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An Intrinsic Characterization
of the Unit Polydisc

Akio Kodama & Satoru Shimizu

1. Introduction

Let M be a connected complex manifold and Aut(M) the group of all biholo-
morphic automorphisms of M. Then, equipped with the compact-open topology,
Aut(M) is a topological group acting continuously on M.

In 1907 it was shown by Poincaré [15] that the Riemann mapping theorem does
not hold in the higher-dimensional case. In fact, he proved that there exists no
biholomorphic mapping from the unit polydisc �2 onto the unit ball B2 in C

2

by comparing carefully the topological structures of the isotropy subgroups of
Aut(�2) and Aut(B2) at the origin o of C

2. In view of this fact, for a given com-
plex manifold M it is an interesting problem to bring out some complex analytic
nature of M under some topological conditions on Aut(M).

In connection with this problem, in this paper we would like to study the fol-
lowing question.

Question. LetM andN be connected complex manifolds and assume that their
holomorphic automorphism groups Aut(M) and Aut(N ) are isomorphic as topo-
logical groups. Then, is M biholomorphically equivalent to N?

Recall that there exist relatively compact strictly pseudoconvex domainsDt (t ∈ R)

in a complex manifold X such that Ds is not biholomorphically equivalent to Dt

unless s = t, and further, the only holomorphic automorphism of Dt is the iden-
tity for every t (see [3]). Thus, the answer to our question is negative, in general.
However, there already exist several articles solving this question affirmatively in
the case where the manifolds M or N are some special domains in C

n (see e.g. [4;
5; 6; 10; 11]). In particular, as an application of the classification theorem obtained
by Isaev and Kruzhilin [6] for complex manifolds of dimension n admitting effec-
tive actions of the unitary group U(n), Isaev [5] showed that if the holomorphic
automorphism group Aut(M) of a connected complex manifold M of dimension
n is isomorphic to the holomorphic automorhism group Aut(Bn) of the unit ball
Bn in C

n as topological groups, then M is biholomorphically equivalent to Bn.

In view of this, it would naturally be expected that exactly the same conclusion is
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valid also for the unit polydisc �n in C
n. This cannot be clarified in full general-

ity at the moment. However, under some suitable condition on the manifold M,
we can establish the following intrinsic characterization of the unit polydisc as our
main result in this paper.

Theorem. Let M be a connected complex manifold of dimension n that is holo-
morphically separable and admits a smooth envelope of holomorphy. Assume that
Aut(M) is isomorphic to Aut(�n) as topological groups. Then M is biholomor-
phically equivalent to �n.

Let D be an arbitrary domain in C
n. Then it is well known that D admits a smooth

envelope of holomorphy (cf. [13, Chaps. 6 and 7]). Hence, as an immediate con-
sequence of the theorem, we obtain the following.

Corollary. Let M be a connected Stein manifold of dimension n or a domain
in C

n. Assume that Aut(M) is isomorphic to Aut(�n) as topological groups. Then
M is biholomorphically equivalent to �n.

Our proof of the theorem is based on three main facts: a well-known fact (due to
Barrett, Bedford, and Dadok [1]) concerning torus actions on complex manifolds;
an important fact (observed by Nakajima [12]) regarding homogeneous hyperbolic
manifolds; and a fact (due to Kodama [9]) about the relationship between bound-
edness and hyperbolicity in the category of Reinhardt (more generally, circular)
domains in C

n. After recalling these facts as well as the structure of Aut(�n) in
Section 2, we prove our theorem in Section 3.

Acknowledgment. The authors would like to thank the referee for many use-
ful comments and suggestions that led to several improvements in the manuscript.

2. Preliminaries

For later purposes we collect some known facts in this section.
Let us start with recalling the structure of Aut(�n). We fix a coordinate system

z = (z1, . . . , zn) in C
n and set

�j = {zj ∈ C | |zj | < 1} (1 ≤ j ≤ n) and �n = �1 × · · · ×�n.

Then Aut(�j ) is a connected, real simple Lie group of dimension 3 with trivial
center and Aut(�n) is a real semi-simple Lie group of dimension 3n. Since each
element of Aut(�j ) can be uniquely extended to an element of Aut(�n) in a triv-
ial manner, we shall often regard Aut(�j ) as a closed Lie subgroup of Aut(�n).

