Chemical characteristics of chromian spinel in plutonic rocks: Implications for deep magma processes and discrimination of tectonic setting

著者	Arai Shoji, Okamura Hidenobu, Kadoshima Kazuyuki, Tanaka Chima, Suzuki Kenji, Ishimaru Satoko
journal or	Island Arc
publication title	
volume	20
number	1
page range	125-137
year	2011-03-01
URL	http://hdl.handle.net/2297/27101
	doi: 10 1111/i 1140 1738 2010 00747 v

doi: 10.1111/j.1440-1738.2010.00747.x

1	Chemical characteristics of chromian spinel in plutonic rocks:
2	implications for deep magma processes and discrimination of
3	tectonic setting
4	
5	SHOJI ARAI ¹ , HIDENOBU OKAMURA ¹ , KAZUYUKI KADOSHIMA ¹ , CHIMA TANAKA ¹ ,
6	KENJI SUZUKI ¹ AND SATOKO ISHIMARU ¹
7	
8	¹ Department of Earth Sciences, Kanazawa University, Kakuma, Kanazawa 920-1192,
9	Japan (email: ultrasa@kenroku.kanazawa-u.ac.jp)
10	* Correspondence
11	
12	Abstract We summarize chemical characteristics of chromian spinels from ultramafic
13	to mafic plutonic rocks (lherzolites, harzburgites, dunites, wehrlites, troctolites and
14	olivine gabbros) with regard to three tectonic settings (mid-ocean ridge, arc and oceanic
15	hotspot). The chemical range of spinels is distinguishable between the three settings in
16	terms of Cr# (= Cr/(Cr + Al) atomic ratio) and Ti content. The relationships are almost
17	parallel with those of chromian spinels in volcanic rocks, but the Ti content is slightly

18	lower in plutonics than in volcanics at a given tectonic environment. The Cr# of spinels
19	in plutonic rocks is highly diverse; its ranges overlap between the three settings, but
20	extend to higher values (up to 0.8) in arc and oceanic hotspot environments. The Ti
21	content of spinels in plutonics increases, for a given lithology, from the arc to oceanic
22	hotspot settings via mid-ocean ridge on average. This chemical diversity is consistent
23	with that of erupted magmas from the three settings. If we systematically know the
24	chemistry of chromian spinels from a series of plutonic rocks, we can estimate their
25	tectonic environments of formation. The spinel chemistry is especially useful in dunitic
26	rocks, in which chromian spinel is the only discriminating mineral. Applying this,
27	discordant dunites cutting mantle peridotites were possible precipitated from arc-related
28	magmas in the Oman ophiolite, and from an intraplate tholeiite in the Lizard ophiolite,
29	Cornwall.
30	

Key words: ultramafic plutonics, chromian spinel, tectonic setting, Ti content, Cr/(Cr +
Al) ratio

33 Running title: Chromian spinel in plutonic rocks

36 INTRODUCTION

37 Chromian spinel is common to ultramafic and related rocks, and is a very good indicator
38 of petrological characteristics of involved magmas (e.g. Irvine 1965, 1967; Dick &
39 Bullen 1984; Roeder 1994; Kamenetsky *et al.* 2001). It has a general formula, (Mg,

40 Fe^{2+} (Cr, Al, Fe^{3+})₂O₄, where Fe^{3+} is only minor in peridotitic rocks. Cr/(Cr + Al) atomic

41 ratio (= Cr#) is highly variable and serves as an important petrogenetic indicator for

42 ultramafic and related rocks (Irvine 1967; Dick & Bullen 1984). Mg/(Mg + Fe^{2+}) atomic

43 ratio (= Mg#) varies inversely with the Cr# in chromian spinel (e.g. Irvine 1967). Small

44 amounts of Ti are possibly incorporated as
$$Fe_2TiO_4$$
 (= ulvospinel component) in

45 chromian spinel. Arai (1992) summarized the chemistry of chromian spinel in volcanic

46 rocks (or magmas) as a potential indicator of magma chemistry for three main tectonic

47 settings, *i.e.*, the mid-ocean ridge, arc and intraplate. Irvine (1967) and Dick and Bullen

48 (1984) referred to the Cr# and Mg# of chromian spinel, and Arai (1994a, b) discussed

49 the relationship between the Cr# of chromian spinel and Fo of coexisting olivine in

50 peridotites and related rocks. The range of Cr# of chromian spinel alone, however, has

51 considerable overlaps between the different settings (Arai 1994a). The Mg# of chromian

52	spinel is strongly dependent on the equilibrium temperature (Irvine 1965; Jackson 1969),
53	and is changeable at subsolidus stage also depending on is modal amount (Arai 1980).
54	We should notice that the Mg#-Cr# relationship commonly used for descriptions and
55	discussions of chromian spinel in igneous rocks (Irvine 1967) is strongly dependent on
56	their subsolidus cooling histories after the igneous stage.
57	In this article, we review and summarize the chromian spinel chemistry (mainly the
58	Cr# and Ti content) in deep-seated rocks (lherzolites, harzburgites, dunites, wehrlites,
59	troctolites and gabbros) to define its chemical spread for discrimination of their tectonic
60	settings and deep magmatic processes. We examined chromian spinel compositions in
61	the ultramafic and mafic plutonic rocks (mantle peridotites and ultramafic/mafic
62	cumulates) for which derived tectonic settings are well constrained. Each of the three
63	settings, i.e., the mid-ocean ridge, arc (mantle wedge) and oceanic hotspot (intraplate),
64	produces the magmas that are distinguishable from those of the other settings in
65	geochemistry (e.g. Pearce 1975). There have been plenty of articles dealing with
66	ultramafic xenoliths from continental areas captured by intra-plate basalts. The
67	deep-seated rocks from non-arc continental areas are not used in this article, because
68	they may have complicated histories, i.e., multi-setting generation/modification, and are

69	not appropriate to the purpose of this study. The chromian spinel chemistry has been
70	systematically discussed both for mantle peridotites (e.g. Dick & Bullen 1984; Arai
71	1994a) and for volcanic rocks (e.g. Arai, 1992; Kamenetsky et al. 2001). No works has
72	ever discussed chromian spinel in possibly cumulative plutonic rocks (dunites, wehrlites,
73	troctolites and gabbros) in more systematic way than this article that deals with
74	chromian spinels from plutonic rocks only with well-constrained derivations. The result
75	of this work is potentially useful, because such rocks are quite commonly found from
76	various geologic bodies. We also present two examples of application of our result to
77	two ophiolitic dunites, which are apparently unknown or debated for the tectonic setting
78	of formation. This article is supplementary to Arai (1992), which deals with chromian
79	spinels in volcanic rocks from the three tectonic settings.
80	

81 DATA ACQUISITION

We collected data of chromian spinel in deep-seated rocks from three main tectonic
settings, i.e., mid-ocean ridge, arc and oceanic hotspot. The source of spinel chemical
data treated here is unpublished theses of our laboratory in addition to the literature.
Fe²⁺ and Fe³⁺ amounts were calculated assuming spinel stoichiometry. Titanium is

86 assumed to form the ulvospinel component.

