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Abstract  

The complex formation equilibria of Cr3+ and Fe3+ ions in aqueous solution with two 

biodegradable aminopolycarboxylate chelants (DL-2-(2-carboxymethyl)nitrilotriacetic acid 

(GLDA) and 3-hydroxy-2,2´-iminodisuccinic acid (HIDS)) were investigated. The 

potentiometric data obtained at the constant ionic strengths (I) of 0.1 and 1.0 mol·dm–3 KCl 

and at 25 ± 0.1°C was processed with the aid of the computer program HYPERQUAD 2008. 

The formation constants of the proton-chelant and metal-chelant (logKML) species (M = 

Fe3+ or Cr3+; L = GLDA or HIDS) were determined, and the concentration distributions of 

complex species in solution were evaluated for both metal ions. In various pH conditions, the 

interaction between the chelants (L = GLDA or HIDS) and the metal ions (M = Fe3+ or Cr3+) 

leads to the formation of different complexes formulated as MH2L+, MHL, ML–, M(OH)L2– 

and M(OH)2L3–. The logKML values at I = 0.1 mol·dm–3 KCl (T = 25 ± 0.1°C) were 15.27 

(logKFe–GLDA), 14.96 (logKFe–HIDS), 13.77 (logKCr–GLDA), 12.67 (logKCr–HIDS), and at I = 1.0 

mol·dm–3 KCl (T = 25 ± 0.1°C) were 14.79 (logKFe–GLDA), 14.34 (logKFe–HIDS), 12.90 

(logKCr–GLDA), 12.09 (logKCr–HIDS). The conditional stability constants (logK´ML) of the ML 

complexes were calculated in terms of pH in the range of 2–12, and compared with the same 

for EDTA and other biodegradable chelants (NTA and EDDS).  

 

Keywords: stability constant; biodegradable aminopolycarboxylate chelant; GLDA; HIDS; 
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1.0 Introduction   

Extractant-assisted industrial process designs,1, 2 or the contaminated waste treatment 

operations3, 4 are frequently using aminopolycarboxylate chelants (APCs) as the solvents. The 

ability of the APCs of forming stable and water-soluble metal complexes makes them a 

unique choice as the cleaning solution ingredient for inhibiting the interfering metal ions 

from playing their normal chemical roles.5 Among the APCs, ethylenediaminetetraacetic acid 

(EDTA) is commonly utilized for its capability to form water-soluble complexes having 

marked stability with the majority of toxic metal ions.2 Although cheap and convenient, the 

major drawback of using APCs as the extractant is the related environmental consequences 

upon release into the surroundings.6 APCs exposure initiates remobilization of metal ions 

from soils and sediments in the aquatic environments,2 and may intensify the threshold values 

of the corresponding toxic effects in some cases.7 APCs are also blamed for enhancing 

eutrophication through raising the total nitrogen content and phosphate solubility in 

interstitial waters,8 and their prolonged persistency owing to their poor photo–, chemo– and 

biodegradability.9, 10 The eco-safety has been and continues to be an issue of concern, and 

increasingly stringent legislative regulations have been proposed or imposed to control the 

discharge of APCs in the environment.11 Researchers are focused extensively either on the 

treatment and recovery of APCs from the treated wastewater12-16 or, more recently, search for 

the replacement of the environmentally unsafe classical APCs with the eco-friendly 

biodegradable APC variants.3, 17, 18 The usefulness of the newly developed eco-friendly 

chelants for specific applications can be critically evaluated based on their complexation 

behavior.19, 20  

Metal pollution of soils derived from numerous anthropogenic activities, including 

agricultural practices, industrial activities and waste disposal is a global concern.4, 21 

Nitrilotriacetic acid (NTA), iminodisuccinic acid (IDSA), [S,S]-ethylenediaminedisuccinic 

acid (EDDS) and methylglycine diacetic acid (MGDA) have been proposed as the 

biodegradable replacement for EDTA for the remediation of metal-contaminated soils,17, 22 

and the formation and stability data of their corresponding proton-chelant and metal-chelant 
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complexes are available.23 Our research group is particularly interested in the usage of 

biodegradable APCs for in-situ or ex-situ decontamination of the soil contaminated with toxic 

metal ions, and we have introduced two commercially available APCs, DL-2-(2-

carboxymethyl)nitrilotriacetic acid (GLDA) and 3-hydroxy-2,2´-iminodisuccinic acid (HIDS) 

(Figure 1), for the application in the aforementioned purpose.3 Superior biodegradable 

characteristics relative to EDTA of both the chelants, GLDA24 and HIDS,25  have been 

claimed. The complexation data of these chelants have not been reported in the NIST 

standard reference database of critically selected stability constants of metal complexes,23 

while such  fundamental fact is obligatory for considering the new biodegradable chelants in 

any chelant-based clean-up practices. Previously, we have reported the complexation 

characteristics of GLDA and HIDS with the divalent ecotoxic ions (Ni, Cu, Zn, Cd, and Pb) 

at the ionic strength (I) of 0.1 mol·dm–3 and at 25 ± 0.1°C in aqueous solutions.26 As a 

continuation to our ongoing study, we are reporting the same for two trivalent metal ions, 

chromium and iron, with GLDA and HIDS at two different ionic strengths (I) of 0.1 and 1.0 

mol·dm–3 maintaining the same temperature condition.  

