Elsevier Editorial System(tm) for Journal of Alloys and Compounds

Manuscript Draft

Manuscript Number: JALCOM-D-06-00992R2

Title: Low-temperature specific heat study of antiferromagnetic transition in ternary rare-earth metal silicide R5Ir4Si10 (R=Tb,Dy,Ho,Er)

Article Type: Normal Paper

Section/Category:

Keywords: antiferromagnetic transition, ternary rare-earth metal silicide, low-temperature specific heat

Corresponding Author: Kitomi Tsutsumi,

Corresponding Author's Institution: Kanazawa University

First Author: Kitomi Tsutsumi

Order of Authors: Kitomi Tsutsumi; Shigeru Takayanagi; Kunihiko Maezawa; Hideaki Kitazawa

Manuscript Region of Origin:

Abstract: We investigated antiferromagnetic transitions of R5Ir4Si10 (R=Tb,Dy,Ho, Er) by measuring lowtemperature specific heat. The antiferromagnetic transition temperature TN is precisely determinded. TN is 10.7K for R=Tb, TN is 5.8K for R=Dy,TN is 5.1K for R=Ho and TN is 3.5K for R=Er, respectively.These results suggest that the antiferromagnetic transitions of the ternary rare-earth metal silicide R5Ir4Si10 is dominated by the exchange interaction between R3+ ions like as the antiferromanetic transitions in the ternary rare-earth metal compounds RCu2Ge2 (R= rare-earthmetal).

Low-temperature specific heat study of antiferromagnetic transition in ternary rare-earth metal silicide R_5 r_4 S_1 ₁₀ (R = Tb, Dy, Ho, Er)

Kitomi Tsutsumi^{a, *}, Shigeru Takayanagi^b, Kunihiko Maezawa^c **Hideaki Kitazawa**^d

a Department of Physics, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan

b Physics Department, Hokkaido University of Education Sapporo, Sapporo, Hokkaido 002-8502, Japan

c Department of Liberal Arts and Science, Toyama Prefectural University, Kosugi, Toyama 939-0398, Japan

d National Institute for Materials Science, Sengen, Tsukuba, Ibaragi 305-0047, Japan

Abstract

We investigated antiferromagnetic transitions of R_5 r_4 S_1 ₁₀ (R = Tb, **Dy, Ho, Er) by measuring the low-temperature specific heat. The** antiferromagnetic transition temperature T_N is precisely determined. T_N is 10.7 K for R = Tb, T_N is 5.8 K for R = Dy, T_N is 5.1 K for R = Ho and T_N is 3.5 K for $R = Er$, respectively. These results suggest that the **antiferromagnetic transition of the ternary rare-earth metal silicide** R_5 lr₄Si₁₀ is dominated by the exchange interaction between R^{3+} ions **like as the antiferromagnetic transitions in the ternary rare-earth** metal compounds RCu_2Ge_2 ($R = rare\text{-}earth \text{ metal}$). In addition, we **report the upturn of the specific heat below 1.5 K observed for** $R = Tb$ **and Ho.**

Keywords: antiferromagnetic transition, ternary rare-earth metal silicide, low-temperature specific heat

E-mail: kitomi@kenroku.kanazawa-u.ac.jp

l. Introduction

The ternary rare-earth metal silicide $R_5\text{Ar}_4\text{Si}_{10}$ ($R=$ Tb, Dy, Ho, Er) **compounds exhibit antiferromagnetic transitions at low-temperatures.** These materials crystallize in the tetragonal $Sc₅Co₄Si₁₀$ -type structure

and the space group is P4/mbm [1]. The features of the crystal structure are the absence of the clusters of transition-metal atoms and the direct bonds between transition-metal atoms. These features are in contrast to those of Chevrel-phase chalcognides $RMo₆S₈$ (R= rare-earth metal) and rhodium boride compounds RRh_4B_4 ($R =$ **rare-earth metal) [2]. The projection along the c-axis of the crystal** structure of $Sc_5Co_4Si_{10}$ is shown in Fig.1. In the $R_5Ir_4Si_{10}$ (R= **rare-earth metal) groups, Ir and Si atoms form planar nets of pentagons, hexagons and octagons which are stacked parallel to the plane which is perpendicular to the c-axis and connected along c-axis via lr-Si-lr zigzag chain. The pentagon. hexagon and octagon layers are separated by layers of rare-earth atoms. All lr-Si and Si-Si distances are short and indicative of strong covalent interactions. In** many other ternary rare-earth metal silicides such as ThCr₂Si₂. CeNiSi₂ and LaRe₂Si₂, the network of Si and transition-metal atoms exhists. The previous investigations of R₅lr₄Si₁₀ polycrystalline **specimens showed that these compounds undergo antiferromagnetic transitions at low-temperatures [3-5]. In this paper, we report the precise behaviors of antiferromagnetic transitions of the** $R_5Ir_4Si_{10}$ **groups by using both single crystals and high-resolution measurements of the low-temperature specific heat.**

2. Experiments

 The single crystals used in the present studies were grown by Czochoralski pulling method with a tetra-arc furnace under high purity argon atmosphere. The purity of starting materials as follows; the purity of Si is 99.9999% whereas that of both R and lr is 99.9%. During the crystal growth a clear facetting has been observed sometimes. We confirmed as-grown crystals to be a single crystal by the transmission Laue X-ray photograph method. The single crystals were elongated along the c-axis. The quality of the single crystals was improved by a solid-state electro-transport method (SSE). The behavior of antiferromagnetic transitions were investigated by measuring the low-temperature specific heat.

