な逆伝達関数は得られない.しかし,図 3bのように複数 連結することにより改善される.この方法を、後述するカン チレバーの光熱応答¹⁸⁾,及び,Zスキャナーに適用し¹⁰⁾,帯 域を伸ばすことに成功している.

ところで、Z スキャナーの共振は一般に複数のピークをも つ.素共振が直列に繋がった共振系の場合には、上記いずれ かのダンパー回路を直列に作用させれば、複数のピークをダ

8

ンピングできるが、並列に繋がっている場合には、上述した 任意伝達関数の伝達関数を自動生成する方式以外では、複数 のピークを同時にダンピングすることはできない.

2.3 Tapping 力の軽減化

パラシューティングは、走査中のカンチレバー振幅のセッ トポイントを深く(自由振動振幅に対するセットポイント振 幅の割合 r を小さく) すれば回避できる. しかしこの場合. 試料を強く叩くことになり, 脆い生物試料やダイナミックに 変動する弱いタンパク質間相互作用は破壊されるか、大きく 乱されてしまう. つまり, 試料を優しく叩くために必要な浅 いセットポイントと高速走査は相容れない関係にある. パラ シューティングが起こっても、PID 制御のゲインを大きくし ておけば、パラシューティング時間は短縮されるが、逆に試 料の昇り勾配の部分でオーバーシュートを起こし、パラシュ ーティングを頻繁に誘発してしまい、安定な制御ができない. PID 制御のゲインを状況に応じて走査中に調節することがで きれば、この問題を解決できるはずである. そこで、セット ポイント振幅と自由振動振幅の間に閾値を設け、カンチレバ ーの振幅がこの閾値を超えた場合にフィードバックゲインを 上げる動的 PID 制御法を開発した¹¹⁾. セットポイントrを 0.9 (ないしは, 0.95) まで上げても、パラシューティングは起 こらず,フィードバック帯域はrに依存しなくなった.従っ て、試料を優しく叩くことと、パラシューティングによる遅 延の回避が動的 PID によって同時に実現された.

3. 高速 BioAFM の周辺技術

3.1 高速位相イメージング

固定周波数の励振信号とカンチレバーの振動との位相差は, 試料の物性情報を含むため,位相差像は形状以外に,例えば ヘテロな成分分布に関する情報を与える.探針・試料間の相 互作用が保存力の場合には,力の勾配によりカンチレバーの 共振周波数がシフトし,その結果,位相がシフトする.位相

は斥力で進み、引力で遅れる. エネルギーが散逸する場合で も位相がシフトする(遅れる).保存力の場合,共振周波数 シフト量は約 $-0.5k' f_c / k_c$ となる.ここで、k'は力の勾配で ある. 通常この周波数シフト量は小さいので、それに伴う位 相シフトを高感度に検出するために、カンチレバーのQ値を 上げざるを得ない、その結果、高速位相イメージングは不可 能となる. 微小カンチレバーでは, f./k. は通常のカンチレバ ーよりも1,000 倍程度大きいため,Q 値を上げる必要がなく, 高速位相イメージングが可能となる.非保存力の場合でも、 微小カンチレバーでは溶液による抵抗力が小さく、大きな位 相変化を期待できる. そこで, 通常使われる遅いロックイン 方式に代わる高速位相検出回路を開発し、50-100 ms/frame で 位相像を得ることに成功した¹⁹⁾.通常の位相イメージングで は、何周期かに亘る平均の位相シフトを検出するため感度が 低く,そのためにカンチレバーの振幅を1 nm 程度に小さく して場の勾配内に探針が常に存在するようにしなければなら ない. 我々の検出法では、カンチレバー振動の1周期中の任 意のタイミングで位相検出できるため、最も大きな位相シフ トが起こるタイミングを選ぶことができ、振幅を小さくする 必要がない.更には、複数のタイミングで位相を検出でき、 その結果、エネルギー保存・非保存の相互作用を区別して検 出することが可能である. 探針・試料の接触直後は、斥力に よる位相の進みとエネルギー散逸による位相の遅れが相殺す る傾向にあるが、斥力による位相の進みはすぐに解消される のに対し、エネルギー散逸による位相の遅れは暫く続く、実 際、位相検出タイミングの違いにより、異なる位相像が得ら れた¹⁹⁾ (図 4).