87

88 MID-OCEAN RIDGES

89	We can obtain deep-seated rocks (lherzolites, harzburgites, dunites, wehrlites, troctolites
90	and gabbros) from the present-day ocean floor by dredging, drilling and submersible
91	diving (e.g. Dick 1989). The oceanic fracture zones (FZ), which are more prominently
92	developed in the slow to ultraslow spreading ridge systems than in fast spreading ones,
93	are the main loci for obtaining abyssal deep-seated rocks. Hess Deep, the East Pacific
94	Rise, is one of the non-FZ localities where deep-seated rocks are exposed on the ocean
95	floor (e.g. Arai & Matsukage 1996; Dick & Natland 1996; Allan & Dick 1996). We can
96	interpret these plutonics as deep-seated magmatic products beneath the mid-ocean ridge.
97	Harzburgites and lherzolites are predominant in the uppermost mantle of fast spreading
98	ridges and of slow spreading ridges, respectively (Niu & Hékinian 1997). Dunites and
99	related rocks (troctolites and olivine gabbros) are commonly found from Hess Deep,
100	and they may represent the Moho transition zone of the fast spreading ridge (e.g. Arai &
101	Matsukage 1996).

6

103 OPHIOLITES

104 Plutonic rocks from ophiolites may represent the deep-seated rocks of some sorts of 105 oceanic lithosphere (e.g. Coleman 1977; Nicolas 1989). Their tectonic setting for 106 genesis has been a problem in controversy since the pioneering paper of Miyashiro 107 (1973), and therefore, the data from ophiolitic plutonic rocks are not considered in this 108 section. Some ophiolites that exhibit both mid-ocean ridge and island-arc characteristics 109 are called "supra-subduction zone" (SSZ) ophiolites (Pearce *et al.* 1984). Many people 110 have favored the back-arc basin as the locus of the SSZ ophiolite formation (e.g. Pearce 111 et al. 1984; Moores et al. 1984). The polygenetic nature of some ophiolites has been 112 recently recognized as well. For example, some peridotites from the northern Oman 113 ophiolite are of arc origin (e.g. Tamura & Arai 2006; Arai et al. 2006), although the 114 main portion of the mantle section was of mid-ocean ridge origin (e.g. Nicolas 1989). 115 Wehrlitic rocks around the Moho transition zone were interpreted as mid-ocean ridge 116 products in the southern Oman ophiolite (Koga et al. 2001). For another example, the 117 mantle member of the Coast Range ophiolite, California, is composed of a mixture of 118 SSZ harzburgites and abyssal lherzolites (Choi et al. 2008; Jean et al. 2010).

121	Deep-seated rocks from the sub-arc mantle (mantle wedge) are more difficult to obtain
122	systematically. Alkali basalts that carry deep-seated rocks as xenoliths most frequently
123	erupt on non-arc regions, i.e., on continental rift zones or oceanic hotspots, and the
124	xenoliths in kimberlites represent the upper mantle beneath cratons (e.g. Nixon 1987).
125	Genesis of calc-alkaline magmas is related with the subduction of slab (e.g. Tatsumi &
126	Eggins 1995), and their deep-seated xenoliths undoubtedly represent the sub-arc
127	deep-seated materials. Calc-alkaline andesites and basaltic andesites from Megata and
128	Oshima-Ôshima volcanoes (Northeast Japan arc), Iraya volcano (Luzon arc), and
129	Avacha and Shiveluch volcanoes (Kamchatka arc) contain peridotite xenoliths that are
130	derived from lithosphere of the mantle wedge (e.g. Takahashi 1978; Ninomiya & Arai
131	1992; Arai et al. 2003, 2004; Ishimaru et al. 2007; Bryant et al. 2007). It is noteworthy
132	that some of ultramafic rocks treated here form composite xenoliths with gabbros and
133	hornblendites in calc-alkaline volcanics (e.g. Ninomiya & Arai 1992; Arai et al. 1996,
134	2003, 2004). A variety of peridotites, i.e. lherzolites to highly refractory harzburgites
135	(Cr# of spinel < 0.8), may constitute the mantle wedge (Arai 1994a; Arai <i>et al.</i> 2003;
136	Arai & Ishimaru 2008). Dunites and related rocks form a thick cumulus mantle beneath

137	the Southwest Japan arc (Takahashi 1978). Dunites are relatively abundant from the
138	Oshima-Ôshima volcano (e.g. Yamamoto 1984), and are small in amount in other
139	localities (especially the Megata, Iraya and Avacha volcanoes).
140	Although not treated here, we can obtain large amounts of ultramafic xenoliths
141	carried by non-arc type alkaline basalts on past or present-day arcs, e.g., the Japan arcs
142	(e.g. Takahashi 1978; Aoki 1987; Abe et al. 1998, 1999; Arai et al. 1998, 2000, 2007).
143	These materials from the Japan arcs may represent sub-arc mantle materials because
144	their eruption ages are mostly younger than Miocene (Uto 1990), when the present arc
145	setting had been established for the Japan island arcs (e.g. Otofuji et al. 1985).
146	Ultramafic to mafic xenoliths from the Southwest Japan arc have been affected to
147	various extents (Arai et al. 2000) by Cenozoic non-arc type alkali basalt magmas
148	(Nakamura <i>et al.</i> 1987).
149	Peridotites and related rocks are exposed on the ocean floor of fore-arc regions (e.g.
150	Fisher & Engel 1969), and the dredged and drilled peridotites distinctively represent
151	fore-arc mantle materials (e.g. Bloomer 1983; Parkinson & Pearce 1998). Refractory
152	harzburgites are dominant in the fore-arc mantle (Arai 1994a). In this article, we treat
153	only these two sets of deep-seated rocks, i.e., the ultramafic xenoliths in arc-type

volcanics and the ultramafic rocks exposed on the present-day fore-arc ocean floor, as

155 "genuine" sub-arc materials with well-defined derivations.

156

157 OCEANIC HOTSPOTS

158 Deep-seated rocks from the oceanic hotspot areas have been almost solely obtained as 159 ultramafic and mafic xenoliths in their volcanic rocks (e.g. Nixon 1987). The xenoliths 160 in alkaline basalts especially represent the lower crust to upper mantle of that tectonic 161 setting because the xenolith-bearing magmas postdate the main stage of hotspot 162 volcanism (e.g. Jackson & Wright 1970). Lherzolites are apparently dominant in amount 163 as the upper mantle material from the oceanic hotspot (Arai 1994a). Some peridotites 164 may be related with the hotspot magmatism (cumulates or restites), and the others are 165 only representative of the sub-oceanic mantle that hosts mantle plumes relevant to the 166 hotspot activity. Arai (1994b) predicted predominance of refractory harzburgites with 167 high Cr# (around 0.7) of chromian spinel as residual peridotites after the hotspot 168 tholeiite genesis. Some basalt magmas contain a large amount of dunite xenoliths, 169 indicating a thick dunite layer at the uppermost mantle as a result of extensive tholeiitic magmatism (Jackson & Wright 1970; Sen & Presnall 1986). Hawaiian and French 170

171 Polynesian hotspots are especially important for occurrences of ultramafic xenoliths

172 (Nixon 1987), and our data accumulation owes the literature dealing with them.

173

174 CHEMICAL SPECTRA OF CHROMIAN SPINELS IN PLUTONIC 175 ROCKS FROM THE THREE TECTONIC SETTINGS

176

177 MID-OCEAN RIDGES

As is well known, the Cr# of chromian spinel in abyssal mantle peridotites ranges from
0.1 to 0.6 (e.g. Dick & Bullen 1984; Arai 1994a; Niu & Hékinian 1997) (Fig. 1a). It

180 changes from around 0.4 to 0.6 in harzburgites to <0.4 in lherzolites, in response to a

181 decrease of degrees of partial melting (e.g. Dick & Bullen, 1984; Arai 1994a). The TiO₂

- 182 content is mostly lower than 0.3 wt% in their chromian spinel (Fig. 1a). The chromian
- 183 spinel interestingly displays the same range of Cr# between plagioclase-bearing and
- 184 –free varieties of mantle peridotites (Fig. 1a). The TiO₂ content of chromian spinel is,
- 185 however, systematically higher in the plagioclase-bearing peridotites than in the
- 186 plagioclase-free ones (Dick 1989). The chromian spinel exhibits relatively wide ranges
- 187 of Cr#, 0.2-0.6, and TiO₂, nil to 2 wt% (mostly <1 wt%) in abyssal dunites (Fig. 1a).