Moreover, if we denote by Auto(�n) the identity component of Aut(�n), then we
know that Auto(�n) can be identified with the direct product of Aut(�j ):

Auto(�n) = Aut(�1)× · · · × Aut(�n). (2.1)

Let g(�j ) and g(�n) be the real Lie algebras consisting of all complete holomor-
phic vector fields on �j and on �n, respectively. Then it is well known that the
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Lie algebras g(�j ) and g(�n) are canonically identified with the Lie algebras of
Aut(�j ) and Aut(�n), respectively. This combined with (2.1) yields that

g(�n) = g(�1)⊕ · · · ⊕ g(�n),

[g(�i), g(�j )] = {0} for 1 ≤ i, j ≤ n, i 
= j. (2.2)

Now let us consider the 1-parameter subgroups {φj
t }t∈R and {ψj

t }t∈R of Aut(�j )

for 1 ≤ j ≤ n given by

φ
j
t : zj �−→ (

exp
√−1t

)
zj for t ∈ R,

ψ
j
t : zj �−→ (cosh t)zj + sinh t

(sinh t)zj + cosh t
for t ∈ R.

It is easily seen that these 1-parameter groups induce the complete holomorphic
vector fields

Hj := √−1zj
∂

∂zj
and Vj := (1 − z2

j )
∂

∂zj

on �j (and hence on �n), respectively. Put Wj = [Hj ,Vj ]. Then, elementary cal-
culations show that

g(�j ) = R{Hj ,Vj ,Wj} and [Hj , [Hj ,Vj ]] = −Vj , [Wj ,Vj ] = 4Hj (2.3)

for 1 ≤ j ≤ n. These bracket relations will be important in the next section.
Next we consider an arbitrary connected complex manifold M and a Lie group

G. When a continuous group homomorphism ρ : G → Aut(M) ofG into Aut(M)

is given, the mapping

G×M � (g,p) �−→ (ρ(g))(p)∈M

is necessarily of class Cω by [2], and we say that G acts on M as a Lie trans-
formation group through ρ. Also, the action of G on M is called effective if ρ is
injective. Let T n = (U(1))n be the n-dimensional torus, where U(1) denotes the
multiplicative group of complex numbers with absolute value 1. Then T n acts as
a group of holomorphic automorphisms on C

n by the standard rule

α · z = (α1z1, . . . ,αnzn) for α = (α1, . . . ,αn)∈ T n, z = (z1, . . . , zn)∈ C
n.

By definition, a Reinhardt domain D in C
n is a domain in C

n that is stable under
this action of T n. Moreover, it is said to be complete if (z1, . . . , zn) ∈ D, w =
(w1, . . . ,wn) ∈ C

n, and |wj | ≤ |zj | (1 ≤ j ≤ n) imply that w ∈D. Now let D be
an arbitrary Reinhardt domain in C

n. Then each element α of T n induces an auto-
morphism πα of D given by πα(z) = α · z, and the mapping ρD sending α to πα is
an injective continuous group homomorphism of the torus T n into the topological
group Aut(D). The subgroup ρD(T n) of Aut(D) is denoted by T(D).

Finally, we recall the following three theorems, which will play crucial roles in
our proof of the theorem.

Theorem A [1]. Let M be a connected complex manifold of dimension n that is
holomorphically separable and admits a smooth envelope of holomorphy. Assume
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that T n acts effectively on M as a Lie transformation group through ρ. Then there
exist a biholomorphic mapping F of M into C

n and a continuous group automor-
phism θ of the torus T n such that

F((ρ(α))(p)) = θ(α) · F(p) for all α ∈ T n and all p ∈M.

Consequently,D :=F(M) is a Reinhardt domain in C
n, and one hasFρ(T n)F −1 =

T(D).

Theorem B [12]. Let M be a connected hyperbolic manifold in the sense of
Kobayashi [8] of dimension n. Assume that M is homogeneous—that is, assume
Aut(M) acts transitively onM. ThenM is biholomorphically equivalent to a Siegel
domain in C

n. In particular, M is simply connected.

Theorem C ([9]; cf. [7, Thm. 7.1.2]). Let M be a complete Reinhardt domain
in C

n. Then M is hyperbolic if and only if it is literally a bounded domain in C
n.

3. Proof of the Theorem

By Theorem A we may assume that M is a Reinhardt domain D in C
n and that

there exists a topological group isomorphism % : Aut(�n) → Aut(D) such that
%(T(�n)) = T(D).

