-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Kanazawa University Repository for Academic Resources

A group-theoretic characterization of the
space obtained by omitting the coordinate
hyperplanes from the complex Euclidean space

00O Kodama Akio, Shimizu Satoru
journal or Osaka Journal of Mathematics
publication title

volume 41

number 1

page range 85-95

year 2004-03-01

URL http://hdl._handle.net/2297/40358



https://core.ac.uk/display/196709169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Kodama, A. and Shimizu, S.
Osaka J. Math.
41 (2004), 85-95

A GROUP-THEORETIC CHARACTERIZATION OF THE SPACE
OBTAINED BY OMITTING THE COORDINATE HYPERPLANES
FROM THE COMPLEX EUCLIDEAN SPACE

Dedicated to Professor Makoto Namba on his sixtieth birthday

Akio KODAMA and Satoru SHIMIZU

(Received May 31, 2002)

Introduction

In the study of the holomorphic automorphism group Agt( ) of a complex mani-
fold M, it seems to be natural to direct our attention not only to the abstract group
structure of Autf/ ) but also to its topological group structure equipped with the
compact-open topology. In fact, a well-known theorem of H. Cartan says that the topo-
logical group of the holomorphic automorphisms of a bounded domai@”itnas the
structure of a Lie group, and this result enables us to make various kinds of de-
tailed studies of bounded domains @f. On the other hand, in contrast to the case
of bounded domains, the holomorphic automorphism group @ut((C*)") of the un-
bounded domairC* x (C*) is terribly big whenk + > 2, and cannot have the structure
of a Lie group. But, by looking at topological subgroups of Aft(x (C*)!) with Lie
group structures, we can find a lead to apply the Lie group theory to the investiga-
tion of the problems related to the structure of Ak(x (C*))). In the present paper,
we try to approach from this standpoint to the fundamental problem of what complex
manifold has the holomorphic automorphism group isomorphic to @uk( (C*)!) as
topological groups. Namely, we prove the following result with the aid of the theory
of Reinhardt domains developed in Shimizu [8], [9] (cf. Kruzhilin [6]).

Main Theorem. Let M be a connected Stein manifold of dimension . Assume
that Aut(M) is isomorphic toAut(C* x (C*)"~*) as topological groups. Thes s
biholomorphically equivalent t&€* x (C*)"—*,

As a consequence of the above theorem, we can obtain the fundamental result on
the topological group structure of A@f x (C*)/).
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Corollary. If two pairs (k,[) and (%, ') of nonnegative integers do not coincjde
then the topological groupgut(C* x (C*)") and Aut(C*" x (C*)') are not isomorphic.

It should be remarked that, as shown in Ahern and Rudin [1], the group£Aut(
and AutC™) are isomorphic as abstract groups precisely whenm = . Also, as a con-
sequence of the study @f n ( )-actions on complex manifolds of dimension , a related
result to our Main Theorem has been obtained by Isaev and Kruzhilin [4].

This paper is organized as follows. In Section 1, we collect some preliminary
facts. In particular, two main tools for our study are given. One is a tool to obtain
the normal form of some compact group action on a Reinhardt domain, and the other
is a tool for the standardization of torus actions on complex manifolds. Section 2 is
devoted to the proof of the Main Theorem and its corollary. Our method used in Sec-
tion 2 has interesting applications. As one of such applications, we discuss in Sec-
tion 3 a new approach to the study of n ( )-actions on complex manifolds of dimen-
sionn.

1. Lie group actions, Reinhardt domains and torus actions

We begin with a basic fact on Lie group actions on complex manifolds. Met
be a complex manifold. Arautomorphism of¢f means a biholomorphic mapping of
M onto itself. We denote by Aut{ ) the topological group of all automorphisms of
M equipped with the compact-open topology. L&  be a Lie group and consider a
continuous group homomorphispt G — Aut(M). Then the mapping

GxM>(g p)— (p(e)p) eM

is continuous. It follows from Akhiezer [2] that this mapping is actually of cl&ss
and thereforeG acts o as a Lie transformation group. In view of this, when a
continuous group homomorphisp: G — Aut(M) is given, we say that;G acts on
M as a Lie transformation group througp. Also, the action ofG onM is called
effectiveif p is injective.