3.2 ドリフト補償

カンチレバーの励振効率のドリフトは厄介な問題である. 励振用ピエゾの発熱によるものと思われるが,励振効率は通 常時間とともに下がる.下がると,カンチレバーの振幅は小 さくなるが,フィードバック回路は,この減少を探針が試料 に強く接触していると解釈し, 試料ステージを探針から遠ざ ける.しまいには, 探針は試料から完全に離れイメージング 不能になる.この問題を以下の工夫により解決した.探針・ 試料間の接触で,カンチレバー振動は歪み,2 倍波以上の高 調波が現れる.そこで,時定数の大きなI制御回路で2倍波 の振幅が一定になるように,励振信号を調節した.その結果, 長時間安定なイメージングが可能になった¹¹⁾.

3.3 光熱効果によるカンチレバー駆動

Z スキャナーに比べて, 我々の利用している微小カンチレ バーの水中での共振周波数は1.2 MHz と高く, Q 値も 2-3 と 小さいため、高速に応答する. そこで、Z スキャナーに代わ りカンチレバーを変位させて、探針・試料間の距離制御を行 う方式を考案した¹⁸⁾. カンチレバーに直接力を作用させる仕 方として,磁力²⁰⁾,光²¹⁻²²⁾,極めて高い周波数の超音波²³⁾ があり得るが,設計が単純になる光を採用した.光吸収によ る発熱のため、金コート面が非コート面よりも膨張し、カン チレバーがたわむ. 908 nm のレーザー光で1 nm/mW, 405 nm では 10 nm/mW の効率である(但し、レーザーパワーはレン ズ出射口で測定したパワーである).しかし、405nmの光は 生物試料にも吸収されダメージを与えるので使えない¹⁸⁾.熱 の伝導・拡散は遅く、微小カンチレバーのたわみは 8.4 us と 123 us の時定数で応答した.この遅れは、逆伝達関数自動生 成回路を利用してほぼ完全に補償することができた. その結 果, 30 ms/frameの速度でタンパク質をイメージングすること に成功した¹⁸⁾.

4. 現状及び課題

上記の様々な高速化のための開発により,フィードバック 帯域は120~150 kHz に達し,比較的丈夫なタンパク質では, 走査範囲 250 nm,100 走査ラインの条件で,ビデオレート(33 ms/frame)で撮れるようになった.走査範囲を狭めれば,10 ms/frame でも撮影できる.また,ノイズは多いものの,マイ カ表面の原子像も 28 ms/frame の速さでイメージングできる (走査範囲 5 nm x 2.5 nm).また,いくつかのタンパク質系 の機能動態の高速撮影にも成功しており^{8-10, 13-14,24)},生命現 象の機能解明などに資することができることを実証した.

フィードバック帯域については, Tapping Mode AFM とし て、ほぼ理論的限界の性能に達している.しかし、Tapping 力の軽減化は、極めて弱いダイナミックなタンパク質間相互 作用を乱さないレベルまでには達しておらず、その改善は現 時点で最大の課題である. その解決には, 探針・試料間の接 触検出の高感度化が重要であり、これまでにいくつかの試み を行った.振幅よりも位相の変化の方が硬い基板に対して敏 感であるが、柔らかいタンパク質ではそれほど大きな違いが なかった. 位相と振幅の両方が混ざった信号で接触を検出す ることも行った. すなわち, 高速振幅計測回路の電圧ホール ドを外部信号に同期して任意のタイミングで行い、最大の変 化率が得られるタイミングに調節したが、タンパク質では位 相の変化が大きくないため、大きな改善は得られなかった. そこで現在第3の高感度化の方法を検討している. 探針・試 料間の接触は極短い時間で起こるが、そのカンチレバー振動 への影響は1周期以上に均されてしまう. その均された信号 の振幅, 位相を我々は検出してきた. 接触力の力積は小さい が、力のピーク値は励振力の最大値とそれほど違わない、従 って、接触力のピーク値を検出できれば、高い感度が実現さ れる.カンチレバー振動信号から力を求める所謂逆決定問題 である²⁵⁾.振動信号にはノイズが含まれるため、振動信号を カンチレバーの運動方程式に代入しても、力信号はノイズに 埋もれてしまう. そこで, 振動信号のフーリエ級数係数 Ak, B_kを積分回路で求め、それを用いて力の近似値を

$$f(t) \approx \sum_{k=2}^{n} A_k \left(1 - k^2 \right) sin(k\omega_o t) + B_k \left(1 - k^2 \right) cos(k\omega_o t)$$
(8)