Now, the group Aut(D) can be turned into a Lie group simply by transferring
the Lie group structure from Aut(�n) by means of %. We here assert that the Lie
algebra of Aut(D) with respect to the Lie group structure defined in this way coin-
cides with the algebra g of all complete holomorphic vector fields on D. Indeed,
the Lie group Aut(D) endowed with the compact-open topology acts continuously
on D. Hence, by [2], the action is smooth with respect to the Lie group structure
induced from Aut(�n). Furthermore, Aut(D) has only finitely many connected
components, since Aut(�n) does. Then, by Theorem VI in [14, p. 101], the group
Aut(D) is a Lie transformation group of D in the sense of Definition V in [14,
p. 101]; consequently, the Lie algebra of Aut(D) coincides with the Lie algebra g
(cf. [14, p. 103, Thm. VII]), as asserted. We thus obtain the Lie algebra isomor-
phism d% : g(�n) → g induced by %. Put

G = %(Auto(�n)), Gj = %(Aut(�j )), gj = d%(g(�j ),

Ij = d%(Hj ), Xj = d%(Vj ), Yj = d%(Wj)

for 1 ≤ j ≤ n. Then G = Auto(D), the identity component of Aut(D), and Gj is
a 3-dimensional simple Lie group with Lie algebra gj for each j. Moreover, by
(2.1)–(2.3) we have

G = G1 × · · · ×Gn; (3.1)

g = g1 ⊕ · · · ⊕ gn, [gi, gj ] = {0} for 1 ≤ i, j ≤ n, i 
= j ; (3.2)

gj = R{Ij ,Xj ,Yj} and [Ij , [Ij ,Xj ]] = −Xj , [Yj ,Xj ] = 4Ij (3.3)

for every 1 ≤ j ≤ n.



An Intrinsic Characterization of the Unit Polydisc 177

Now we identify the tori T(�n) and T(D) naturally with T n. Then, since the Lie
group isomorphism % : Aut(�n) → Aut(D) satisfies %(T n) = T n, there exists
an element (pij ) of GL(n, Z) such that

%
((

exp 2π
√−1θ1, . . . , exp 2π

√−1θn
))

=
(

exp 2π
√−1

( n∑
j=1

p1j θj

)
, . . . , exp 2π

√−1

( n∑
j=1

pnj θj

))

for all θ1, . . . , θn ∈ R.Accordingly, after noting that the complete holomorphic vec-
tor field Ij is induced by the 1-parameter subgroup {%(φj

t )}t∈R of T n ⊂ Aut(D),
we can see that Ij has the form

Ij = √−1
n∑
i=1

(pij zi)
∂

∂zi
for 1 ≤ j ≤ n.

From now on, we set

D∗ = {(z1, . . . , zn)∈D | z1 · · · zn 
= 0} = D ∩ (C∗)n.

Then we have the following lemma.

Lemma 1. For every point p ∈ D∗, there exists a local holomorphic coordinate
system (U,ϕ) = (U,w1, . . . ,wn) on D∗, centered at p, such that Ij = ∂/∂wj on U
for every 1 ≤ j ≤ n.

Proof. Consider the holomorphic mapping

+ : C
n � (w1, . . . ,wn) �−→ (z1, . . . , zn)∈ (C∗)n

defined by

zi = exp
√−1

( n∑
j=1

pijwj

)
for 1 ≤ i ≤ n.

Then + is a local biholomorphic (in fact, the universal covering) mapping from
C
n onto (C∗)n, and each vector field Ij restricted to D∗ can be locally expressed

as Ij = ∂/∂wj with respect to (w1, . . . ,wn). From this we obtain the assertion of
the lemma.

Without loss of generality, we may assume that ϕ(U) is a polydisc.

Lemma 2. With respect to the local coordinate system (U,w1, . . . ,wn) as in
Lemma 1, the vector fields Xj ,Yj (1 ≤ j ≤ n) can be written in the form

Xj = {
aj exp

(√−1wj
) + bj exp

(−√−1wj
)} ∂

∂wj
,

Yj = √−1
{
aj exp

(√−1wj
) − bj exp

(−√−1wj
)} ∂

∂wj

on U, where aj , bj are some complex constants with ajbj = 1.
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Proof. Let us write Xj = ∑n
k=1 f

j

k (w)∂/∂wk on U with holomorphic functions
f
j

k (w) on U. Then, since [gi, gj ] = {0} for all 1 ≤ i, j ≤ n with i 
= j, we have

n∑
k=1

∂f
j

k (w)

∂wi

∂

∂wk

= [Ii,Xj ] = 0 on U for all i 
= j.