Chromium is one of the 100 most dangerous toxic substances as mentioned in the 

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).27 It 

is found in many metal-contaminated sites besides other toxic ions28, 29 and, more precisely, 

in the soils that have been contaminated with electroplating wastes.30 In accordance with the 

toxicity characteristic leaching procedure (TCLP), the concentration of chromium in soil 

leachates should not exceed 5 ppm.27 Iron is one of the major cations that co-exists with the 

toxic metals in soil solid phase, competes with the toxic metals for the chelants and 

simultaneously extracted.31, 32 The objective of the current study was to provide supporting 

information for designing eco-friendly processes for solid waste management using GLDA or 

HIDS. The outcome is the stability information of the binary and ternary complexes of 

GLDA and HIDS with Cr(III) and Fe(III), which have not been reported before.   
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2.0 Experimental Section 

2.1 Instrumentation 

Potentiometric measurements were carried out using a KEM AT-610 automatic titrator 

(Kyoto Electronics, Kyoto, Japan), equipped with a pH-combination electrode and a 

temperature probe. The electrode system was calibrated using standard buffer solutions (pH 

4.0, 7.0 and 9.0) prepared from buffer powders (Horiba, Kyoto, Japan) before and after each 

series of pH measurements at 25 ± 0.1°C. It is worth to be noted that this calibration process 

is a part of the instrument maintenance protocol as recommended by the manufacturers, and 

the results are not used in the calculations. 

The titration vessels (100 cm3) were emerged into a water-jacket type thermostat 

connected to the water circulation system Eyela CCA-1111 (Tokyo Rikakakai, Tokyo, Japan), 

and a constant temperature condition (25 ± 0.1°C) was maintained. Magnetic stirring was 

employed during the titration as included within the titration vessel assembly. A special cover 

containing inlets for the electrode, temperature probe, and dosing nozzle for the titrator, in 

addition to a nitrogen gas inlet and outlet was used as a seal of the vessel. A stream of 

purified nitrogen gas was flowed through all the solutions and during the titrations in order to 

eliminate the ingress of CO2 or O2 and maintain an inert atmosphere.  

An automated TOSOH 8020 high-performance liquid chromatography system (Tosoh, 

Tokyo, Japan) were used to validate the GLDA and HIDS concentrations. The ultrapure 

water (resistivity >18.2 MΩ·cm) that used throughout the experiments were obtained from 

the Arium® Pro water purification system (Sartorius Stedim Biotech GmbH, Göttingen, 

Germany). 

2.2 Chemicals 

Aqueous solutions of the sodium salt of GLDA (wt = 40%) (AkzoNobel, Amsterdam, 

Netherlands) and HIDS (wt = 51.5%) (Nippon Shukubai, Tokyo, Japan) were used. Both the 

products are commercially available and were used without any additional treatment.  
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All the other chemicals and solvents were of analytical reagent grade. Potassium 

hydrogen phthalate (Wako Pure Chemical, Osaka, Japan) was used to standardize potassium 

hydroxide (Carbonate-free; Kanto Chemical, Tokyo, Japan) potentiometrically. A pre-

standardized hydrochloric acid (Kanto Chemical, Tokyo, Japan) solution was used. The ionic 

strength of the system was adjusted using the potassium chloride (Wako Pure Chemical, 

Osaka, Japan; >0.99 mass fraction purity). Titrisol® ampoules of chromium and iron (Merck 

KGaA, Darmstadt, Germany) were used to prepare the stock solutions of metals.  

The working solutions were prepared from the stock solutions with ‘CO2-free’ water, 

which was prepared through the boiling and cooling of the ultrapure water using a stream of 

nitrogen. 

2.3 Procedure 

Aqueous solutions (A–D) of 50 cm3 (total volume) were titrated with 0.1 mol·dm–3 

carbonate-free KOH at 25 ± 0.1°C. Solutions of two different ionic strengths (0.1 and 1.0 

mol·dm–3) were used, and the conditions were maintained constant by the addition of an 

appropriate amount solid KCl. 

Solution A: HCl (8 × 10–3 mol·dm–3) + GLDA (1.0 × 10–3 mol·dm–3) 

Solution B: HCl (8 × 10–3 mol·dm–3) + GLDA (1.0 × 10–3 mol·dm–3) + M(III) ions (Cr3+ 

or Fe3+) (1.0 × 10–3 mol·dm–3) 

Solution C: HCl (8 × 10–3 mol·dm–3) + HIDS (1.0 × 10–3 mol·dm–3) 

Solution D: HCl (8 × 10–3 mol·dm–3) + HIDS (1.0 × 10–3 mol·dm–3) + M(III) ions (Cr3+ or 

Fe3+) (1.0 × 10–3 mol·dm–3) 

It should be noted that the formation rate of Cr(III)-chelant complexes at room-

temperature is known to be low because of the inertness of the Cr(III) ion, which create 

difficulties in determining the equilibria in aqueous solutions.33, 34 The slow interaction 

problem between the Cr(III) and chelants can be minimized either by refluxing the reaction 

mixture for 10 to 20 min35 or by aging the solution mixtures at a certain temperature.36 We 

have followed the aging process to ensure the formation of Cr(III) complexonates. The 

mixtures of Cr(III) and the chelants (GLDA or HIDS) at different molar ratios were aged for 

 

6 



Journal of Chemical & Engineering Data; 57 (10): 2723–2732. DOI: http://dx.doi.org/10.1021/je3005936 

45 days at 25 ± 0.1°C before subjecting to the potentiometric measurements. There was no 

such observation reported for the complexation behavior of Fe(III) with the chelants. 

Prior to the titration, each solution was allowed to stand for at least 30 minutes at 25 ± 

0.1°C. A constant volume increment at pre-fixed intervals was set in the auto-titrator 

operating software, and a real-time titration curve was obtained from the recorded data. At 

least, three replicates of each titration and more than 100 points of potentiometric 

measurements were used for data analysis. 

2.4 Calculation 

The results of strong acid-strong base titrations were used for the calculations of the 

concentration of the base, the percent of carbonate contamination, the pKw value (pKw = 

13.78, I = 0.1 mol·dm–3; pKw = 13.75, I = 1.0 mol·dm–3 at 25 ± 0.1°C), electrode potential 

(E0) and slope factor (S) with the computer program GLEE37 before and after each of the 

titrations. The experimental conditions, e.g. temperature, ionic strength and ionic medium, 

were maintained same as the solution under study. Prior to the real titrations, the titration 

conditions were simulated with the HySS2009 program.38 The protonation and metal-chelant 

stability constants were calculated by analyzing the potentiometric data using the 

HYPERQUAD 2008 program.39 The visual interpretation of the refinement process was 

obtained by the HYPERQUAD program in addition to the best fit for the titration data.  