188	Other plutonic rocks, especially troctolites and olivine gabbros from Hess Deep, show a
189	narrow range of Cr#, mostly 0.5 to 0.6, and a wide range of TiO_2 content, <3 wt% in
190	chromian spinel. Chromian spinel in abyssal plutonic rocks is characterized by overall
191	low Fe ³⁺ contents as that in MORB (Arai 1992). The Mg# is negatively correlated with
192	the Cr# in chromian spinel for all peridotitic rocks including dunites from the mid-ocean
193	ridges (Fig. 3a). Y_{Fe} (= Fe ³⁺ /(Cr + Al + Fe ³⁺) atomic ratio) of chromian spinel is mostly
194	lower than 0.1 in peridotitic rocks, and lower than 0.2 in troctolites and gabbros (Figs.
195	2a and 4a). Chromian spinel shows lower Mg#s at a Cr# around 0.5 in abyssal gabbros
196	and troctolites. The TiO_2 content is well correlated positively with the Y_{Fe} in chromian
197	spinel from troctolites and gabbros, being 2.5 to 3 wt% at around Y_{Fe} of 0.2 (Fig. 4a).
198	Rocks of dunite-troctolite-olivine gabbro suite from Hess Deep, East Pacific Rise,
199	were interpreted as a reaction product between the primary MORB and mantle
200	harzburgite (Arai & Matsukage 1996; Dick & Natland 1996). These rocks are expected
201	to be in equilibrium with MORB in terms of mineral chemistry (e.g. Kelemen et al.
202	1995; Arai 2005). Plagioclase in the harzburgites/lherzolites is calcic, and is a
203	melt-impregnation product (e.g. Dick 1989). The formation of plagioclase-bearing
204	peridotites is the very initiation of melt/peridotite reaction. The slightly but clearly

205 higher TiO_2 content of chromian spinel in plagioclase-bearing peridotites (Fig. 1a) is

206 consistent with this interpretation (e.g. Dick 1989).

207

208 ARCS

209 The Cr# of chromian spinel exhibits a wide range, from than <0.2 to 0.9, for mantle 210 peridotites (lherzolite to harzburgite) and dunites (Fig. 1b). This is consistent with the 211 wide range of spinel Cr# in sub-arc mantle restites estimated from arc magmas (Arai 212 1994b). The TiO₂ content of chromian spinel is, however, slightly higher in dunites than 213 in mantle peridotites (Fig. 1b). Some of dunite, wehrlite and clinopyroxenite treated 214 here possibly have initially formed composite xenoliths with younger gabbros or 215 hornblendites, and have been chemically influenced by evolved magmas that formed the 216 latter younger rocks (e.g. Ninomiya & Arai 1992). The relatively high contents of TiO₂ and Fe³⁺ of some plutonic spinels are possibly due to such a secondary effect. Almost all 217 218 sub-arc spinels have low values of Y_{Fe} , < 0.3 (Fig. 2b). As is well known, the Mg# 219 shows roughly negative correlations with the Cr# (e.g. Irvine 1967; Dick & Bullen 220 1984) (Fig. 3b). Two Mg#-Cr# spinel trends can be recognized in mantle peridotites, 221 especially harzburgites, corresponding to two different derivations of the samples

222	treated here, namely the fore-arc rocks and xenoliths in arc magmas (Fig. 3b). This is
223	due to the difference of equilibrium temperature between the two rock suites (e.g.
224	Okamura et al. 2006), resulting from a decrease of Mg# of chromian spinel with
225	decreasing the equilibrium temperature in peridotites (Irvine 1967; Evans & Frost 1975).
226	Chromian spinel in some dunites, wehrlites and clinopyroxenites shows lower Mg#s at
227	given Cr#s (Fig. 3b). The TiO ₂ content is positively correlated with the Fe ^{$3+$} ratio for the
228	main cluster of sub-arc spinels, being 1 to 2 wt% at $Y_{Fe} = 0.2$ (Fig. 4b).
229	
230	OCEANIC HOTSPOTS (PLUMES)
231	Ultramafic xenoliths have been extensively described from various oceanic hotspots on
232	the Earth, especially from Hawaii and the French Polynesian (e.g. Nixon 1987). The
233	Cr# of chromian spinel also changes from 0.1 to 0.8 with a lithological change from
234	lherzolite to harzburgite (Fig. 1c). The TiO_2 content of the peridotite spinel is mostly
235	lower than 4 wt% (Fig. 1c). The Cr# of chromian spinel shows almost the same range
236	between the mantle peridotites and dunites. The TiO_2 content of spinel is generally
237	higher in dunites than in mantle peridotites, and show the highest values, up to > 10

wt%, at the Cr# around 0.5 to 0.6 (Fig. 1c). Most of wehrlite spinel have relatively high

239	Cr#s, around 0.6, and TiO ₂ content, up to 6 wt% (Fig. 1c). The Y_{Fe} of chromian spinel is
240	highest around the intermediate Cr#, 0.5 to 0.6, and positively correlated to the TiO_2
241	content (Figs. 2c and 4)c. The TiO ₂ content of hotspot spinels varies at a given Y_{Fe} ,
242	ranging from 1 to 6 wt% at $Y_{Fe} = 0.2$ (Fig. 4c). Harzburgite spinels have higher Mg# at
243	a given Cr# than dunite ones (Fig. 3c). As in the case of abyssal plutonic rocks, the Mg#
244	is extended toward lower values at the highest Cr# of the whole range, 0.6 to 0.7, in the
245	dunite spinels (Fig. 3c).
246	
247	DISCUSSION
248	
249	DISTINCTION OF THE THREE TECTONIC SETTINGS
250	Apart from the mantle peridotite, the plutonic rocks that bear chromian spinel are
251	mainly dunite, troctolite and olivine gabbro from the ocean floor, but are dunite and
252	wehrlite from the arc and the hotspot (Figs. 1 to 4). This indicates that the phase
253	crystallizing next to olivine is mainly plagioclase in MORB but clinopyroxene in both
254	arc and intraplate magmas. This is in turn related with the degree of partial melting in
255	the mantle, which is lower, on average, in the mid-ocean ridge than in sub-arc and in

256 hotspot conditions (e.g. Arai 1994a,b).