We now recall basic concepts and results on Reinhardt domains (cf. [8], [9]). We
denote byU £ ) theunitary group of degreé. Write 7" = (U (1))* . Then -dimensional
torus 7" acts as a group of automorphisms@hnhby the standard rule

a-z=(z1, .., nzy) for a=(ag,...,a,) € T" andz =¢a,...,z,) € C".

By definition, aReinhardt domainD in C" is a domain inC" which is stable under
this action of 7" . Each element of 7" then induces an automorphism, of D given
by 7.(z) = « - z, and the mappingp sendinga to 7w, is an injective continuous
group homomorphism of” into Auff ). The subgropp(7”) of Aut(D) is denoted
by T(D).

Let f be a holomorphic function on a Reinhardt dom&in Ch Then f can be
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expanded uniquely into a “Laurent series”

J@R)=> az,

veZr
which converges absolutely and uniformly on any compact seDin , where =
(z1,---s2n), ¥ = (V1. ..., 1), @nd z¥ = z7*---z2». The following lemma is a conse-

guence of the uniqueness of the Laurent series expansion.

Lemma 1.1. If f satisfies the condition thafpr someyy € Z",
fla-2)=a"f(z) forall aeT" and all z € D,

then 7 has the forny (z) = a,,z*°.

Proof. Since we have

fla )= a’a:’ and a®f() =) a%a,z",

vezn vezn
it follows from the assumption that, for everye Z", we have

v j—

oa’a, = aa, for all a € T".

This implies that ifa, # 0, thenv =1y, and our lemma is proved. O

We denote bylT ¢") the group of all automorphisms @" of the form
C">(z1, ..., z0) — (0az1, ..., anzy) € C",

where @, ..., q®,) € (C*)". For a Reinhardt domai®» i€", we denote bylT D )

the subgroup off7 @") consisting of all elements aff ) leaving D invariant. Iden-
tifying r7(C") with the multiplicative group €*)", we see that, whed7 IX ) is re-
garded as a topological subgroup of At( ), it is isomorphic to a closed Lie subgroup
of (C*)". Using Lemma 1.1, we obtain a characterization/6fD ( ) as a subgroup of
Aut(D).

Lemma 1.2. Let D be a Reinhardt domain i€". ThenII(D) is the centralizer
Caup)(T (D)) of T(D) in Aut(D).

Proof. It is immediate thatl7 § )C Cawp)(T(D)). To prove the reverse in-
clusion, lety be any element ofCaup)(7(D)) and write ¢ = (p1,...,¢s), Where
1, -- -, @, are holomorphic functions o® . Then, for evary =1,n, we have

vila-z) = aipi(z) =a%pi(z) forallaeT" and allz € D,
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where eache; denotes the element Z5f whosei -th component is equal to 1 and
whose components except the -th are all equal to 0. By Lemma 1.1, it follows from
this property that every functiop;(z) has the form

0i(2) = ae, 2% = ao, z;.

This implies thaty € IT(D), and the reverse inclusio@auwp) (T (D)) C (D) is
shown, as desired. U

The argument used in Shimizu [9] for determining the autorisms of
bounded Reinhardt domains has the following consequence, which plays a crucial role
in our study.

Proposition 1.1. Let D be a bounded Reinhardt domain @ and suppose that

DN{zi=0} #0, 1<i<m,
DN{z =0} =0, m+1<i<n.