3.0 Results and Discussion 

3.1 Protonation constants 

Potentiometric pH profiles of the GLDA- and HIDS-fortified aqueous solutions in the 

absence of metal ions were used to compute the protonation constants of GLDA and HIDS. 

The raw data-sets were treated with the non-linear least-squares refinement program 

HYPERQUAD 2008, wherein the weights of the titrant are the independent variables and the 

pH values are the dependent variables. The total amount of substance present initially in the 

titration vessel is specified in millimoles, the volume in cm3 and the species' concentrations is 

in mol·dm–3. The total amount of protons is the sum of the amount present in any protonated 
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ligand that is initially present in the titration vessel plus whatever mineral acid has also been 

added. The unit of burette concentration is mol·dm–3 and hydroxide is entered with a negative 

sign. The product of burette concentration and titre volume is expressed in the units of 

millimoles. 

The following relationship shows the proton-chelant (HL; L = GLDA or HIDS) constants 

for the overall reaction, βn: 

]L[[H]
]LH[

a2a1 n
n

nn KKK =⋅⋅⋅⋅=β         (1) 

where Ka1, Ka2….Kn define the stepwise acid dissociation constants.  

The overall (logβpqr) and successive (logK) protonation constants of GLDA and HIDS 

were calculated with the HYPERQUAD program and listed in Tables 1 and 5. The symbols p, 

q and r were used as the coefficients for metal ions, protons and chelants to designate the 

stoichiometry associated with the possible equilibria in solution.  

The percentage distribution of the various protonation stages of GLDA and HIDS at 25 ± 

0.1°C in the aqueous medium at I = 1.0 mol·dm–3 is provided in Figure 2, while the same at I 

= 0.1 mol·dm–3 were reported elsewhere.26 The species distribution curves of GLDA and 

HIDS (Figure 2) showed the occurrence of the first protonation of L4– to HL3– at the amino 

nitrogen atoms in the alkaline conditions. The HL3– remains as the dominant species at pH 

5.5–8.5 for HIDS (90–99.5%) and pH 6.0–8.4 (90–98.5%) for GLDA (I = 0.1 mol·dm–3)26 or 

at pH 4.7–8.3 for HIDS (90–99.2%) and pH 6.0–8.1 (90–97.8%) for GLDA (I = 1.0 mol·dm–

3). In the range of neutral to acidic pH, the next protonations of GLDA (H2L2– to H4L) and 

HIDS (H2L2– to H5L+) occur at the oxygen atoms of the carboxylate groups. The association 

of the last proton in GLDA occurs at pH ~2, the lowest pH limit used for calculation, and, 

hence, excluded from the consideration. The predicted schemes of the protonation equilibria 

of GLDA and HIDS are shown in Figures 3 and 4.  

The logK data of GLDA at I = 0.1 mol·dm–3 (25 ± 0.1°C) were reported in the NIST 

database 23, and shown in the parentheses of Table 5. There are no LogK data for GLDA at I 
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= 1.0 mol·dm–3 and HIDS at I = 0.1 and 1.0 mol·dm–3, and at 25 ± 0.1°C in the standard 

NIST database. 

3.2 Metal-chelant stability constants 

The overall formation constants (logβpqr) for the systems containing the metal ion (M = 

Fe3+ or Cr3+) and chelant (L = GLDA or HIDS) were computed from the potentiometric 

titration data (Tables 2 and 3). The hydrolytic behavior of each metal species was taken into 

account when calculating the ML stability constants. The following general equation can 

represent the overall reaction: 

rqPrqp LHMLHM ⇔++   rqp
rqp

pqr LHM ][][][
]LHM[

=β     (2) 

where p, q and r are the coefficients for metal ions, protons and chelants, respectively, which 

indicate the stoichiometry associated with the possible equilibria in solution.  

The differences between the logβ values were used to calculate the stepwise formation 

constant (logK) for each of the species of GLDA and HIDS (Table 5), and compared with 

those reported for NTA, EDDS and EDTA in the NIST database.23 In any ML systems, the 

equations (3)–(5) describe the stepwise formation equilibria while the equations (6)–(7) 

define the additional deprotonation reactions involving the coordination of water molecules: 

ML L  M ⇔+     
]L][M[

]ML[
ML =K     (3) 

MHL H  ML ⇔+     
]H][ML[

]MHL[H
MHL =K     (4) 

LMH H  MHL 2⇔+    
]H][MHL[

]LMH[ 2H
LMH 2
=K     (5) 

H M(OH)L  O)ML(H2 +⇔   
O)][ML(H

][M(OH)L][H
2

M(OH)L =K    (6) 

H LM(OH) ML(OH) 2 +⇔   
[ML(OH)]

L][H][M(OH)2
LM(OH)2
=K    (7) 

The stoichiometries and stability constants of the binary and ternary ML complexes (M = 

Fe3+ or Cr3+; L = GLDA or HIDS) were determined from a composition model that was 

 

9 



Journal of Chemical & Engineering Data; 57 (10): 2723–2732. DOI: http://dx.doi.org/10.1021/je3005936 

consistent with the titration data, made sense from a chemical point of view, and offered a 

better statistical fit in comparison with other possible compositions.  