257	The Cr# ranges of chromian spinel in plutonic rocks are overlapping with each
258	other around 0.1 to 0.6 for the three tectonic settings, i.e., the mid-ocean ridge, arc and
259	intraplate (Fig. 1). It is difficult, therefore, to distinguish the tectonic settings in terms of
260	Cr# of spinel alone. The Cr# of spinel is barely higher than 0.6 in plutonic rocks from
261	the mid-oceanic ridges. It is frequently over 0.6, and is up to 0.9 for the arc setting, and
262	up to over 0.7 for the intraplate (hotspot or plume) setting. The TiO_2 content in
263	chromian spinel combined with the Cr# is, however, convenient for distinction of
264	plutonic rocks between the three tectonic settings (Fig. 1). The TiO_2 content of
265	chromian spinel in plutonic rocks decreases on average from the intraplate setting to arc
266	via mid-ocean ridge setting (Fig. 1). It is concluded that deep-seated ultramafic rocks
267	can be distinguished as a group with each other in terms of spinel chemistry, especially
268	Cr# and Ti content (Fig. 1). This distinction is consistent with the diversity of chromian
269	spinel in volcanics depending on the tectonic setting (Arai 1992).
270	
271	IMPLICATIONS FOR DEEP MAGMATIC PROCESSES

272 All kinds of plutonic rock have relatively low-Ti spinels from the arc setting, and

273	dunites are almost indistinguishable from harzburgites (or lherzolites) in terms of spinel
274	chemistry (see Arai 1994b). Chromian spinel in dunites, troctolites and
275	melt-impregnated harzburgites (plagioclase harzburgites) from the ocean floor is high
276	both in Cr# (around 0.6 to 0.7) and in TiO ₂ (Fig. 1a). Dunites and wehrlites from the
277	oceanic hotspot also contain high-Cr# and high-Ti chromian spinels (Fig. 1c). The wide
278	range of TiO ₂ content at a given Y_{Fe} for hotspot dunite spinels (Figs. 1 and 4) is possibly
279	due to a variety of dunites, from those related with older MORB genesis to those related
280	to younger hotspot magmatism. It is noteworthy that the hotspot plutonic spinels are
281	lower in Ti at a given Y_{Fe} than the mid-ocean ridge ones (Fig. 4), despite that the
282	relations are the reverse for volcanic spinels (Arai 1992). Abyssal plutonic rocks are
283	mostly troctolites (Fig. 4a), in which Ti and Fe ³⁺ are partitioned to chromian spinel
284	because plagioclase is free of these components. In contrast, Ti and Fe^{3+} are partitioned
285	to both clinopyroxene and chromian spinel in wehrlites, which are common from
286	hotspot environments (Fig. 4c). This is also related with the redox condition;
287	deep-seated magmas are more oxidized for the hotspot environments than for the
288	mid-ocean ridge ones. This is concordant to the difference of oxidation states between
289	the hotspot magmas and MORB (e.g. Christie et al. 1986; Rhodes & Vollinger 2005).

290	Discrepancy in spinel chemistry between effusive rocks and related plutonic rocks
291	is sometimes noticeable; volcanic spinels are sometimes more limited in Ti and Y_{Fe}
292	ranges than plutonic spinels (Fig. 4). This is primarily due to effective magmatic
293	evolution to concentrate these components within closed melt pools in deep parts (Arai
294	et al. 1997). Difference in spinel chemistry is striking between MORB and abyssal
295	plutonics (dunites, troctolites to olivine gabbros) (Fig. 4a). The TiO ₂ and Y_{Fe} of
296	chromian spinel are limited, mostly <1 wt% and <0.1, respectively in MORB (Arai
297	1992), as compared to the values in abyssal plutonics (Fig. 4a).
298	It is noteworthy that high-Ti chromian spinels are also high in Cr# (around 0.6 to
299	0.7) (Fig. 1). The high-Cr#, -Ti spinels are common to dunites and related rocks from
300	the ocean floor and oceanic hotspot, part of which have been thought to be
301	peridotite/magma reaction products (e.g. Arai & Matsukage 1996; Dick & Natland
302	1996). Some of dunite and wehrlite xenoliths from the island arc setting are also
303	reaction products (e.g. Arai & Abe 1994), but the concerned arc magmas, which are
304	initially low-Ti, have not increased the Ti contents of chromian spinel even through the
305	peridotite/melt reaction processes.

307 EXAMPLES OF APPLICATION TO OPHIOLITES

308	The origin and nature of ophiolites have been controversial (e.g. Pearce et al. 1984;
309	Nicolas 1989). Arai et al. (2006), for example, suggested polygenetic nature of the
310	mantle part of the northern Oman ophiolite. We show two examples of discordant
311	dunites from two ophiolites as below. The dunite is an important constituent of the
312	Moho transition zone to upper mantle section of ophiolites, but the mineralogy is too
313	simple to constrain its derivation. If we apply the systematics discussed here, the
314	chromian spinel is indicative of the tectonic setting of the dunite formation.
315	
316	DISCORDANT DUNITES FROM THE MANTLE SECTION OF THE
317	NORTHERN OMAN OPHIOLITE
318	It has been well recognized that the mantle section of the Oman ophiolite is dominated
319	by harzburgites (e.g. Boudier & Coleman 1981; Lippard et al. 1986). Lherzolites are
320	absent except at the base of the ophiolite (e.g. Lippard et al. 1986; Takazawa et al.
321	2003). The harzburgites mainly constitute the mantle section, containing spinels with
322	Cr#s <0.6 (Le Mée et al. 2004), similar to those obtained from the ocean floor of fast
323	spreading ridge origin (Niu & Hekinian 1997). Tamura and Arai (2006) found a

324	harzburgire-orthopyroxenite-dunite suite of sub-arc chemical affinity from the northern
325	Oman ophiolite. Arai et al. (2006) examined chemical variations of detrital chromian
326	spinel particles derived from the mantle section from recent riverbeds in the Oman
327	ophiolite. They found more than 20 to 30 percent of the total detrital chromian spinel
328	grains examined have Cr#s higher than 0.6 (Arai et al. 2006).
329	Discordant dunites cutting foliated hartburgites are very common in the mantle
330	section (Fig. 5a). They form dikes or networks, and some of them contain chromian
331	spinel concentrations (podiform chromitites) (e.g. Augé 1987; Ahmed & Arai 2002).
332	They are massive in appearance and solely comprise olivine and euhedral to subhedral
333	chromian spinel (Fig. 5b). We examined chromian spinels in the discordant dunites from
334	Wadi Rajmi and Wadi Fizh areas of the northern Oman ophiolite (Fig. 5a). The Cr# of
335	chromian spinel ranges from 0.4 to 0.8 with very low amounts of TiO ₂ , mostly < 0.3
336	wt% (Fig. 6). Olivine associated with the chromian spinel is around Fo_{90-92} in
337	composition. The Oman discordant dunites are most likely to have been related with arc
338	magmas (see Figs. 1, 2 and 4). The mantle section of the Oman ophiolite, therefore,
339	comprises the ocean-floor peridotites (mainly harzburgites) modified by addition of
340	dunites of sub-arc affinity. This suggests a switch of tectonic setting from mid-ocean

341	ridge to arc (= supra-subduction zone) for genesis of the Oman ophiolite (Arai <i>et al.</i>
342	2006). Alternatively, this characteristic can be obtained at a back-arc tectonic setting,
343	where various magmas, from MORB-like to arc-type, are available (e.g. Pearce et al.
344	1984).
345	
346	DISCORDANT DUNITES FROM THE LIZARD OPHIOLITE, CORNWALL
347	The mantle section of the Lizard ophiolite, Cornwall (Kirby 1979), is mainly composed
348	of lherzolites and concordant dunites (Green 1964; Kadoshima & Arai 2001). This is
349	very similar to a peridotite suite from the ocean floor of slow spreading ridge origin
350	(Roberts et al. 1993) if we consider the abundance of lherzolite over harzburgite (e.g.
351	Niu & Hekinian 1997). The Cr# ranges from 0.1 to 0.5 for the Lizard detrital spinels
352	(Kadoshima & Arai 2001), exactly being the same as those of abyssal peridotites
353	(lherzolites to harzburgites) (Fig. 6). This is consistent with the idea that the Lizard
354	peridotite was representative of the uppermost sub-oceanic mantle of a slow spreading
355	ridge, which may be composed of predominant lherzolites and subordinate harzburgites
356	(Arai 2005).