If G is a connected compact subgroup Afit(D) containing 7 (D), then there exists a
transformation
er C" X (C)Y"" 2 (21, - zn) = (wa, o wy) € C7 x (CF),
w; =rize@E), 1<i<m,
Wi =726, m+1<i<n,

such that,for D = p(D) and G = oGy~ c Aut(D), one has

G=U(ky) x - x Ulk) x Ulkssr) X - x U(ky),
kit -tk +tke t+---+k =n,

k1+"'+k,v:m,

ks+]_:"':k1 ::L
wherery, ..., r, are positive constants’ and ¢” are permutations of1,...,m} and
{m+1,...,n}, respectivelyz” denotes the coordinates,,+1, ..., z,), andvy, ..., v

are elements ogZ" ™.
We give a useful form of this proposition as a corollary.

Corollary. In the above propositignif G is isomorphic toU (k) x (U (L))" * as
topological groups and ik > 2, thenm > k.
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Proof. SinceG is necessarily isomorphic &bk & JU(1))** as Lie groups, we
have dimG =k?+ (n — k). On the other hand, Proposition 1.1 implies that dim =
dimG = k% +--- +k2+ (n — m). Therefore, ifm < k, then it follows that

KP=k2+.. +k%+(k—m) and k =ky+---+ks+ (k —m).

By noting thatk > 2 andk —m > O, this is a contradiction. Thus we obtaim > k.
O

We recall the fundamental result on torus actions on complarifoids, which is
a part of Barrett, Bedford and Dadok [3, Theorem 1].

Standardization Theorem. Let M be a connected Stein manifold of dimen-
sionn. Assume that” acts effectively 8h  as a Lie transformation group through
Then there exist a biholomorphic mappidg  &f i and a continuous group
automorphismd of T such that

F((p(a))(p)) =0(a)- F(p) forall a e T" and all p € M.

Consequently D := F(M) is a Reinhardt domain irC”, and one hasFp(I™")F~! =
T(D).

To apply the Standardization Theorem to our study, we need a lemma.

Lemma 1.3. In the Standardization Theoreni M = C* x (C*)"~*, then we have
D = F(M)=Ck x (C*)"* after a suitable permutation of coordinatgé necessary.

Proof. We first show thatD N (C*)* = D — {z1---z, = 0} = (C*)". Suppose
contrarily that D N (C*)" # (C*)". Since D N (C*)" is a Stein manifold, the logarith-
mic image of the Reinhardt domaif» N (C*)" is a convex domain contained in a half
space ofR". Hence, there exists a nonconstant bounded plurisubharmonic function
on D N (C*)". Sinceu extends to the whole d# , we have a nonconstant bounded
plurisubharmonic function o> . This contradicts the fact that  is biholomorphically
equivalent toM =C* x (C*)"~*. Thus we obtainD N (C*)" = (C*)".

Since D is a Stein manifold, it follows from what we have shown above that, af-
ter a suitable permutation of coordinate®,  has the f&@m C'=x (C*)"~" (cf. [7,

p. 46, Theorem 1.5]). Note that* x (C*)"~* and C" x (C*)"~" are homeomorphic
precisely whenk = . Therefore we hav@ G* x (C*)" %, becauseD and/ are
biholomorphically equivalent. O
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2. The characterization of C¢ x (C*)': Proof of the Main Theorem and its
corollary

For brevity, we writeX;; =C* x (C*)' and S =Xy.._.

Now, as in the Main Theorem stated in the introduction, Mt be a con-
nected Stein manifold of dimensiom and assume that there exists an isomorphism
®: Aut(2r) — Aut(M). Since 2, is a Reinhardt domain i@", we have the injec-
tive continuous group homomorphispy, : 7" — Aut(£2). Thus we obtain an injec-
tive continuous group homomorphisd o pg,: T" — Aut(M). Hence, by the Stan-
dardization Theorem, there exists a biholomorphic mapging Mof  @ftesuch that
D := F(M) is a Reinhardt domain il€" and we haveF & o po, )(T")F~1 = T(D).
Therefore we may assume thaf is a Reinhardt donfain C’inand we have an
isomorphism® : Aut2; >~ Aut(D) such that® € @ )) =T D ).