The distributions of the actual metal-chelant species in the aqueous systems at varying 

equilibrium conditions are controlled by the solution pH, and regulate the corresponding 

bioavailability, physiological and toxicological behavior of the metals.40 The pH dependent 

species distribution curves drawn in the range of pH 2.0 to 11 for each ionic strength (I = 0.1 

and 1.0 mol·dm–3) were shown in the Figure 5. For each of the ionic strengths, the 

complexation were observed to start from the initial pH ∼2.0 with the formation of MH2L+ in 

the Fe(III)–HIDS, Cr(III)–GLDA and Cr(III)–HIDS systems, while it was from pH ∼3.0 for 

the Fe(III)–GLDA systems. The first species MH2L+ was expected to form by the 

coordination of weakly basic imine nitrogen atom and the deprotonated carboxylic group in 

GLDA or the hydroxyl group in HIDS, where the four remaining coordination sites of the 

metal ions may be occupied by the water molecules. As the pH increases, coordinated water 

molecules are replaced by the deprotonated carboxylic groups in GLDA or HIDS which leads 

to the formation of the MHL, ML–, M(OH)L2– and M(OH)2L3–complexes (M = Fe3+ or Cr3+; 

L = GLDA or HIDS).  

In the titration curves obtained for the ML systems (M = Fe3+ or Cr3+; L = GLDA or 

HIDS), a second inflection can be observed at higher pH values accompanied by a visible 

color change of the aqueous medium. The comparative titration curves for the ML systems at 

I = 0.1 mol·dm–3 is shown in Figure 6, and the experimental potentiometric titration data-sets 

for all the systems are available as the supplementary information file. The color of the 

aqueous medium changed from colorless to yellow in the Fe(III)–L systems while the initial 

violet color changed to dark green in the Cr(III)–L systems, and such changes indicate the 

formation of hydrolyzed ML complexes.41  

In Table 4, a list of the dominant species formed within the ML systems (M = Fe3+ or 

Cr3+; L = GLDA or HIDS) and the corresponding pH ranges are provided. Above 50% 

formation of all the dominant species were occurred virtually in whole pH range (pH 5–8). 
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The M(OH)L2– remain the common dominant species at I = 0.1 and 1.0 mol·dm–3 with the 

exception for Cr(III)–HIDS system where CrHIDS2– was appeared as the dominant species.  

In the ML systems (M = Fe3+ or Cr3+; L = GLDA or HIDS), formation of the hydrolytic 

species M(OH)2+, M(OH)2
+, M(OH)3, M(OH)4

– were observed with some exceptions. The 

formations of the M(OH)2+ were not occurred in the systems of M(III)–GLDA (M = Fe3+ or 

Cr3+; I = 1.0 mol·dm–3) and Fe(III)–HIDS (I = 0.1 and 1.0 mol·dm–3), and M(OH)2
+ was not 

appeared in the Fe(III)–HIDS (I = 1.0 mol·dm–3) system. A notable increase in the 

distribution of Fe(OH)3 was observed in the Fe(III)–L systems (L = GLDA or HIDS) when 

the ionic strength was increased from 0.1 to 1.0 mol·dm–3. A similar occurrence was also 

noticed for Cr(OH)2+ formation in the Cr(III)–HIDS system.  

There is no stability constant data for the GLDA or HIDS complexation with Fe3+ or Cr3+ 

in the NIST database23 at I = 0.1 and 1.0 mol·dm–3 (25 ± 0.1°C) with which we can compare 

the data from our current work. 

Iron is marked as a potential competing ion during the application of chelant for the 

treatment of solid wastes containing divalent ecotoxic ions (e.g. Ni, Cu, Zn, Cd, and Pb) or 

trivalent chromium. The LogKML values for Ni, Cu, Zn, Cd, and Pb (L = GLDA or HIDS; I = 

0.1 mol·dm–3, 25 ± 0.1°C) in the aqueous medium was reported elsewhere,26 while the same 

for Cr(III) and Fe(III) are reported in the current work. The comparative stability of the ML 

complexes was in the order of logKFeL > logKCrL > logKCuL > logKNiL > logKPbL > logKZnL > 

logKCdL for both GLDA (15.27 > 13.77 > 13.03 > 12.74 > 11.60 > 11.52 > 10.31) and HIDS 

(14.96 > 12.67 > 12.63 > 11.30 > 10.21 > 9.76 > 7.58). The stability constants of greater 

magnitude were observed for the metal-GLDA complexes than the corresponding values for 

the metal-HIDS complexes. Furthermore, the comparisons indicate the formation of the ML 

complexes having higher stability with the trivalent ions than those with the divalent ions. 

The tendency may be attributable to the comparatively stronger ionic binding of the trivalent 

ions than the divalent ions with the chelants.42, 43 The comparative ML complex stability 

characteristics can be predicted in a general sense by the hard and soft acids and bases 

(HSAB) principle which assigns the terms 'hard' or 'soft', and 'acid' or 'base' to chemical 
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species.44, 45 According to the HSAB approach, both the Fe3+ and Cr3+ ions are belong to the 

‘hard acid’ class while Cd2+ ion is belonged to the ‘soft acid’ class and the other ions (Cu2+, 

Ni2+, Pb2+ and Zn2+) are categorized as the ‘borderline (hard-soft)’.44 GLDA has O (of the 

carboxylic group), and HIDS has N (of the amino group) and O (of the carboxylic group) as 

the donor atoms, and are considered as ‘hard base’.46 The most preferable and stable 

interactions are occurred between the hard acid and hard bases, and the soft acids and soft 

bases.46-48 The comparative higher stability of the Fe3+ or Cr3+ complexes with GLDA or 

HIDS than the Cu2+, Ni2+, Pb2+, Zn2+ or Cd2+ is, therefore, attributable to the more-preferred 

interaction between the hard acid and hard base. The comparative stability order of the ML 

complexes can also be assumed using the solution-phase electronegativity scale which 

includes the oxidation state and coordination number of the metal ions. The approach 

considers that the stability of the ML complexes depends on the nature of the corresponding 

bonding character between metal and chelant, which is related to the electronegativities of 

metal ions for complexes with a given ligand. The solution-phase electronegativity values of 

the ions include in the discussion decrease in the following order: Cr3+ (4.026) > Fe3+ (3.835) 

> Cu2+ (2.952) > Ni2+ (2.891) > Zn2+ (2.796) > Cd2+ (2.660) > Pb2+ (2.478),49 and confirm the 

superior stability character of the M(III)-L complexes than that of the M(II)-L complexes. 