3. Results

In Figs.2-4 we show the temperature dependence of the low-temperature specific heat. The anomalies associated with the antiferromagnetic transitions in $R_5\text{lr}_4\text{Si}_{10}$ (R= Tb, Dy, Ho, Er) **compounds have been clearly observed. In Fig.2 are shown the data of** Tb_5 r_4 Si_{10} , in Fig. 3 are shown the data of Dy_5 r_4 Si_{10} , in Fig. 4 are shown the data of H_0 ₅ r_4 Si₁₀ and in Fig.5 are shown the data of $Er₅Ir₄Si₁₀$, respectively. We show T_N for the de Gennes factor of each rare-earth metal of the $R_5Ir_4Si_{10}$ groups in Fig. 6. Furthermore, we **observed the upturn of the specific heat below 1.5 K in Tb₅Ir₄Si₁₀ and** $Ho_5Ir_4Si_{10}$.

4. Discussion

 As is shown in fig. 6, in the ternary rare-earth metal silicides R5Ir4Si10 (R=Tb, Dy, Ho, Er) the antiferromagnetic transition temperature T_N increases when the de Gennes factor of the rare-earth metal increases like as the binary compound RIn_3 ($\text{R} = \text{Gd}$, Tb, Dy, Ho, Er) [6] and the ternary compound RCu_2Ge_2 (Re Gd, Tb , Dy , Ho , Er) **[7]. This result means that we need not take the crystalline electric** field effects into consideration in the R₅Ir₄Si₁₀ compounds. Therefore, the antiferromagnetic transition in the R_5 r_4 S_1 ₁₀ compounds is **dominated by the exchange interaction between R** 3^+ **ions. So that T_N decreases with increasing the de Gennes factor of the rare-earth metal.** However, we could not get the good crystal of Gd₅Ir₄Si₁₀ in this study.

 As mentioned in the results section, the upturn of the specific heat is clearly observed in $R = Tb$ and Ho. We consider that these upturns **are due to the nuclear magnetism contribution of the rare earth metals. This nuclear magnetism contribution for the low-temperature** specific heat is very excellent in H_0 ₅ Ir_4Si_{10} . In the measurement of **Er5Ir4Si10 we observed a shoulder in the vicinity of 2K. However, we cannot explain the origin of this shoulder. This shoulder in the SSE processed sample is smaller than that of the as-grown crystal. This result suggests that the shoulder is due to the impurity. We need further studies.**

References

[1] H. F. BRAUN, K. YVON AND R.M. BRAUN : Acta Cryst. B36 (1980) 2397.

[2] H. F. Braun and C. U. Segre : Solid State Commun. 35 (1980) 735.

[3] S. Ramakrishnan, K. Ghosh, and Girsh Chandra: Phys. Rev. B45 (1992) I0769.

[4] S. Ramakrishnan, K. Ghosh, and Girsh Chandra : Phys. Rev. B46 (1992) 2958.

[5] K. Ghosh. S. Ramakrishnan, and Girsh Chandra : Phys. Rev. B48 (1993) 4152.

[6] K. H. J. BUSCHOW, H. W. DE WIJN AND A. M. VAN DIEPEN: J. Chem. Phys. 50 (1969) 137.

[7] P. A. Kotsanidis et J. K. Yakinthos: Solid State Commun. 40 (1981) 1041.

Figure Captions

Fig.1. Projection of Sc₅Co₄Si₁₀ along the c-axis. Filled circles correspond to $z = 0$, 1; open circles to $z = 1/2$ where z is the fractional **coordinate along the c-axis.**

Fig.2. Temperature dependence of the low-temperature specific heat in $Tb_5Ir_4Si_{10}$.

Fig.3. Temperature dependence of the low-temperature specific heat $in Dy₅Ir₄Si₁₀$.

Fig.4. Temperature dependence of the low-temperature specific heat in $Ho₅Ir₄Si₁₀$.

Fig.5. Temperature dependence of the low-temperature specific heat in Er₅Ir₄Si₁₀.

Fig.6. Antiferromagnetic transition temperature T_N for the de Gennes factor of each rare-earth metal in R₅Ir₄Si₁₀ compounds.

C(J/Kmol)

C (J/Kmol)

C (J/Kmol)

C (J/Kmol)

The submitted files type could not be determined.

FILE NAME: List of changes