We show that C*)* c D. Since @ : Aut{, ) — Aut(D) is a group isomor-
phism and sinced 7( <& )) = [# ), we see thé&  gives rise to a topological group
isomorphism® :Caua,)(T(2)) — Cauwp)(T (D)) between the centralizers. Moreover,
by Lemma 1.2 we hav&€aue (T (2)) = T(S2%), and it is immediate thafl % ) =
I1(C"). On the other hand, again by Lemma 1.2 we h&gyp)(7(D)) = (D).
Therefore we obtain

2n = dimIT (") = dim Cagyey) (T(2)) = dim Caup) (T(D)) = dim 1T (D).

Since IT 0 ) is a closed Lie subgroup @ C%), it follows that I7 (0) =17 C"). By
taking a pointzg in D N (C*)", this shows that

(C)'=1(C") - 20=11(D) - 20 C D,

as required.

Since D is a Stein manifold by assumption, we see from the result of the preced-
ing paragraph thaD has the form ¢  after a suitable permutation of coordinates.

Whenn =1, we haveD £y =C* or D = ; = C. Moreover, since Auf*)
and AutC) are not isomorphic, the condition that A®( ) and At( ) are isomorphic
implies that, according to the cases/of =0 adnd = 1, we must ave 2y and
D = ;. This proves the Main Theorem when = 1. Therefore, in what follows, we
assume that > 2.

We show that: > k. Whenk = 0, there is nothing to prove. To prove our asser-
tion whenk # 0, we divide into the two cases &f =1 aad> 2.

First consider the case df > 2. Noting that Aut{2; ) contains the subgroup
Uk) x (UQ)' %, we setG =& U & )x (UL)*), which is a connected com-
pact subgroup of Aufp ) containing IX ), becausek % YU(1)y'™* > T() and
®(7T(2)) = T(D). Take a relatively compact subdomaih bBf and put

Do={g)eD|geG zcU}=JeW)=|JG =
geG €U
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Then Dg is a bounded Reinhardt domain containedZin and can be regarded as
a connected compact subgroup of the Lie group Ag}(containing? (o). Recalling

that G is isomorphic to/ X X (U(1))"* andk > 2, we can apply the corollary to
Proposition 1.1 toDy and G C Aut(Dg). Therefore, after a suitable permutation of
coordinates, we have for some > k,

@#Doﬁ{Z,‘ZO}CDﬂ{Z,‘:O}, 1§1§m

This implies that2,, C D, and, when we writeD $€2, , we must have> m > k, as
required.

Now consider the case df = 1. It suffices to show that fgj(and Autf2o)
are not isomorphic. Suppose contrarily that we have an isomorptlism  QAutl
Aut(L20). Then, by the Standardization Theorem and Lemma 1.3, we may assume that
we have an isomorphis® : AWZ() — Aut(2p) such that® 1 1)) = T(0). For
s =0, 1, let us set

T'(2) ={(L, az, ..., ) € T() | az, ..., a, € UL)}.

Then ® '(21)) is an @ — 1)-dimensional subtorus of %), and, after a suitable
change of coordinates by a transformation of the form

Qo =(C)" > (z1,---520) — (w1, ..., wy) € (C)" = Qo,
w; =z, 1<i<n,

where 14, ...,v, are elements ofZ", we have ® 1'(21)) = T'(). Since @ :
Aut(2;) — Aut(€2p) is a group isomorphism, we see thét  maps the centralizer

of 7/(€21) in Aut(2;) onto the centralizeZ of T'() in Aut(€2). Therefore, for the
groupsZy and Z;, their commutator groupsp, Zo] and [Z1, Z;] must be isomorphic.