The formation constants of the Cr(III) complexes with GLDA or HIDS have been found to be 

a litter lower than those of the corresponding Fe(III) complex, which is opposite to the order 

predicted from the solution-phase electronegativity scale. The difference in stability can be 

explained by considering the greater contribution of Racah’s electrostatic parameter upon the 

crystal-field stabilization in the Fe(III) complex with the chelant (GLDA or HIDS) than in the 

Cr(III) complex.50 A longer treatment time or operation at a higher temperature is suggested 

if the Cr(III) ion is a target ion in a chelant-based clean-up process due to the slow formation 

rate of the corresponding ML complexes. The logKML values of Fe(III) is higher than all the 

toxic ions considered in the comparison. Therefore, it is recommended to examine the Fe(III) 

content of the waste before the chelant application, and an excess of chelant is required to be 

added for minimizing the interfering effect of higher Fe(III) content.  
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3.3 Conditional metal-chelant stability constants 

The stability of the metal-chelant complexes depends on the nature of the bond between 

the metal and chelant, which may be electrostatic or covalent based on the oxidation state and 

coordination number of the metal ion and/or the electronic structure and character of the 

chelant.51 The fundamental stability characteristics of a metal–chelant complex in solution 

can be assumed from the stepwise or overall formation constant.52 Since the factors, those are 

likely to affect the system, e.g. pH or interfering effects from other species, are ignored while 

the values are derived, the applications of these values are of limited significance for practical 

use. Therefore, the term ‘conditional stability constant’ is defined considering the effect of 

the side reactions that may occur during the metal-chelant complexation reactions.53 The 

most frequently used equation for defining the conditional stability constant (logK´ML) is the 

following:53 

MHLMLML loglogloglog αα −−=′ KK        (8) 

where logKML is the formation constant of the metal–chelant species at a molar ratio of 1:1. 

The term αHL expresses the side reactions involving chelant protonation. The term αM 

denotes the other interfering reactions, which include the formation of metal hydroxides and 

the effect of buffers. Equation 8 can be expanded with the inclusion of the term αML for 

considering the formation of metal-chelant-proton species (MLH) or the metal-chelant-

hydroxide species (MLOH): 

MLMHLMLML logloglogloglog ααα +−−=′ KK                  (9) 

The form of the equation used for the calculation of the logK´ML depends on the inclusion 

of the necessary metal hydroxide species, MLH species or MLOH species in the computation 

on a set pH. Accordingly, eq 8 is the more frequently used than eq 9.53
 

The logK´ML values of the ML complexes (M = Fe3+ or Cr3+; L = GLDA, HIDS, NTA, 

EDDS or EDTA) in the aqueous medium at the ionic strength, I = 0.1 and 1.0 mol·dm–3 and 

at 25 ± 0.1°C as a function of pH (2–12)  were calculated using HySS2009 program,38 and 

illustrated in Figure 7. In the Fe(III)–L system at I = 0.1 mol·dm–3, the stability of the 

corresponding complexes at pH 7 was as follows: EDTA > EDDS > NTA > HIDS > GLDA, 
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and it was at the same order at I = 1.0 mol·dm–3 excluding the EDDS (data is not available). 

The Cr(III)–L complexes of EDTA possess superior stability than those of GLDA or HIDS, 

and GLDA (logK´ML = 5.62) has the ability to form more stable complexes than that of HIDS 

(logK´ML = 4.37) at pH 7 (I = 0.1 mol·dm–3). The stability of the Cr(III)–L complexes 

(GLDA or HIDS) at I = 1.0 mol·dm–3 were comparable when solution is neutral or pH ≈ 7, 

and there was no other data to compare. The logK´ML values of the GLDA and HIDS can be 

summarized into their corresponding ranges irrespective of the pH:  Fe(III)–L at I = 0.1 

mol·dm–3 (0.3–5.5, GLDA; 1.4–6.8, HIDS) and at I = 1.0 mol·dm–3 (0.6–6.0, GLDA; 1.3–8.7, 

HIDS); Cr(III)–L at I = 0.1 mol·dm–3 (1.9–5.8, GLDA; 0.2–5.8, HIDS) and at I = 1.0 

mol·dm–3 (1.6–7.0, GLDA; 0.5–4.9, HIDS). The summary data shows that the overall 

stability of the Fe(III) and Cr(III) complexes with the GLDA or HIDS is not that high 

compare to the other biodegradable chelants, and much lower than the frequently used EDTA 

for solid waste treatment.  

4.0 Conclusions 

In the current work, the metal-chelant (ML) stability constants of GLDA and HIDS with 

Fe(III) and Cr(III) at different ionic strengths (0.1 and 1.0 mol·dm–3 KCl) and at 25 ± 0.1°C 

was calculated from the potentiometric titration data, and the experimental findings are 

expected to contribute significantly to the understanding of the complexation behavior of 

corresponding biodegradable chelants. The formations of mono-protonated, di-protonated, 

mono-hydroxo and di-hydroxo ML complexes were observed at 1:1 component ratio. The 

stability constants of the studied trivalent metal complexes were found to be higher for 

Fe(III)–L than that of Cr(III)–L. A lower complexation aptitude was observed for GLDA and 

HIDS than that of EDTA or other biodegradable options. Since the post-operation eco-

toxicity of GLDA or HIDS is low, it can be considered as an option to minimize the 

consumption of EDTA. However, the chelants (GLDA or HIDS) cannot be considered as a 

replacement of NTA or EDDS for the removal of Fe(III) at I = 0.1 mol·dm–3. There is not 

enough data in literature to conclude about the Cr(III) removal performance of GLDA or 

HIDS. In this respect, it could be important to gain more data about the complexation of 
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transition metal ions with the biodegradable APCs due to a widespread interest in the chelant-

based waste treatment processes.   
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Table 1. The overall protonation constants (logβpqr) for the HL systems (L = GLDA or HIDS) in the 

aqueous medium at the ionic strengths (I, mol·dm–3) of 0.1 and 1.0 and at 25 ± 0.1°Ca 