として得る.振動するカンチレバー探針を基板にわずかに接触させたときの実際の振動信号を用いて式(8)の計算を行った結果,4-5倍波までを含めるとインパルス的な力波形が現

れた.この計算を実行する高周波アナログ回路を現在開発中 である.基本角周波数の信号のフーリエ係数 A_1 , B_1 を積分 で求め, $\sqrt{A_1^2 + B_1^2}$ を振幅として求める方法 ²⁶⁾も、ノイズが 小さくなるので高感度検出法として有効かもしれない.

5. 高速 BioAFM の今後の展開

5.1 非接触超高速 BioAFM

Tapping Mode AFM として現状の高速 BioAFM のイメージ ング速度は理論的限界にほぼ達している.カンチレバーを更 に微小化して共振周波数を2倍程度まで(バネ定数を現状の 0.2 N/m に維持したまま)上げることは可能かもしれないが, それがほぼ限界である.試料に優しい条件を満たしたまま更 に高速化することは可能であろうか.唯一の解は非接触の条 件を得ることである.非接触が実現されれば,硬いカンチレ バーを利用でき,共振周波数を上げることができる.ところ で,表面下の構造を AFM で可視化するために,試料ステー ジ底から超音波を入射し²⁷⁻²⁸⁾,その超音波でカンチレバーを 励振させる方法が開発されている.この方法を少し変形し, 試料ステージ底とカンチレバーホルダーから異なる周波数

(f₁, f₂)の超音波を入射し、それらを探針で干渉させる方 法が試みられている²⁹⁻³⁰⁾. f₁ と f₂の差を f₆に一致させておく と、この干渉によりカンチレバーは共振する. 試料を伝播し てきた超音波の振幅と位相は試料表面下にある物体により変 調を受けるため、カンチレバーの共振も変調を受ける. 従っ て、表面下の構造をイメージングできる. 超音波の近接場検 出であるため、超音波の波長は空間分解能に関係せず、横方 向の分解能は通常の AFM と同様である. この方法により、 細胞内の構造(感染した菌や核)が可視化された³⁰⁾. 試料表 面下が均一の場合, 試料ステージから伝播してきた超音波振 動の波面は試料の形状をなぞるものと思われる. 違う見方を すれば, 試料表面は超音波の周波数で振動している. 従って、 探針で起こる干渉は、試料表面に沿って均一に起こるものと 期待される. また, 干渉は探針が試料に接していなくても起 こり得るので、非接触イメージングが可能である公算が高い. 我々はこの非接触検出の予備的実験を行った.表面から約2 nm 離れたところで, カンチレバーは fc で共振し始め, 更に 近づくと振幅が増大し、接触したところから更に近づけてい くと、振幅は減少した. すなわち、非接触検出が実証された ¹⁰⁾. 振幅は距離に対して2相性を示すが, DC たわみ信号を 併用することにより、2相性によるフィードバック走査の混 乱を回避できる.超音波方式の非接触型 BioAFM が将来実現 される可能性が高い. その実現により、分離精製されたタン パク質などの機能動態を超高速にイメージングできるととも に,極めて柔らかい生きた細胞表面で起こる微細構造の動態 をも観察できるようになるものと期待される.現在のところ、 非接触イメージングは、走香型イオン伝導顕微鏡³¹⁻³²⁾と近接 場光顕微鏡 (SNOM) で実現しているが、どちらも高速走査 の可能性は極めて低い(フィードバック走査を断念すれば別 だが³³⁾).

5.2 高速内視 BioAFM

上述のように細胞内の可視化はすでに実現しており、この 方法と我々が開発してきた高速走査技術との融合により、高 速内視 BioAFM が実現する可能性は高い.但し、既に発表さ れている細胞内の可視化³⁰⁾では、Z方向の分解能はないと考 えられる.電子顕微鏡では試料を色々な向きに傾けて得た像 から3次元像を再構成しているが、高速内視 BioAFM では試 料ステージ底からの超音波の入射角度を変える必要がある. それ故、高速性がある程度犠牲になる.構造の大きい細胞内 オルガネラの動態観察が可能になるものと予想される.分子 については、金属粒子などを標識することにより、その動態 が観察されるものと期待される.