To derive a contradiction, it is sufficient to see thap[Zg] is an abelian group, while
[Z1, Z4] is not an abelian group. We verify this only in the casenof =2, because the
verification in the case of > 2 is almost identical. Using a method similar to that in
the proof of Lemma 1.2, we can show thai and Z, are the groups of all elements

g1 € Aut(21) = Aut(C x C*) and go € Aut(2) = Aut((C*)?)
having the forms
(*) g1(z) = (az1+ B, f(z1)z2)
and

g0(z) = (az1, f(z1)z2),
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respectively, wherex € C*, g € C, and f ¢1) is a nowhere vanishing holomorphic
function that is defined o€ for g1 and onC* for go. Take any two transformations
Ko p.p and Ko g g Of the form §) given by

Kop (2) = (az1+ 8, fz1)z2) and Ko g () = (/22 + B, f(z1)z22)

and write Ko 5.7, Ko g 11(2) = (K1(z), K2(z)) in terms of the coordinates i€?,
where [p, ] := ¢~ toyp"topor) denotes the commutator of transformatiansnd ).
Then we have

ad'zy+af — Ba’ + 65—
ao! ’

Ki(z) =

fl'za+0') f'(z1)z2
a7z +aff = o+ — P)jac)) [ ((aa’ss +af + 5 — B)ar)

As a consequence, considering the case@®f3() = (0, 0), we have

Ko(z) =

) [Kaos Ko )= (2, LDLEDE)

J(z1)f"(az1)

Now it follows immediately from £x) that [Zo, Z¢] is abelian. On the other hand, con-
sider three elements

P(z) = (az1+ 5, 22), Q(z) = (z1,z2€Xpz1), andR ¢ ) = (yz1, z2€XPz1)

in Z;. Then, using the computation result above, we obtain

[P, Ql(2) = (z1, z2€xp{(1 — a)z1 — B3}),
[P, RI(2) = (W,Zzap{(l— )2 ﬁ}) ’
ary v

and therefore [P, @ ] P, R ]] is not the identity mapping whenev&n—1)(y—1) # 0.
This implies that ¥4, Z1] is not abelian, and our assertion that Autj and Aut2o)
are not isomorphic is shown.

Summarizing our results obtained so far, we have shown thaf if  is a connected
Stein manifold of dimensiom and if the topological groups Adt( ) and Rut( ) are
isomorphic, thenM is biholomorphically equivalent @, with> k.

To complete the proof of our Main Theorem, it is sufficient to #eek = . Suppose
contrarily thatk # k. Then, for the connected Stein manifciz}, of dimension , we
have that Aut2;, ) and Aufg, ) are isomorphic. By lettilg @ , an application
of what we have shown just above yields that is biholomorphically equivalent to
@2, with p > h. Sincek < h < p, this contradicts the fact th&@, ar@, are not
homeomorphic when # ¢. We thus obtain: % , and our Main Theorem is proved.

U
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It remains to prove the corollary to the Main Theorem.klf [ + k=+1’, then
it is immediate from the Main Theorem that AXY(; ) and AXit(,;) are isomorphic
precisely whenk, ! ) =K',l’). To prove the corollary in the case &f [ k' +1’, we
need the following lemma.

Lemma 2.1. Let M be a connected Stein manifold of dimension NIf> n,
then there is no injective continuous group homomorphism of the tBfis into the
topological groupAut(M).