 

Protonation equilibria  p q r  
I = 0.1 mol·dm–3  I = 1.0 mol·dm–3 

logβpqr SD  logβpqr SD 

GLDA4– + H+ ⇌ HGLDA3–  0 1 1  9.39 0.04  9.08 0.06 

HGLDA3– + H+ ⇌ H2GLDA2–  0 2 1  14.40 0.03  14.06 0.08 

H2GLDA2– + H+ ⇌ H3GLDA–  0 3 1  17.89 0.03  17.52 0.07 

H3GLDA– + H+ ⇌ H4GLDA  0 4 1  20.45 0.03  20.02 0.08 

HIDS4– + H+ ⇌ HHIDS3–  0 1 1  9.61 0.02  9.23 0.06 

HHIDS3– + H+ ⇌ H2HIDS2–  0 2 1  13.68 0.02  13.01 0.04 

H2HIDS2– + H+ ⇌ H3HIDS–  0 3 1  16.76 0.02  15.96 0.06 

H3HIDS– + H+ ⇌ H4HIDS  0 4 1  18.90 0.03  18.02 0.06 

H4HIDS + H+ ⇌ H5HIDS+  0 5 1  20.50 0.04  19.68 0.08 
a All the values were calculated from the potentiometric data using HYPERQUAD 2008 (n = 3). The 
symbols p, q and r are the coefficients for metal ions, protons and chelants, respectively, indicating 
the stoichiometry associated with the possible equilibria in solution.  
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Table 2. The overall formation constants (logβpqr) for the ML systems (M = Fe3+ or Cr3+; L = 

GLDA) in the aqueous medium at the ionic strengths (I, mol·dm–3) of 0.1 and 1.0 and at 25 ± 0.1°Ca 

 

Protonation equilibria  p q r  
I = 0.1 mol·dm–3  I = 1.0 mol·dm–3 
logβpqr SD  logβpqr SD 

Fe3+           
Fe3+ + 2H+ + GLDA4– ⇌ FeH2GLDA+  1 2 1  22.64 0.02  22.21 0.08 
Fe3+ + H+ + GLDA4– ⇌ FeHGLDA  1 1 1  19.36 0.02  18.98 0.08 
Fe3+ + GLDA4– ⇌ FeGLDA–  1 0 1  15.27 0.02  14.79 0.06 
Fe3+ + OH– + GLDA4– ⇌ Fe(OH)GLDA2–  1 –1 1  10.49 0.02  10.11 0.06 
Fe3+ + 2OH– + GLDA4– ⇌ Fe(OH)2GLDA3–  1 –2 1  2.37 0.01  2.14 0.06 

Fe3+ + OH–     ⇌ Fe(OH)2+  1 –1 0  
–1.19 
(–2.56) 

0.10  
– – 

Fe3+ + 2OH–  ⇌ Fe(OH)2
+  1 –2 0  

–4.08 
(–6.20) 

0.04  
–4.36 
(–6.42) 

0.11 

Fe3+ + 3OH–  ⇌ Fe(OH)3  1 –3 0  
–11.87 
(–12.50) 

0.04  
–11.77 
(–12.67) 

0.08 

Fe3+ + 4OH–  ⇌ Fe(OH)4
–  1 –4 0  

–21.93 
(–21.88) 

0.04  
–22.48 
(–21.95) 

0.08 

Cr3+           
Cr3+ + 2H+ + GLDA4– ⇌ CrH2GLDA+  1 2 1  21.86 0.09  21.18 0.04 
Cr3+ + H+ + GLDA4– ⇌ CrHGLDA  1 1 1  18.36 0.09  17.64 0.04 
Cr3+ + GLDA4– ⇌ CrGLDA–  1 0 1  13.77 0.09  12.90 0.04 
Cr3+ + OH– + GLDA4– ⇌ Cr(OH)GLDA2–  1 –1 1  7.28 0.09  6.20 0.04 
Cr3+ + 2OH– + GLDA4– ⇌ Cr(OH)2GLDA3–  1 –2 1  –1.91 0.06  –3.31 0.04 

Cr3+ + OH–     ⇌ Cr(OH)2+  1 –1 0  
–1.65 
(–4.41) 

0.06  
– – 

Cr3+ + 2OH–  ⇌ Cr(OH)2
+  1 –2 0  

–7.66 
(–10.35) 

0.08  
–7.48 
(–10.83) 

0.07 

Cr3+ + 3OH–  ⇌ Cr(OH)3  1 –3 0  
–18.17 
(–18.65) 

0.09  
–19.30 
(–19.33) 

0.12 

Cr3+ + 4OH–  ⇌ Cr(OH)4
–  1 –4 0  

–27.82 
(–27.81) 

0.04  
–28.91 
(–28.32) 

0.05 

a All the values were calculated from the potentiometric data using HYPERQUAD 2008 (n = 3). The 
symbols p, q and r are the coefficients for metal ions, protons and chelants, respectively, indicating 
the stoichiometry associated with the possible equilibria in solution. The data in the parentheses are 
the literature values of equilibrium constants for reactions of Fe(III) and Cr(III) ions with hydroxide 
ions.54 
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Table 3. The overall formation constants (logβpqr) for the ML systems (M = Fe3+ or Cr3+; L = HIDS) 

in the aqueous medium at the ionic strengths (I, mol·dm–3) of 0.1 and 1.0 and at 25 ± 0.1°Ca 

 

Protonation equilibria  p q r  
I = 0.1 mol·dm–3  I = 1.0 mol·dm–3 
logβpqr SD  logβpqr SD 