5.3 その他の高速 BioAFM

短い鎖分子を介して特定の分子を付けた探針を利用して,

試料中にある特定分子の局在とトポグラフィー像の同時イメ ージング(分子認識 AFM)が既に確立している³⁴⁾.分子認 識には2つの分子の会合が必要であるため,高速性をある程 度犠牲にする必要はあるが,探針に付けた分子のみかけの高 い濃度から判断するとサブ秒の分子認識イメージングは可能 になると予想される.センサーやレーザの低ノイズ化により, 液中原子解像 AFM も既に実現しており³⁵⁻³⁶⁾,我々の高速 AFM でもノイズがまだあるもののビデオレートで原子解像 できていることから,超解像高速 AFM 実現の可能性は十分 にある.

6. おわりに

生きた生体分子のナノ機能動態の観察が現実のものとなり, いくつかのタンパク質系で機能解明に迫る映像が得られるま でに高速 AFM 技術は進歩してきた.見えない世界で起こる 生命現象を推測する従来の方法に代わり,直接見る時代がや ってくることは時間の問題である.超高速化,超高解像化, 生きた細胞表面で起こる分子プロセスや細胞内部オルガネラ の動態の可視化といった次世代高速 AFM の可能性も出てき た.現在のところ,高速 AFM の開発者・ユーザーの数は非 常に限られているが,この革新的顕微鏡技術の発展にもっと 多くの研究者が参画することを期待している.

〔文献〕

- B. Drake, C. B. Prater, A. L. Weisenhorn, S. A. C. Gould, T. R. Albrecht, C. F. Quate, D. S. Cannell, H. F. Hansma and P. K. Hansma: Science, 243 (1989) 1586.
- S. R. Manalis, S. C. Minne, A. Atalar and C. F. Quate: Rev. Sci. Instrum., 67 (1996) 3294.
- T. Sulchek, R. J. Grow, G. G. Yaralioglu, S. C. Minne, C. F. Quate, S. R. Manalis, A. Kiraz, A. Aydine and A. Atalar: Appl. Phys. Lett., 78 (2001) 1787.

- D. A. Walters, J. P. Cleveland, N. H. Thomson and P. K. Hansma: Rev. Sci. Instrum., 67 (1993) 3583.
- T. E. Schäffer, J. P. Cleveland, F. Ohnesorge, D. A. Walters and P. K. Hansma: Rev. Sci. Instrum., 80 (1996) 3622.
- T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito and A. Toda: Proc. Natl. Acad. Sci. USA, 98 (2001) 12468.
- T. Ando, N. Kodera, E. Takai, D. Maruyama, K, Saito and A. Toda: Jpn. J. Appl. Phys., 41 (2002) 4851.
- T. Ando, T. Uchihashi, N. Kodera, D. Yamamoto, M. Taniguchi, A. Miyagi and H. Yamashita: J. Mol. Recognit., 20 (2007) 448.
- T. Ando, T. Uchihashi, N. Kodera, D. Yamamoto, A. Miyagi, M. Taniguchi and H. Yamashita: Pflügers Arch. - Eur. J. Physiol., 456 (2008) 211.
- 10. T. Ando, T. Uchihashi and T. FUkuma: Prog. Surf. Sci. (in press).
- N. Kodera, M. Sakashit and T. Ando: Rev. Sci. Instrum., 77 (2006) 083704.
- 12. T. Fukuma and S. P. Jarvis: Rev. Sci. Instrum., 77 (2006) 043701.
- T. Ando, T. Uchihashi, N. Kodera, A. Miyagi, R. Nakakita, H. Yamashita and K. Matada: e-J. Surf. Sci. Nanotech., 3 (2005) 384.
- T. Ando, T. Uchihashi, N. Kodera, A. Miyagi, R. Nakakita, H. Yamashita and M. Sakashita: Jpn. J. Appl. Phys., 45B (2006) 1897.
- T. Fukuma, Y. Okazaki, N. Kodera, T. Uchihashi and T. Ando: Appl. Phys. Lett., 92 (2008) 243119.
- N. Kodera, H. Yamashita and T. Ando: Rev. Sci. Instrum., 76 (2005) 053708.
- 17. S. Morita, H. Yamada and T. Ando: Nanotechnol., **18** (2006) 08401.