Proof. Suppose contrarily that we have an injective continuous group homomor-
phism p of TV into Aut(M). Choose am -dimensional subtoriti§ Bf . By the
Standardization Theorem, there exists a biholomorphic mapping/ +— D of M
onto a Reinhardt domai® i6" such thatFp(T")F~* = T(D). SetG =Fp(T")F—1!
and take a relatively compact subdomdin Bf . Thep:= {g(z) € D | g € G,

z € U} is a bounded Reinhardt domain @' and G can be regarded as a connected
compact subgroup of the Lie group Af) containing? {p). SinceG is isomorphic

to 7V andN > n = dim7T (Do), G is a torus in AutDo) containing7 (o) properly.
But, by [8, Section 4, Proposition 1JI' Dg) is a maximal torus in Autldp), that is,
any torus in AutQg) containing7 () must coincide withT Do). This is a contra-
diction, and our assertion is proved. ]

Supposet + Zk'+l’, say,k H < k’'+I', and writen =k #, n’ =k’ +I’. If there ex-
ists an isomorphisn® : Auky /) — Aut(Xy;), then we have an injective continuous
group homomorphisn® o py,, , of " into Aut(X,,). SinceX;, is a connected Stein
manifold of dimensiomm < n’, this contradicts the above lemma. Therefore, Aut( )
and Aut(X;. ;) are not isomorphic, and the proof of the corollary is completed]

3. U(n)-actions on a Stein manifold of dimensionn

The method used in the preceding section can be applied to the study of
U(n)-actions on a complex manifol8 of dimensian . The following theorem gives
a different approach from Kaup [5], Isaev and Kruzhilin [4]. In the case wheredAut( )
is not a Lie group, we cannot obtain various results on the conjugacy of subgroups of
Aut(M) by applying the conjugacy theorems in the Lie group theory, in general. How-
ever, even when Aud ) is not a Lie group, we have a conjugacy result omAut( ) in
a case, as is shown in our theorem below.

Theorem. Let M be a connected Stein manifold of dimensior> 2. Assume
that U(n) acts effectively o as a Lie transformation group throughThen M
is biholomorphically equivalent to eitheB” oE€", where B” denotes the unit ball
in C". Moreover if we identify M withB” orC", then there exists an element of
Aut(M) such thatyp(U(n))y =t = U(n).
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Proof. Choose a maximal torus” i n (). By the Standardization Theorem,
there exists a biholomorphic mapping M — D of M onto a Reinhardt domai®
in C" such thatFp(T")F~1 = T(D). SetG = Fp(U(n))F~! and take a relatively
compact subdomai ob . Thebg := {g(z) € D | g € G, z € U} is a bounded
Reinhardt domain irC" and G can be regarded as a connected compact subgroup of
the Lie group Autg) containing? o). Recalling thatG is isomorphic t& n( ) and
n > 2, we can apply Proposition 1.1 and its corollary/dg and G C Aut(Dg). There-
fore there exists a transformation

0:C" > (z1, .-, ) — (wy, ..., wy,) € C",
w; = rizog), 1<i<m,

such that, forDg = (Do) and G = oGy~ C Aut(Dg), we haveG = U(n), where
r,...,r, are positive constants and is a permutation of{1,...,n}. Putting D =
©(D), we see by the uniqueness theorem on holomorphic functionstthat ¢ )=
Aut(D), or g(D) = D for all g € U(n). Since D is a Stein manifold, it follows thaD
has the form

b:{(zl,...,zn)EC”

n
Z|Zi|2 <r},

i=1

where 0< r < +oo. This shows thatD, and hence is biholomorphically equivalent
to either B" orC”", proving the first assertion.

Now, let us identifyM withB" orC". When M = B", the existence of €
Aut(M) satisfying the relation)p(U(n))y~1 = U(n) is a consequence of the conjugacy
of maximal compact subgroups of the simple Lie group &4t( ). So, consider the case
of M =C". Then, by the same reasoning as above, there exist biholomorphic mappings
F:M=C"— D=C"andy: C" — C" such that ¢ o F)p(U(n))(p o F)~t = U(n).
Therefore, the compositiott = poF is an element of Aut”) required in the theorem.

O

Added in proof. After the submission of this paper, the authors learned in the
letter of August 21, 2002, from Professor A. Isaev that, in the special cage of =
the same result as our Main Theorem had been obtained independently by him (Proc.
Steklov Inst. Math.235 (2001), 103-106).
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