Fe3+           
Fe3+ + 2H+ + HIDS4– ⇌ FeH2HIDS+  1 2 1  20.74 0.09  20.27 0.04 
Fe3+ + H+ + HIDS4– ⇌ FeHHIDS  1 1 1  18.43 0.08  17.76 0.03 
Fe3+ + HIDS4– ⇌ FeHIDS–  1 0 1  14.96 0.08  14.34 0.03 
Fe3+ + OH– + HIDS4– ⇌ Fe(OH)HIDS2–  1 –1 1  10.00 0.08  9.57 0.03 
Fe3+ + 2OH– + HIDS4– ⇌ Fe(OH)2HIDS3–  1 –2 1  1.23 0.08  0.69 0.02 
Fe3+ + OH–     ⇌ Fe(OH)2+  1 –1 0  – –  – – 

Fe3+ + 2OH–  ⇌ Fe(OH)2
+  1 –2 0  

–5.07 
(–6.20) 

0.11  
– – 

Fe3+ + 3OH–  ⇌ Fe(OH)3  1 –3 0  
–12.53 
(–12.50) 

0.06  
–12.05 
(–12.67) 

0.03 

Fe3+ + 4OH–  ⇌ Fe(OH)4
–  1 –4 0  

–22.22 
(–21.88) 

0.06  
–22.74 
(–21.95) 

0.03 

Cr3+           
Cr3+ + 2H+ + HIDS4– ⇌ CrH2HIDS+  1 2 1  18.5 0.04  17.8 0.06 
Cr3+ + H+ + HIDS4– ⇌ CrHHIDS  1 1 1  16.17 0.02  15.80 0.02 
Cr3+ + HIDS4– ⇌ CrHIDS–  1 0 1  12.67 0.02  12.09 0.02 
Cr3+ + OH– + HIDS4– ⇌ Cr(OH)HIDS2–  1 –1 1  5.99 0.02  5.17 0.04 
Cr3+ + 2OH– + HIDS4– ⇌ Cr(OH)2HIDS3–  1 –2 1  –2.75 0.01  –3.64 0.02 

Cr3+ + OH–     ⇌ Cr(OH)2+  1 –1 0  
–3.05 
(–4.41) 

0.1  
–2.1 
(–4.60) 

0.12 

Cr3+ + 2OH–  ⇌ Cr(OH)2
+  1 –2 0  

–7.83 
(–10.35) 

0.08  
–8.42 
(–10.83) 

0.10 

Cr3+ + 3OH–  ⇌ Cr(OH)3  1 –3 0  
–16.38 
(–18.65) 

0.02  
–17.66 
(–19.33) 

0.04 

Cr3+ + 4OH–  ⇌ CrOH)4
–  1 –4 0  

–26.95 
(–27.81) 

0.02  
–28.16 
(–28.32) 

0.02 

a All the values were calculated from the potentiometric data using HYPERQUAD 2008 (n = 3). The 
symbols p, q and r are the coefficients for metal ions, protons and chelants, respectively, indicating 
the stoichiometry associated with the possible equilibria in solution. The data in the parentheses are 
the literature values of equilibrium constants for reactions of Fe(III) and Cr(III) ions with hydroxide 
ions.54 
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Table 4. The dominant species in the ML systems (M = Fe3+ or Cr3+; L = GLDA or HIDS) in the 

aqueous medium at the ionic strengths (I, mol·dm–3) of 0.1 and 1.0 and at 25 ± 0.1°Ca 

 

ML system Dominant Species I = 0.1 mol·dm–3  I = 1.0 mol·dm–3 

pH range % 

formation 

 pH range % 

formation 

Fe(III) + GLDA Fe(OH)GLDA2– 5.0–8.0  50–91   4.8–7.9  50–90 

Fe(III) + HIDS Fe(OH)HIDS2– 5.0–8.6  50–94  4.8–8.5  50–94 

Cr(III) + GLDA Cr(OH)GLDA2– 6.5–9.2  50–89  6.8–9.3 50–80 

Cr(III) + HIDS CrHIDS– 3.5–6.5  50–90  3.8–6.7 50–86 

a All the values were calculated from the potentiometric data using HYPERQUAD 2008 (n = 3).  
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Table 5. The stepwise protonation and complexation constants of the ML systems (M = Fe3+ or Cr3+; 

L = GLDA or HIDS) compared with the corresponding values of NTA, EDDS and EDTA in the 