357 Networks of younger discordant dunites are prominently cutting the concordant

358	lherzolites and dunites, especially around the central part of the ophiolite (Kadoshima &
359	Arai 2001). The younger discordant dunites are black in hand specimen, and seem
360	compact and hard on outcrop (Fig. 5c). This is in contrast to the concordant dunites that
361	are severely altered/weathered to be pale green in color and have been more strongly
362	eroded than the discordant ones due to mechanical weakness. This observation clearly
363	indicates different chemical and/or textural characteristics between the two types of
364	dunite. The discordant dunites are exclusively composed of olivine, highly serpentinized,
365	and euhedral to subhedral chromian spinel. The chromian spinel is opaque in thin
366	section and contains minute exsolution blebs of a Ti-rich phase (possibly Ti-rich
367	magnetite) (Fig. 5d). The olivine shows slightly lower Fo contents, 83 to 88, than in the
368	wall peridotite (89-90). The chromian spinel of this younger dunite is high in Cr# and
369	TiO ₂ , being around 0.6 and up to > 4 wt%, respectively (Fig. 6). It is low in both Cr#
370	and TiO_2 near the boundary with lherzolite (Fig. 6), suggesting fractional crystallization
371	(precipitation of minerals from the wall inward) or a reaction between the involved melt
372	and the lherzolite. The primary chromian spinel in the discordant dunite should have
373	contained higher TiO_2 contents before unmixing of the Ti-rich phase, being within the
374	chemical range of dunite spinels from oceanic hotspots (see Figs. 1 and 2). The magma

375	that produced the discordant dunite within the Lizard peridotite was of hotspot
376	(intra-plate) origin (Figs. 1, 2, 4 and 6). It was most probably tholeiitic (cf. Arai 1992).
377	The Lizard peridotite was, therefore, derived from the uppermost mantle that was
378	initially generated at a slow spreading ridge and was later impacted by an intra-plate
379	tholeiite magma.

381 CONCLUSIONS

382	The chromian spinel chemistry is highly useful to petrologically characterize ultramafic
383	plutonic rocks, especially dunitic rocks and chromitites, where chromian spinel is often
384	the only discriminating mineral. The trivalent cation ratio and TiO ₂ content in chromian
385	spinel are important parameters in discrimination of the plutonic rocks in terms of
386	tectonic setting of formation. Discrimination diagrams based on spinel chemistry made
387	from plutonic rocks derived from well-constrained settings should be applied to
388	characterization of rocks from unknown origins. The spinel-based diagrams made for
389	volcanic rocks or magmas should not been used for discrimination of plutonic rocks in
390	tectonic setting of derivation, because chromian spinel shows different chemical ranges
391	between effusive and plutonic rocks even of the same magmatic affinity as discussed

392	above. Discrimination in Mg# of chromian spinel is sometimes unreliable, because the
393	Mg# in chromian spinel is strongly changeable depending on the thermal history in
394	olivine-rich rocks. For example, the chromian spinel in possible abyssal peridotites
395	suffered from low-temperature metamorphism at a subduction zone have lower Mg#s at
396	a given Cr# than abyssal peridotites from the present-day ocean floor, which are mostly
397	derived from near the spreading center and have not been cooled down sufficiently (e.g.
398	Hirauchi et al. 2008).
399	
400	ACKNOWLEDGEMENTS
401	We are grateful to T. Morishita and A. Ishiwatari for their discussions. S.A. thanks H.
402	Hirai, N. Abe, M. Kida, Y. Kobayashi, M. Fujiwara, Y. Saeki, A. Ninomiya, S. Takada,
403	N. Takahashi and K. Goto for their collaboration on mantle xenoliths derived from the
404	mantle wedge. We appreciate suggestions made by S.H. Choi (associate editor), Y.J. Yu

405 and J.W. Shervais, which were helpful in revision.

406

407 **REFERENCES**

408 ABE N., ARAI S. & SAEKI Y. 1992. Hydration processes in the arc mantle; petrology

409	of the Megata peridotite xenolith the Northeast Japan arc. Journal of Mineralogy,
410	Petrology and Economic Geology 87, 305-17. (in Japanese with English abstract)
411	ABE N., ARAI S. & NINOMIYA A. 1995. Peridotite xenoliths and essential ejecta from
412	the Ninomegata crater, the Northeastern Japan arc. Journal of Mineralogy, Petrology
413	and Economic Geology 90, 41-9. (in Japanese with English abstract)
414	ABE N., ARAI S. & YURIMOTO H. 1998. Geochemical characteristics of the
415	uppermost mantle beneath the Japan island arcs: implications for upper mantle
416	evolution. Physics of Earth and Planetary Interior 107, 233-47.
417	ABE N., ARAI S. & YURIMOTO H. 1999. Texture-dependent geochemical variations
418	of sub-arc mantle peridotite from Japan island arcs. Proceedings of VIIth
419	International Kimberlite Conference J.B. Dawson Vol., 13-22.
420	AHMED A.H. & ARAI S. 2002. Unexpectedly high-PGE chromitite from the deeper
421	mantle section of the northern Oman ophiolite and its tectonic implications.
422	Contributions to Mineralogy and Petrology 143, 263-78.
423	ALLAN J.F. & DICK H.J.B. 1996. Cr-rich spinel as a tracer for melt migration and
424	melt-wall rock interaction in the mantle: Hess Deep, Leg 147. Proceedings of ODP,
425	Scientific Results 147, 157-72.

- 427 and calc-alkaline andesites and dacites. *In* Nixon P.H. (ed.) *Mantle Xenoliths*, pp
- 428 314-331, John Wiley & Sons, New York.
- 429 ARAI S. 1980. Dunite-harzburgite-chromitite complexes as refractory residue in the
- 430 Sangun-Yamaguchi zone, western Japan. *Journal of Petrology* **21**, 141-65.
- 431 ARAI S. 1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to
- 432 magma chemistry. *Mineralogical Magazine* **56**, 173-84.
- 433 ARAI S. 1994a. Characterization of spinel peridotites by olivine-spinel compositional
- 434 relationships: Review and interpretation. *Chemical Geology* **113**, 191-204.
- 435 ARAI S. 1994b. Compositional variation of olivine-chromian spinel in Mg-rich
- 436 magmas as a guide to their residual spinel peridotites. *Journal of Volcanology and*
- 437 *Geothermal Research* **59**, 279-94.
- 438 ARAI S. 2005. Role of dunite in genesis of primitive MORB. *Proceedings of Japan*
- 439 *Academy. Series B* **81**, 14-9.
- 440 ARAI S. & ABE N. 1994. Podiform chromitite in the arc mantle: chromitite xenoliths
- 441 from the Takashima alkali basalt, southwest Japan arc. *Mineralium Deposita* 29,
- 442 434-8.

443	ARAI S., ABE N. & H	IRAI H. 1998.	Petrological	characteristics of	the sub-arc mantle:
-----	---------------------	---------------	--------------	--------------------	---------------------

- 444 an overview on petrology of peridotite xenoliths from the Japan arcs. *Trends in*
- 445 *Mineralogy (India)* **2**, 39-55.
- 446 ARAI S., ABE N. & ISHIMARU S. 2007. Mantle peridotites from the Western Pacific.
- 447 *Gondwana Research*, **11**, 180-99.
- 448 ARAI S., HIRA H. & UTO K. 2000. Mantle peridotite xenoliths from the Southwest
- 449 Japan arc and a model for the sub-arc upper mantle structure and composition of the
- 450 Western Pacific rim. *Journal of Mineralogical and Petrological Sciences* **95**, 9-23.
- 451 ARAI S. & ISHIMARU S. 2008. Insights into petrological characteristics of the
- 452 lithosphere of mantle wedge beneath arcs through peridotite xenoliths: A review.
- 453 *Journal of Petrology* **49**, 665-95.
- 454 ARAI S., ISHIMARU S. & OKRUGIN V.M. 2003. Metasomatized harzburgite
- 455 xenoliths from Avacha volcano as fragments of mantle wedge of the Kamchatka arc:
- 456 an implication for the metasomatic agent. *Island Arc* **12**, 233-46.
- 457 ARAI S., KADOSHIMA K. & MORISHITA T. 2006. Widespread arc-related melting in
- 458 the mantle section of the northern Oman ophiolite as inferred from detrital chromian
- 459 spinels. Journal of Geological Society, London 163, 869-79.