- H. Yamashita, T. Uchihashi, N. Kodera, A. Miyagi, D. Yamamoto and T. Ando: Rev. Sci. Instrum., 78 (2007) 78083702.
- 19. T. Uchihashi, T. Ando and H. Yamashita: Appl. Phys. Lett., **89** (2006) 213112.
- 20. G. R. Jayanth, Y. Jeong and C.-H. Menq: Rev. Sci. Instrum., 77 (2006) 053704.
- N. Umeda, S. Ishizaki and H. Uwai: J. Vac. Sci. Technol. B, 9 (1991) 1318.
- D. Ramos, J. Tamayo, J. Mertens and M. Calleja: J. Appl. Phys., 99 (2006) 124909.
- F. L. Degertekin, B. Hadimioglu, T. Sulchek and C. F. Quate: Appl. Phys. Lett., 78 (2001) 1628.
- 24. D. Yamamoto, T. Uchihashi, N. Kodera and T. Ando: Nanotechnol. (in press).
- M. Stark, R. W. Stark, W. M. Heck and R. Guckenberger: Proc. Natl. Acad. Sci. USA, 99 (2002) 8473.
- 26. J. Kokavecz, Z. Tóth, Z. L. Horváth, P. Heszler and Á Mechler: Nanotechnol., **17** (2006) S173.
- D. C. Hurley, K. Shen, N. M. Jennett and J. A. Turner: J. Appl. Phys., 94 (2003) 2347.
- O. Hirotsugu, T. Jiayong, T. Toyokazu and H. Masahiko: Appl. Phys. Lett., 83 (2003) 464.
- 29. M. T. Cuberes, H. E. Assender, G. A. D. Briggs and O. V. Kosolov: J. Phys. D: Appl. Phys., **33** (2000) 2347.
- 30. G. Shekhawat and V. P. Dravid: Science, 310 (2005) 89.
- 31. P. K. Hansma, B. Drake, O. Marti, S. A. C. Gould and C. B. Prater: Science, 243 (1989) 641.
- 32. A. I. Shevchuk, G. I. Frolenkov, D. Sanchez, P. S. James, N. Freedman, M. J. Lab, R. Jones, D. Klenerman and Y. F. Korchev: Angew. Chem. Int. Ed. Engl., 45 (2006) 2212.
- 33. A. D. L. Humphris, J. K. Hobbs and M. J. Miles: Appl. Phys. Lett., 83 (2003) 6.

- 34. C. Stroh, H. Wang, R. Bash, B. Ashcroft, J. Nelson, H. Gruber, D. Lohr, S. M. Lindsay and P. Hinterdorfer : Proc. Natl. Acad. Sci. USA, **101** (2004) 12503.
- 35. T. Fukuma, K. Kobayashi, K. Matsushige and H. Yamada: Appl. Phys. Lett., **87** (2005) 034101.
- B.W. Hoogenboom, M.E. Müller, H.J. Hug, Y. Pellmont S. Martin, P.L.T.M. Frederix, D. Fotiadis and A. Engel: Appl. Phys. Lett., 88 (2006) 193109.

- Fig.1: High-speed scanner structure.
- Fig.2: Active damping methods. (a) Notch filtering method, (b) Feedforward control method, (c) Feedback control method.
- Fig.3: Circuits for automatically producing an inverse transfer function of a given transfer function G(s). M(s) represents a "mock scanner" whose transfer function is approximately the same as that of the z-scanner. (a) Single-unit type, (b) Double-unit type.
- Fig.4: Phase-contrast images depending on the phase-detection timing. The sample is a polystylene-polybutadiene block copolymer. (a) Immediately after the tip-sample contact, (b) about a half period after the contact; the maximum phase-shift is about 5°, (c) at time when slightly less than one period of time passed (i.e., just prior to the contact); the maximum phase-shift is about 10°.

Size: small

Fig.2

Size: small

Fig.3

Size: large

100 nm

Size: small