aqueous medium at the ionic strengths (I, mol·dm–3) of 0.1 and 1.0 at 25 ± 0.1°C 

Equilibria GLDA (H4L)a HIDS (H4L)a NTA (H3L)b EDDS (H4L)b EDTA (H4L)b 

LogK           

 I = 0.1 I = 1.0 I = 0.1 I = 1.0 I = 0.1 I = 1.0 I = 0.1 I = 1.0 I = 0.1 I = 1.0 

[HL]/[H][L] 
9.39 

(9.36 b) 
9.08 9.61 9.23 

9.46–

9.84 

8.95–

9.34 
10.01 – 

9.52–

10.37 

8.73-

10.2 

[H2L]/[HL][H] 
5.01 

(5.03 b) 
4.98 4.07 3.78 2.52 2.28 6.84 6.65 6.13 6.19 

[H3L]/[H2L][H] 
3.49 

(3.49 b) 
3.46 3.08 2.95 (1.81) (1.81) 3.86 3.81 2.69 2.52 

[H4L]/[H3L][H] 
2.56 

(2.56 b) 
2.5 2.14 2.06 (1.0) (1.0) 2.95 

– 
2 2.02 

[H5L]/[H4L][H] – – 1.6 1.68 – – – – (1.5) 1.4 

[H6L]/[H5L][H] – – – – – – – – (0.0) 00 

Fe3+           

[M(OH)L]/[M(OH)2L][H

] 
8.12 7.97 8.77 8.88 

7.58 – – – – – 

[ML]/[MOHL][H] 4.78 4.68 4.96 4.77 4.36 5.00 – – 7.39 7.53 

[ML]/[M][L] 15.27 14.79 14.96 14.34 16 14.78 22.00
e 

– 25.1 23.8 

[MHL]/[ML][H] 4.09 4.19 3.47 3.42 – (0.9) – – (1.3) – 

[MH2L]/[MHL][H] 3.28 3.23 2.31 2.51 – – – – – – 

[ML2]/[M][L]2 – – – – 24 – – – – – 

Cr3+           

[M(OH)L]/[M(OH)2L][H

] 
9.19 9.51 9.43 10.86 8.45e – – – – – 

[ML]/[MOHL][H] 6.49 6.7 6.68 6.92 6.23e – – – 7.37 – 

[ML]/[M][L] 13.77 12.90 12.67 12.09 – – – – 23.4e – 

[MHL]/[ML][H] 4.59 4.74 3.5 3.71 – – – – 1.7 – 

[MH2L]/[MHL][H] 3.5 3.54 2.33 2.05 – – – – – – 

[ML2]/[M][L]2 – – – – – – – – – – 
a Calculated values from the experimental potentiometric data using HYPERQUAD 2008 (n = 3).  
b From the NIST database of critically selected stability constants of metal complexes 23.    
c I = 1 mol·dm–3 
d I = 0.5 mol·dm–3 
e At 20°C. 
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Figure 1. Chemical structures of DL-2-(2-carboxymethyl)nitrilotriacetic acid (GLDA) and 3-

hydroxy-2,2´-iminodisuccinic acid (HIDS). 
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Figure 2. The percentage distribution of different protonation stages of GLDA and HIDS in the 

aqueous medium at the ionic strength, I = 1.0 mol·dm–3 and at 25 ± 0.1°C. 
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Figure 3. The predicted scheme of the protonation equilibria for GLDA in aqueous medium at ionic 

strength, I = 1.0 mol·dm–3 and at 25 ± 0.1°C. 
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Figure 4. The predicted scheme of the protonation equilibria for HIDS in aqueous medium at ionic 

strength, I = 1.0 mol·dm–3 and at 25 ± 0.1°C. 

 

 

28 



Journal of Chemical & Engineering Data; 57 (10): 2723–2732. DOI: http://dx.doi.org/10.1021/je3005936 

 
 
Figure 5. The species distribution curves for ML systems (M = Fe3+ or Cr3+; L = GLDA or HIDS) in 

aqueous medium at ionic strength, I = 0.1 and 1.0 mol·dm–3 and at 25 ± 0.1°C. 

20

40

60

80

100

%
 F

or
m

at
io

n 
re

la
tiv

e 
to

 F
e

FeH2GLDA +

FeGLDA ¯

Fe(OH)GLDA 2¯

M(III)–L ( I = 0.1 mol·dm¯3)

FeHGLDA

Fe(OH) 2GLDA 3¯

Fe(OH) 2+ Fe(OH) 2
+

Fe(OH) 3

Fe(OH) 4¯

FeH2GLDA +

FeGLDA ¯

Fe(OH)GLDA 2¯

M(III)–L ( I = 1.0 mol·dm¯3)

FeHGLDA

Fe(OH) 2GLDA 3¯

Fe(OH) 2
+

Fe(OH) 3

Fe(OH) 4¯

20

40

60

80

100

%
 F

or
m

at
io

n 
re

la
tiv

e 
to

 C
r CrH2GLDA +

CrGLDA ¯
Cr(OH)GLDA 2¯

CrHGLDA

Cr(OH) 2GLDA 3¯

Cr(OH) 2+ Cr(OH) 2
+

Cr(OH) 3

Cr(OH) 4¯

Cr3+

CrH2GLDA +

CrGLDA ¯ Cr(OH)GLDA 2¯

CrHGLDA
Cr(OH) 2GLDA 3¯

Cr(OH) 2
+

Cr(OH) 3

Cr(OH) 4¯

20

40

60

80

100

%
 F

or
m

at
io

n 
re

la
tiv

e 
to

 F
e

Fe3+

FeH2HIDS +

FeHIDS ¯

Fe(OH)HIDS 2¯

FeHHIDS
Fe(OH) 2HIDS 3¯

Fe(OH) 2
+

Fe(OH) 3

Fe(OH) 4¯

Fe3+

FeH2HIDS +

FeHIDS ¯

Fe(OH)HIDS 2¯

FeHHIDS

Fe(OH) 2HIDS 3¯

Fe(OH) 3

Fe(OH) 4¯

2 4 6 8 10

20

40

60

80

100

%
 F

or
m

at
io

n 
re

la
tiv

e 
to

 C
r

Cr3+

CrH2HIDS +

CrHIDS ¯

Cr(OH)HIDS 2¯

pH

CrHHIDS Cr(OH) 2HIDS 3¯

Cr(OH) 2+

Cr(OH) 2
+

Cr(OH) 3

Cr(OH) 4¯

2 4 6 8 10
Cr3+

CrH2HIDS +

CrHIDS ¯

Cr(OH)HIDS 2¯

pH

CrHHIDS

Cr(OH) 2HIDS 3¯

Cr(OH) 2+
Cr(OH) 2

+

Cr(OH) 3

Cr(OH) 4¯

 

29 



Journal of Chemical & Engineering Data; 57 (10): 2723–2732. DOI: http://dx.doi.org/10.1021/je3005936 

 

 
 

Figure 6. Potentiometric titration curves for the ML systems (M = Fe3+ or Cr3+; L = GLDA or 

HIDS) in the aqueous medium at the ionic strength, I = 0.1 mol·dm–3 and at 25 ± 0.1°C. 
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Figure 7. The conditional stability constants for the ML systems (M = Fe3+ or Cr3+; L = GLDA, 

HIDS, NTA, EDDS or EDTA) in the aqueous medium at the ionic strength, I = 0.1 and 1.0 mol·dm–3 

and at 25 ± 0.1°C as a function of pH:  , M(III)–GLDA; , M(III)–HIDS; , M(III)–NTA; , 

M(III)–EDDS; , M(III)–EDTA. 
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