461	of peridotite xenoliths in calc-alkaline andesite from Iraya volcano, Batan Island, the
462	Philippines, and its genetical implications. Science Reports of Kanazawa University
463	41 , 25-45.
464	ARAI S. & MATSUKAGE K. 1996. Petrology of the gabbro-troctolite-peridotite
465	complex from Hess Deep, equaotrial Pacific: implications for mantle-melt
466	interaction within the oceanic lithosphere. Proceedings of ODP, Scientific Results
467	147 , 135-55.
468	ARAI S., MATSUKAGE K., ISOBE E. & VYSOTSKIY S. 1997. Concentration of
469	incompatible elements in oceanic mantle: Effect of melt/wall interaction in stagnant
470	or failed conduits within peridotite. Geochmica et Cosmochimica Acta 61, 671-175.
471	ARAI S., TAKADA S., MICHIBAYASHI K. & KIDA M. 2004. Petrology of peridotite
472	xenoliths from Iraya Volcano, Philippines, and its implication for dynamic
473	mantle-wedge processes. Journal of Petrology 45, 369-89.
474	AUGÉ T. 1987. Chromite deposits in the northern Oman ophiolite: mineralogical
475	constraints. <i>Mineralium Deposita</i> , 109 301-4.
476	BARSDELL M & SMITH I.E.M. 1989. Petrology of recrystallized ultramafic xenoliths

ARAI S., KIDA M., ABE N., NINOMIYA A. & YUMUL G.P. JR. 1996. Classification

478	230-41.
479	BLOOMER S.H. 1983. Distribution and origin of igneous rocks from the landward
480	slopes of the Mariana Trench; Implications for its structure and evolution. Journal of
481	Geophysical Research 88, 7411-28.
482	BLOOMER S.H. & FISHER R.L. 1987. Petrology and geochemistry of igneous rocks
483	from the Tonga trench — A non-accreting plate boundary. Journal of Geology 95,
484	469-95.
485	BLOOMER S.H. & HAWKINS J.W. 1983. Gabbroic and ultramafic rocks from the
486	Mariana Trench: An island arc ophiolite. In Hayes D.E. (ed.) The tectonic and
487	geologic evolution of southeast Asian seas and Islands (Part 2), pp 294-317,
488	Geophysical Monograph No. 27, American Geophysical Union, Washington, D.C
489	BOUDIER F. & COLEMAN R.G. 1981. Cross section through the peridotite in the
490	Samail ophiolite, southeastern Oman mountains. Journal Geophysical Research 86,
491	2573-92.
492	BRYANT J.A., YOGODZINSKI G.M. & CHURIKOVA T.G. 2007. Melt-mantle
493	interaction beneath the Kamchatka arc: Evidence from ultramafic xenoliths from

from Merelava volcano, Vanuatu. Contributions to Mineralogy and Petrology 102,

Shiveluch volcano. *Geochemistry, Geophysics, Geosystems* **8**, Q04007. doi:

- 495 10.1029200GC001443.
- 496 CANNAT M., CHATIN F., WHITECHURCH H. & CEULENEER G. 1997. Gabbroic
- 497 rocks trapped in the upper mantle at the mid-Atlantic ridge. *Proceedings of ODP*,
- 498 *Scientific Results* **153**, 243-64.
- 499 CHOI S.H., SHERVAIS J.W. & MUKASA S.B. 2008. Supra-subduction and abyssal
- 500 mantle peridotites of the Coast Range ophiolite, California. Contributions to
- 501 *Mineralogy and Petrology* **156**, 551-576.
- 502 CHRISTIE D.M., CARMICHAEL I.S.E. & LANGMUIR C.H. 1986. Oxidation states
- 503 of mid-ocean ridge basalt glasses. *Earth Planetary Science Letters* **79**, 397-411.
- 504 CLAGUE D.A. 1988. Petrology of ultramafic xenolith from Loihi seamount, Hawaii.
- 505 *Journal of Petrology* **29**, 1161-86.
- 506 COLEMAN R.G. 1977. Ophiolites. Springer, Berlin.
- 507 CONRAD W.K. & KAY R.W. 1984. Ultramafic and mafic inclusions from Adak Island:
- 508 crystallization history, and implications for the nature of primary magmas and
- 509 crustal evolution in the Aleutian arc. *Journal of Petrology* **25**, 88-125.
- 510 DEBARI S., KAY S.M. & KAY R.W. 1987. Ultramafic xenoliths from Adagdak

volcano, Adak, Aleutian Islands, Alaska: deformed igneous cumulates from the

- 512 Moho of an island arc. *Journal of Geology* **95**, 329-41.
- 513 DELONG S.E., HODGES F.N. & ARCULUS R.J. 1975. Ultramafic and mafic
- 514 inclusions, Kanaga Island, Alaska, and the occurrence of alkaline rocks in island
- 515 arcs. *Journal of Geology* **83**, 721-36.
- 516 DICK H.J.B. 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge
- 517 magmatism. In Saunders A.D. and Norry M.J. (eds.) Magmatism in the Ocean
- 518 *Basins*, Geological Society Special Publications No. 42, pp 71-106, The Geological
- 519 Society, London.
- 520 DICK H.J.B. & BULLEN T. 1984. Chromian spinel as a petrogenetic indicator in
- 521 abyssal and alpine type peridotites and spatially associated lavas. *Contributions to*
- 522 *Mineralogy and Petrology* **86**, 54-76.
- 523 DICK H.J.B & NATLAND J. 1996. Last-stage melt evolution and transport in the
- shallow mantle beneath the East Pacific Ridge. *Proceedings of ODP, Scientific*
- 525 *Results* **147**, 103-34.
- 526 EVANS B.W. & FROST B.R. 1975. Chrome-spinel in progressive metamorphism: A
- 527 preliminary analysis. *Geochimica et Cosmochimica Acta* **39**, 959-72.

528	FISHER R.L. & ENGEL C.G. 1969. Ultramafic and basaltic rocks dredged from the
529	nearshore flank of the Tonga trench. Geological Society of America Bulletin 80,
530	1373-78.
531	FUJII T. 1990. Petrology of peridotites from Hole 670A, Leg109. Proceedings of ODP,
532	Scientific Results 106/109, 19-25.
533	GREEN D.H. 1964. The petrogenesis of the high-temperature peridotite intrusion in the
534	Lizard area, Cornwall. Journal of Petrology 5, 134-88.
535	HIRAUCHI K., TAMURA A., ARAI S., YAMAGUCHI H. & HISADA K. 2008. Fertile
536	abyssal peridotites within the Franciscan subduction complex, central California:
537	possible origin as detached remnants of oceanic fracture zones located close to a
538	slow-spreading ridge. Lithos 105, 319-28.
539	IRVINE T.N. 1965. Chromian spinel as a petrogenetic indicator; part I, Theory.
540	Canadian Journal of Earth Sciences 2, 648-71.
541	IRVINE T.N. 1967. Chromian spinel as a petrogenetic indicator; part II, Petrologic
542	applications. Canadian Journal of Earth Sciences 4, 71-103.
543	ISHII T. 1985. Dredged samples from the Ogasawara fore-arc seamount or "Ogasawara
544	Paleoland" – "fore-arc ophiolite". In Nasu N., Kobayashi K., Uyeda S., Kushiro I.