Hence f j

k (w) does not depend on the variables wi for all 1 ≤ i ≤ n with i 
= j,
so f j

k (w) has the form f
j

k (w) = f
j

k (wj ). It then follows from the first bracket re-
lation in (3.3) that

n∑
k=1

d 2f
j

k (wj )

dw2
j

∂

∂wk

= −
n∑
k=1

f
j

k (wj )
∂

∂wk

on U.

Therefore, the holomorphic functions f j

k (wj ) can be expressed as

f
j

k (wj ) = a
j

k exp
(√−1wj

) + b
j

k exp
(−√−1wj

)
on U (3.4)

with some complex constants ajk , bjk ; accordingly, Xj ,Yj have the form

Xj =
n∑
k=1

{
a
j

k exp
(√−1wj

) + b
j

k exp
(−√−1wj

)} ∂

∂wk

, (3.5)

Yj = √−1
n∑
k=1

{
a
j

k exp
(√−1wj

) − b
j

k exp
(−√−1wj

)} ∂

∂wk

(3.6)

for 1 ≤ j ≤ n. By routine computations, it then follows that

[Yj ,Xj ] =
n∑
k=1

2(ajj b
j

k + b
j

j a
j

k )
∂

∂wk

on U.

This together with [Yj ,Xj ] = 4Ij from (3.3) shows that

a
j

j b
j

j = 1 and a
j

j b
j

k + b
j

j a
j

k = 0 for all 1 ≤ j, k ≤ n, j 
= k. (3.7)

Once it is shown that ajk = 0 for all 1 ≤ j, k ≤ n with j 
= k, then b
j

k = 0 by
(3.7); hence Xj ,Yj have the form required in the lemma. Thus we need only show
that ajk = 0 if j 
= k. Toward this end, observe that

[Xj ,Xk] =
∑
m 
=j,k

{
f
j

k (wj )
df k

m(wk)

dwk

− f k
j (wk)

df
j
m(wj )

dwj

}
∂

∂wm

+
{
f
j

k (wj )
df k

j (wk)

dwk

− f k
j (wk)

df
j

j (wj )

dwj

}
∂

∂wj

−
{
f k
j (wk)

df
j

k (wj )

dwj
− f

j

k (wj )
df k

k (wk)

dwk

}
∂

∂wk

and [Xj ,Xk] = 0 on U for all j 
= k by (3.2). Thus, expressing the functions
f α
β (wα) as in (3.4) and comparing the coefficients of ∂/∂wk in both sides of the

equality [Xj ,Xk] = 0, we obtain
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a
j

k (a
k
j − akk ) exp

{√−1(wk + wj)
}

+ (b
j

j )
2a

j

k (a
k
j + akk ) exp

{√−1(wk − wj)
}

− (bkk )
2a

j

k (a
k
j − akk ) exp

{√−1(wj − wk)
}

− (b
j

j b
k
k )

2a
j

k (a
k
j + akk ) exp

{−√−1(wk + wj)
} = 0 on U.

Combined with akkb
j

j b
k
k 
= 0 from (3.7), this yields that

a
j

k (a
k
j − akk ) = 0, a

j

k (a
k
j + akk ) = 0

and, accordingly, ajk = 0 for all 1 ≤ j, k ≤ n with j 
= k, as desired.

With the same notation as in Lemma 2, we define a subset A of U by setting

A =
{
w ∈U

∣∣∣∣
n∏

j=1

�{
aj exp

(√−1wj
) + bj exp

(−√−1wj
)} = 0

}
,

where �{·} means the imaginary part of ·. Clearly A is a nowhere dense real
analytic subset of U.

Choose a point p ∈ U \ A arbitrarily and let (gj )p and gp be the subspaces in
the tangent space to D at p that consist of the values of the elements of gj and g
(respectively) at p. Then Lemma 2 guarantees that, for every 1 ≤ j ≤ n,

(gj )p = R{(Ij )p, (Xj )p, (Yj )p} = C

{(
∂

∂wj

)
p

}
(3.8)

and consequently

gp = C

{(
∂

∂w1

)
p

}
⊕ · · · ⊕ C

{(
∂

∂wn

)
p

}
. (3.9)

Therefore, denoting by K,Kj the isotropy subgroups of G,Gj (respectively) at the
point p and considering the orbits

Dp := G · p = G/K, Sj := Gj · p = Gj/Kj (1 ≤ j ≤ n)

of G,Gj passing through p, one concludes that every Sj is a 1-dimensional com-
plex submanifold of D and Dp is a nonempty open subset of D. Here it should
be remarked that the Sj may a priori be nonclosed submanifolds of D and that
the topology of Sj may a priori differ from that induced from D. Moreover, no-
tice that Dp is a Reinhardt domain in C

n because G is connected and contains the
torus T(D) = T n.