545	and Kagami H. (eds.), Formation of Active Ocean Margin, pp 307-42, TERRAPUB,
546	Tokyo.
547	ISHII T., ROBINSON P.T., MAEKAWA H. & Fiske R. 1992. Petrological studies of
548	peridotites from diapiric serpentinite seamounts in the Izu-Ogasawra-Mariana
549	forearc, Leg 125. Proceedings of ODP, Scientific Results 125, 445-85.
550	ISHII T., SATO H., HARAGUCHI S, FRAYER P., FUJIOKA K., BLOOMER S. &
551	YOKOSE H. 2000. Petrological characteristics of peridotites from serpentinite
552	seamounts in the Izu-Ogasawara-Mariana forearc. Journal of Geography (Tokyo)
553	109, 517-30. (in Japanese with English abstract)
554	ISHIMARU S. 2004. The petrological characteristics of the mantle wedge beneath the
555	Kamchatka arc. Unpublished MSc thesis, Kanazawa University, Kanazawa.
556	ISHIMARU S., ARAI S., ISHIDA Y., SHIRASAKA M. & OKRUGIN V. M. 2007.
557	Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc
558	inferred from highly depleted peridotite xenoliths from the Avacha volcano,
559	southern Kamchatka. Journal of Petrology 48, 395-433.
560	JACKSON E.D. 1969. Chemical variation in co-existing chromite and olivine in
561	chromite zones of the Stillwater complex. In H.D.B. Wilson H.D.B. (ed.) Magmatic

- 563 Geology Publishing Company, New Haven.
- 564 JACKSON E.D. & WRIGHT T.L. 1970. Xenoliths in the Honolulu Volcanic Series,
- 565 Hawaii. Journal of Petrology **11**, 405-30.
- 566 JEAN M.M., SHERVAIS J.W., CHOI S.H. & MUKASA S.B. 2010. Melt extraction and
- 567 melt refertilization in mantle peridotite of the Coast Range ophiolite: an La-ICP-MS
- study. *Contributions to Mineralogy and Petrology* **159**, 113-136.
- 569 KADOSHIMA K. & ARAI S. 2001. Chemical analysis of detrital chromian spinels
- 570 from the Lizard area, Cornwall, England: an attempt for lithological and petrological
- 571 survey of the Lizard peridotite. *Neues Jahrbuch für Mineralogie Monatshefte* **2001**,
- 572 193-209.
- 573 KAMENETSKY V.S., CRAWFORD A.J. & MEFFRE S. 2001. Factors controlling
- 574 chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel
- and melt inclusions from primitive rocks. *Journal of Petrology* **42**, 655-71.
- 576 KELEMEN P.B., SHIMIZU N. & SALTERS V.J.M. 1995. Extraction of
- 577 mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite
- 578 channels. *Nature* **375**, 747-753.

- 580 KOGA K.T., KELEMEN P.B. & SHIMIZU N. 2001. Petrogenesis of the crust-mantle
- transition zone and the origin of lower crustal wehrlite in the Oman ophiolite.
- 582 *Geochemistry, Geophysics, Geosystems* **2**, 2000GC000132.
- 583 KOMOR S.C., GROVE T.L. & HÉBERT R. 1990. Abyssal peridotites from ODP Hole
- 584 670A (21°10′N, 45°02′W): Residues of mantle melting exposed by non-constructive
- 585 axial divergence. *Proceedings of ODP, Scientific Results* **106/109**, 85-101.
- 586 LE MÉE L., GIRARDEAU J. & MONNIER C. 2004. Mantle segmentation along the
- 587 Oman ophiolite fossil mid-ridge. *Nature* **432**,167-72.
- 588 LIPPARD S.J., SHELTON A.W. & GASS I.G. 1986. The Ophiolite of Northern Oman.
- 589 Geological Society Memoir No. 11, Geological Society, London.
- 590 MIYASHIRO A. 1973. The Troodos ophiolitic complex was probably formed in an
- island arc. *Earth and Planetary Science Letters* **19**, 218-224.
- 592 MOORES E.M., ROBINSON P.T., MALPAS J. & XENOPHONTOS C. 1984. Model
- for origin of the Troodos massif, Cyprus, and other mideast ophiolites. *Geology* **12**,
- 594 500-503.

595	NAKAMURA E.,	CAMPBELL I.H.,	McCULLOCH M.T.	1989. Chemical
-----	--------------	----------------	----------------	----------------

- 596 geodynamics in a back arc region around the Sea of Japan: implications for the
- 597 genesis of alkaline basalts in Japan, Korea, and China. *Journal of Geophysical*
- 598 *Research* **94**, 4634-4654.
- 599 NICOLAS A. 1989. Structure of Ophiolites and Dynamics of Oceanic Lithosphere.
- 600 Kluwer, Dordrecht.
- 601 NIIDA K. 1997. Mineralogy of Mark peridotites: Replacement through magma
- 602 channeling examined from Hole920D, MARK area. *Proceedings of ODP, Scientific*
- 603 *Results* **153**, 265-75.
- 604 NINOMIYA A. & ARAI S. 1992. Harzburgite fragment in a composite xenolith from an
- 605 Oshima-Oshima andesite, the Northeast Japan arc. *Bulletin of Volcanological*
- 606 *Society of Japan* **37**, 269-73 (in Japanese).
- 607 NIU Y. & HÉKINIAN R. 1997. Spreading-rate dependence of the extent of mantle
- melting beneath ocean ridges. *Nature* **385**, 326-29.
- 609 NIXON P.H. 1987. *Mantle Xenoliths*. John Wiley & Sons, New York.
- 610 OHARA Y. & ISHII T. 1998. Peridotites from the southern Mariana forearc:
- 611 Heterogeneous fluid supply in the mantle wedge. *Island Arc* **7**, 541-58.

612	OKAMURA H., ARAI S. & KIM Y.U. 2006. Petrology of forearc peridotite from the
613	Hahajima Seamount, the Izu-Bonin arc, with special reference to chemical
614	characteristics of chromian spinel. <i>Mineralogical Magazine</i> 70, 15-26.
615	OTOFUJI Y., MATSUDA T. & NOHDA S. 1985. Paleomagnetic evidence from the
616	Miocene counter-clockwise rotation of Northeast Japan – rifting process of the
617	Japan Sea. Earth and Planetary Science Letters 75, 265-77.
618	PARKINSON I.J. & PEARCE J.A. 1998. Peridotites from the Izu-Bonin-Mariana
619	forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in
620	a supra-subduction zone setting. Journal of Petrology 39, 1577-618.
621	PEARCE J.A. 1975. Basalt geochemistry used to investigate past tectonic environments
622	on Cyprus. <i>Tectonophys</i> ics 25 , 41-67.

- 623 PEARCE J.A., LIPPARD S.J. & ROBERTS S. 1984. Characteristics and tectonic
- 624 significance of supra subduction zone ophiolites. *In* Kokelaar B.P. and Howells M.R.
- 625 (eds.) Marginal Basin Geology, Geological Society Special Publications No. 16, pp
- 626 77-94, The Geological Society, London.
- 627 PRINZ M., KEIL K., GREEN J.A., REID A.M., BONATTI E. & HONNOREZ J. 1976.
- 628 Ultramafic and mafic dredge samples from the equatorial mid-Atlantic and fracture

cones. *Journal of Geophysical Research* **81**, 4087-103.