Lemma 3. Every Sj is biholomorphically equivalent to the unit disc � in C.

Proof. Once it is shown that the universal covering S̃j of Sj is the unit disc�, then
Sj is a homogeneous hyperbolic Riemann surface and hence is biholomorphically
equivalent to �. Thus we need only show that S̃j = �. Clearly Sj is noncom-
pact in D; consequently, S̃j = � or C. Assume that S̃j = C. Since it is obvious
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that Gj acts effectively on Sj by biholomorphic transformations, it follows that
dimAut(Sj ) ≥ 3. Therefore, Sj itself must be biholomorphically equivalent to C.

On the other hand, every 3-dimensional subgroup of Aut(C) that acts transitively
on C contains the group of translations and is therefore not simple. However, since
the group Gj is simple, this is a contradiction. As a result, we have shown that
S̃j = � as desired.

By Lemma 3 we see that the isotropy subgroup Kj of Gj at p is a maximal com-
pact subgroup of Gj of dimension 1.

Lemma 4. The subdomain Dp = G · p of D is biholomorphically equivalent to
the unit polydisc �n in C

n. In particular, Dp is a hyperbolic pseudoconvex Rein-
hardt domain in C

n.

Proof. Define the mapping

π : S1 × · · · × Sn → Dp

by setting π(z1, . . . , zn) = g1 · · · gn · p, where zj = gj · p = gjKj are arbitrary
elements of Sj = Gj · p = Gj/Kj for 1 ≤ j ≤ n. Observe that the identity com-
ponent of K coincides with K1 × · · · ×Kn. Then it can easily be seen that π is a
well-defined holomorphic covering mapping. This combined with Lemma 3 im-
plies that Dp = G/K is a homogeneous hyperbolic manifold; therefore, by Theo-
rem B, it must be simply connected. Thus π is now a biholomorphic mapping and
our assertion in Lemma 4 is an immediate consequence of Lemma 3.

By Lemma 4 we see that K = K1 × · · · × Kn and that K is a maximal compact
subgroup of G conjugate to T(D) = T n.

We can now prove our main theorem from Section 1. First we claim that Dp is
a bounded domain in C

n or, equivalently, that the topological closure D̄p of Dp

in C
n is a compact subset of C

n. Indeed, since Dp is a contractible pseudoconvex
Reinhardt domain by Lemma 4, we can see that

Dp ∩ {zi = 0} 
= ∅ for every 1 ≤ i ≤ n;
accordingly, it must be a complete Reinhardt domain. Moreover, by Lemma 4 we
know that Dp is hyperbolic. Hence Dp is a bounded domain in C

n by Theorem C,
as claimed.

Our next task is to show that D∗ ⊂ D̄p. We argue by contradiction, so we as-
sume that there exists a point q ∈D∗ \ D̄p. Then, by taking a suitable nearby point
if necessary, we may assume that the point q satisfies the same conditions as in
(3.8) and (3.9). By repeating exactly the same argument as before, it can be shown
that the orbit Dq = G · q of G passing through q is a complete bounded Rein-
hardt domain in Cn. In particular, both the domains Dp and Dq contain the origin
o of C

n and hence Dp ∩Dq 
= ∅. However, since q /∈Dp = G · p, it is clear that
Dp ∩Dq = ∅—a contradiction. Thus we have shown that D∗ ⊂ D̄p.

We shall complete the proof by showing that D = Dp. Since D∗ is an open
dense subset of D and since D∗ is contained in the compact set D̄p as before, D
itself must be a bounded domain in C

n. Consequently, D = Dp, becauseD is now
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a hyperbolic manifold and hence Aut(D), as well as Auto(D) = G, acts onD with
closed orbits (cf. [8; Chap. V]). Therefore, D is biholomorphically equivalent to
the unit polydisc �n by Lemma 4, completing the proof.
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