630 RHODES J.M. & VOLLINGER M.J. 2005. Ferric/ferrous ratios in 1984 Mauna Loa

- 631 lavas: a contribution to understanding the oxidation state of Hawaiian magmas.
- 632 *Contributions to Mineralogy and Petrology* **149**, 666-74.
- 633 ROBERTS S., ANDERS J.R., BULL J.M. & SANDERSON D.J. 1993. Slow-spreading
- ridge-axis tectonics: evidence from Lizard Complex, U.K. *Earth and Planetary*
- 635 *Science Letters* **116**, 101-12.
- 636 ROEDER P.L. 1994. Chromite: From the fiery rain of chondrules to the Kilauea Iki lava
- 637 lake. *Canadian Mineralogist* **32**, 729-46.
- 638 SEN G. & PRESNALL D.C. 1986. Petrogenesis of dunite xenoliths from Koolau
- 639 volcano, Oahu, Hawaii: Implications for Hawaiian volcanism. *Journal of Petrology*
- **6**40 **27**, 197-217.
- 641 TAKAHASHI E. 1978. Petrological model of the crust and upper mantle of the
- 542 Japanese Island Arcs. *Bulletin Volcanologique* **41**, 529-47.
- 643 TAKAZAWA E., OKAYASU T. & SATOH K. 2003. Geochemistry and origin of the
- basal lherzolites from the northern Oman ophiolite (northern Fizh block).
- 645 *Geochemistry, Geophysics, Geosystems* **4**, 1021, doi:10.1029/2001GC000232.

646	TAMURAA.	& ARAIS.	2006.	Harzburgite	-dunite	-orthopy	roxenite	suite as	a record	of
0.0						010100				· · ·

- 647 supra-subduction zone setting for the Oman ophiolite mantle. *Lithos* **90**, 43-56.
- 648 TANAKA C. 1999. Upper mantle beneath hotspots inferred from peridotite xenoliths.
- 649 Unpublished MSc thesis, Kanazawa University, Kanazawa.
- 650 TARTAROTTI P., SUSINI S., NIMIS P. & OTTOLINI L. 2002. Melt migration in the
- 651 upper mantle along the Romanche Fracture Zone (Equatorial Atlantic). *Lithos* **63**,
- 652 125-49.
- 653 TATSUMI Y. & EGGINS S. 1995. Subduction Zone Magmatism. Blackwell,
- 654 Cambridge.
- 655 TRACY R.J. 1980. Petrology and genetic significance of an ultramafic xenolith suite
- 656 from Tahiti. *Earth and Planetary Science Letters* **48**, 80-96.
- 657 UTO K. 1990. Neogene volcanism of Southwest Japan: Its time and space on K-Ar
- dating. Ph.D. thesis, University of Tokyo, Tokyo.
- 659 YAMAMOTO M. 1984. Origin of calc-alkaline andesite from Oshima-Ōshima volcano,
- 660 north Japan. Journal of Faculty of Science, Hokkaido University, Series 4, 21, 1,
- 661 77-131.
- 662

664 Figure Captions

666	Fig. 1. Relationships between TiO_2 contents and $Cr/(Cr + Al)$ atomic ratios of
667	chromian spinels in plutonic rocks. Upper and lower panels are for dunites and other
668	possible cumulates, and for peridotites, respectively. (a) Mid-ocean ridges. Data
669	source: Allan and Dick (1996), Arai and Matsukage (1996), Cannat et al. (1997),
670	Dick (1989), Dick and Natland (1996), Fujii (1990), Niida (1997), Komor et al.
671	(1990), Prinz et al. (1976), and Tartarotti et al. (2002). (b) Arcs. Data source: Abe et
672	al. (1992, 1995), Arai et al. (2004), Barsdell and Smith (1989), Bloomer and
673	Hawkins (1983), Bloomer and Fisher (1987), Conrad and Kay (1984), Debari et al.
674	(1987), Delong et al. (1975), Ishii (1985), Ishii et al. (1992, 2000), Ishimaru (2004),
675	Ninomiya and Arai (1992), Ohara and Ishii (1998), and Yamamoto (1984). (c)
676	Oceanic hotspots. Data source: Clague (1988), Sen and Presnall (1986), Tracy
677	(1980), and Tanaka (1999). Peridotites, lherzolites and harzburgites. Pl, plagioclase.
678	Ol, olivine. Note the different compositional ranges between the three tectonic
679	settings. Scales of vertical axis are different between (a) and (b), and (c).

681	Fig. 2. Cr-Al-Fe $^{3+}$ atomic relationships of chromian spinels in plutonic rocks. Right
682	and left panels are for dunites and other possible cumulates, and for peridotites,
683	respectively. (a) Mid-ocean ridges. (b) Arcs. (c) Oceanic hotspots. Peridotites,
684	lherzolites and harzburgites. Pl, plagioclase. Ol, olivine. Data source as in Fig. 1.
685	
686	Fig. 3. Relationships between Mg/(Mg + Fe ²⁺) and Cr/(Cr + Al) atomic ratios of
687	chromian spinels in plutonic rocks. Upper and lower panels are for dunites and other
688	possible cumulates, and for peridotites, respectively. (a) Mid-ocean ridges. (b) Arcs.
689	(c) Oceanic hotspots. Peridotites, lherzolites and harzburgites. Pl, plagioclase. Ol,
690	olivine. Data source as in Fig. 1.
691	
692	Fig. 4. Relationships between TiO ₂ contents and Fe ³⁺ /(Cr + Al + Fe ³⁺) atomic ratios
693	of chromian spinels in plutonic rocks. Upper and lower panels are for dunites and
694	other possible cumulates, and for peridotites, respectively. (a) Mid-ocean ridges. (b)
695	Arcs. (c) Oceanic hotspots. Peridotites, lherzolites and harzburgites. Pl, plagioclase.
696	Ol, olivine. The fields for MOR (a) and hotspot (c) plutonics are shown in the panel
697	(b). The field for MORB spinels (Arai, 1992) is shown in the panel (a) for

701	Fig. 5. Photographs of discordant dunites. (a) Outcrop of discordant dunites (D)
702	within foliated mantle harzburgite from Wadi Rajmi, the northern Oman ophiolite.
703	(b) Photomicrograph of a partially serpentinized discordant dunite from Wadi Rajmi.
704	Plane-polarized light. (c) Outcrop of a discordant dunite (D; selectively eroded)
705	from the Lizard ophiolite. (d) Photomicrograph of a chromian spinel grain with
706	high-Ti exsolution blebs (brighter) in a partially serpentinized discordant dunite
707	from the Lizard ophiolite. Reflected plane-polarized light. Note the bright band
708	fringing the right-side margin is remnants of carbon coating.
709	
710	Fig. 6. Chromian spinel compositions in discordant dunites from the Oman and
711	Lizard ophiolites. Note the different compositional characteristics between the two
712	dunite spinels. (a) TiO ₂ vs. Cr/(Cr + Al) atomic ratio. Compare with Figure 1. (b)
713	TiO ₂ vs. Fe ³⁺ /(Cr + Al + Fe ³⁺) atomic ratios. Compare with Figure 4. (c) Cr-Al- Fe ³⁺
714	atomic ratios. The fields for MOR and hotspot dunites (Figure 2) are shown in the

715 panel (b).

Fig.1 Arai et al.

Fig. 2 Arai et al.

Fig. 3 Arai et al.

Fig. 4 Arai et al.

Fig. 5 Arai et al.

